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Abstract

We explicitly calculate the dynamic allocation indices (i.e. the Gittins indices) for multi-
armed Bandit processes driven by superdiffusive noise sources. This class of model
generalizes former results derived by Karatzas for diffusive processes. In particular, the
Gittins indices do, in this soluble class of superdiffusive models, explicitly depend on the
noise state.
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1. Introduction

After the seminal contributions of Gittins [4] and Gittins and Jones [5], the dynamic allocation
of a single resource to several competing projects (i.e. the multi-armed Bandit problem) became
a classical optimization problem. In its simplest form, this problem considers N independent
dynamically evolving projects j = 1, . . . , N , each of which can be in one of many possible
states xj ∈ R. At each instant of time t ≥ 0, we are allowed to engage exactly one single project
denoted by i(t) and when engaged a project delivers a reward generally dependent on the state
xi(t). In addition, the states of all disengaged projects remain ‘frozen’ in time. Future earnings
are discounted by a factor α and our objective is to schedule, in real time, the engagement of
the various projects in order to maximize the expected total discounted reward. For this class
of problem, it is possible to define, for each project, a priority index (called the Gittins index)
and thus establish an optimal scheduling policy by engaging, at any time, the project exhibiting
the highest index. The difficulty is then to calculate the priority indices associated with the
dynamics driving the states of the projects. So far, several works have focused on explicitly
calculating the priority indices [3], [8], [11], [12]. As calculating a priority index is equivalent
to solving an associated optimal stopping problem it is relatively demanding to obtain explicit
solutions and, thus, always worthwhile to point out the situations where this can be achieved.
It is precisely the aim of this paper to show that explicit Gittins indices can be obtained for
projects driven by a class of superdiffusive noise sources. In our models, the noise sources
are themselves diffusion processes with nonlinear drifts yielding the superdiffusive behavior,
where the variance of the noise grows with time t as t + Bt2 with B ≥ 0 a constant. For
B = 0, our class of model has been studied previously by Karatzas [11]; whereas, for B > 0,
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the superdiffusive dynamics yield noise dependent Gittins indices, a feature not considered in
the work of Karatzas [11].

2. The dynamic allocation problem

Following the notation in [11] we denote by (�, F , P; Ft ) a standard probability space,
where {Ft }t≥0 is an increasing σ -field in F . We have an N -dimensional Brownian motion
{w(t) = (w1(t), . . . , wN(t)); Ft , t ≥ 0} as well as an allocation policy A = {i(t); Ft , t ≥ 0}
which is assumed to be an Ft -progressively measurable process with values in the set
{1, . . . , N}. At time t , the project i(t) ∈ {1, . . . , N} is to be engaged and

Tj (t) = meas{0 ≤ s ≤ t | i(s) = j}
measures the total time up to t that the project j has been engaged.

The dynamics of the projects are defined on the same probability space and satisfy the
following stochastic differential equations:

dxj (t) = µj dTj (t) + dzj (Tj (t)), xj (0) = xj , (1)

dzj (t) = √
B tanh(

√
Bzj (t)) dt + dwj(t), zj (0) = z, (2)

for j = 1, . . . , N . The process {xj (t); t ≥ 0} models the ‘state of affairs’ in project j as an
anomalous diffusion with local drift µj ≥ 0. For ease of presentation, the drift is assumed to
be constant. The noise sources zj (t) show superdiffusive behaviour [9] (i.e. E[zj (t)

2] > t) as
we have

E[z2
j (t)] = t + Bt2.

The parameter 0 ≤ B ≤ minj {µ2
j } controls the superdiffusive nature of zj and we observe that

for B = 0, the dynamics reduce to the known diffusive case treated in [11].

Remark. The specific noise zj (t) (introduced in [6], [7]) has recently been found to be relevant
to the continuous description of a quantum random walk process [2] and is discussed further,
together with other soluble superdiffusive models, in [9]. A remarkable representation of the
noise zj has been proposed by Rogers and Pitman [13]. They showed that zj (t) can be defined
as a random mixture of two diffusions of the form

zj (t) = Bj

√
Bt + wj(t), zj (0) = z, (3)

where Bj is a Bernoulli variable taking the values +1 or −1, independently of the process
wj(t), with respective probabilities p(z) and 1 − p(z), where

p(z) = 1

2
+ tanh(

√
Bz)

2
.

This representation shows, in particular, that with probability 1 we have limt→∞ zj (t) = ±∞.
Therefore, for large t , (1) and (2) are close to the ordinary diffusions

dxj (t) = (µ ± √
B) dt + dwj(t), xj (0) = xj ,

where, however, the sign ±1 is chosen randomly according to the Bernoulli variable Bj and
the initial condition zj .

The reward earned by engaging j is measured by the function h(j, x), x ∈ R, which we
assume to be strictly increasing with bounded and continuous first and second derivatives, and
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which satisfies

lim
x→∞ h(j, x) = αK, lim

x→−∞ h(j, x) = αk, lim|x|→∞ h′(j, x) = 0, (4)

for some numbers K > k and α > 0, and for all j ∈ {1, . . . , N}. Future earnings are
discounted by e−αt and the expected reward corresponding to an initial position (x, z) =
(x1, . . . , xN , z1, . . . , zN) and an allocation policy A is given by

J (x, z; A) = Ex,z

[∫ ∞

0
e−αth(i(t), xi(t))(t) dt

]
. (5)

The allocation problem is then to find a policy A∗ which maximizes (5).

Following Whittle [14] and Karatzas [11], we treat the optimization problem by adding
the extra option of ‘retirement’, i.e. of abandoning all projects with an associated fixed payoff
m ∈ [k, K]. The expected total reward corresponding to an allocation policy A and a retirement
time τ (i.e. a stopping time with respect to Ft ) is given by

J (x, z, m; A, τ ) = Ex,z

[∫ τ

0
e−αth(i(t), xi(t))(t) dt + me−ατ

]
.

The optimization problem is then to choose A∗ and τ ∗ such that

J (x, z, m; A∗, τ ∗) = sup
A,τ

J (x, z, m; A, τ ) for all m ∈ R and for all x, z ∈ R
N,

where the supremum is taken over all allocation policies and Ft -stopping times τ . This
global optimization problem, for which we can write down the characterizing variational
inequalities (see, e.g. [11, Equation (2.7)]) is reduced to a stopping time problem using the
‘Whittle reduction’. This device transforms the dynamic allocation problem to N optimal
stopping problems for the component processes viewed independently of one another. It also
distinguishes the form of the optimal allocation policy by assigning an index function Mj(·)
to the state of each project and proceeding as follows: ‘at time t , engage the project with the
leading index Mj(xj (t)zj (t)) as long as the index exceeds m; otherwise retire’. In the next
section we study the generic stopping problem and characterize A∗ and τ ∗ as explicitly as
possible.

3. Optimal stopping

We consider the evolution of a real valued stochastic coordinate Xt defined on a probability
space (�, F , P; Ft ) by

dXt = µ dt + dZt , X0 = x, (6)

dZt = √
B tanh(

√
BZt) dt + dWt, Z0 = z, (7)

where Wt denotes a Brownian motion process adapted to the family Ft and where B is a positive
parameter. The generic optimal stopping problem associated to the above dynamic allocation
problem reads as follows. Find an Ft -adapted stopping time τ , so as to minimize the expected
discounted reward

Ex,z

[∫ τ

0
e−αth(Xt ) dt + me−ατ

]
,
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where α > 0 is a discount factor for the instantaneous reward function h(x) ∈ C1
b(R) which is

supposed to be a strictly increasing function satisfying (4).
The general theory [1, Chapter 1, Section 3] established that the optimal stopping time is

given by
τ ∗ = τ ∗(x, z, m) ≡ inf{t ≥ 0 | φ(xt , zt , m) = m}, (8)

where, for fixed m, the C1
b(R2) function φ(x, z, m) satisfies the following variational inequal-

ities:

φ(x, z, m) ≥ m in R
2, (9)

Gφ(x, z, m) + h(x) ≤ αφ(x, z, m) almost everywhere (a.e.) in R
2, (10)

[Gφ(x, z, m) + h(x) − αφ(x, z, m)][φ(x, z, m) − m] = 0 a.e. in R
2. (11)

Equation (10) is the continuation condition and (11), complementary to (10), expresses the
stopping condition. In both equations, G stands for the backward-Kolmogorov operator
associated with the project dynamics given in (6) and (7), and is given by

G = (µ + √
B tanh(

√
Bz))

∂

∂x
+ √

B tanh(
√

Bz)
∂

∂z
+ 1

2

∂2

∂x2 + ∂2

∂x∂z
+ 1

2

∂2

∂z2 .

Let us now show that for the dynamics in (6) and (7), the variational inequality can be
solved explicitly. Following Karatzas [11], we first note that the increasing nature of the payoff
function h suggests that the continuity region for the stopping problem should be an open
interval (b, ∞). In our case, however, b will depend on the state of the driving noise Zt and we
are hence looking for a real boundary point b = b(Zt , m) and a bounded C1 function φ(x, z, m)

satisfying the following conditions:

Gφ(x, z, m) − αφ(x, z, m) = −h(x) for x > b(z, m),

Gφ(x, z, m) − αφ(x, z, m) < −h(x) for x < b(z, m),
(12)

φ(x, z, m) = m for x ≤ b(z, m),

φ(x, z, m) > m for x > b(z, m).
(13)

Clearly, (12) and (13) imply (9)–(11). To solve the homogeneous part of (12) (i.e. the first
equation with h = 0), we remark that the function

g(x, z) := χ(x, z)

cosh(
√

Bz)
,

solves (12) when χ is a solution to the linear equation
(

1

2

∂2

∂z2 + ∂2

∂x∂z
+ 1

2

∂2

∂x2 + µ
∂

∂x
−

(
α + B

2

))
χ(x, z) = 0. (14)

We have to select a solution to (14) which remains bounded for fixed x and for |z| → ∞. This
yields, for the homogeneous part of (12), the following solution:

g(x, z) = 1

2

e
√

Bz

cosh(
√

Bz)
(C1exβ+ + C2e−xγ+) (15)

+ 1

2

e−√
Bz

cosh(
√

Bz)
(C3exβ− + C4e−xγ−),
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where γ± = (µ ± √
B) + r±, β± = −(µ ± √

B) + r±, and r± =
√

(µ ± √
B)2 + 2α. A

particular solution to the nonhomogenous equation (12) is given by the following expected
reward of continuing forever:

p(x, z) = Ex,z

∫ ∞

0
e−αth(Xt ) dt

=
1∑

j=0

exp[(−1)j
√

Bz]
2 cosh(

√
Bz)

E
∫ ∞

0
e−αth[x + (µ + (−1)j

√
B)t + wt ] dt

= 1

2

exp (
√

Bz)

cosh(
√

Bz)

1

β+ + γ+

[
e−xγ+

∫ x

∞
euγ+h(u) du + exβ+

∫ ∞

x

e−uβ+h(u) du

]

+ 1

2

exp (−√
Bz)

cosh(
√

Bz)

1

β− + γ−

[
e−xγ−

∫ x

∞
euγ−h(u) du + exβ−

∫ ∞

x

e−uβ−h(u) du

]
,

where we have used (3) for the conditional probability of the joint process (Xt , Zt ) and standard
computations (see, e.g. [10, p. 17]). The general solution to (12) is then given by

φ(x, z, m) := φ(x, z) = g(x, z) + p(x, z). (16)

It remains now to determine the constants in (15), which must coincide with the results in [11]
for |z| → ∞. We note that the boundedness of φ on (b, ∞) implies that C1 = C3 = 0.
Elimination of C2 and C4 from

lim
z→±∞ φ(b(z), z) = m and lim

z→±∞
∂

∂x
(φ(x, z))

∣∣∣∣
x=b(z)

= 0

yields the asymptotic values b± = limz→±∞ b(z) for the switching curve b(z). The asymptotic
values b± satisfy the following equations:

m = p′(b+, ∞)

γ+
+ p(b+, ∞) and m = p′(b−, −∞)

γ−
+ p(b−, −∞).

Observe that b+ ≤ b(z) ≤ b− and that the switching curve b(z) satisfies

m = φ(b(z), z)

= g(b(z), z) + p(b(z), z) (17)

= e
√

Bz

2 cosh(
√

Bz)

(
p′+
γ+

eγ+(β++b(z)) + 1

β+ + γ+
F+(b(z))

)

+ e−√
Bz

2 cosh(
√

Bz)

(
p′−
γ−

eγ−(β−+b(z)) + 1

β− + γ−
F−(b(z))

)
,

where

p′± = lim
z→±∞

∂

∂x
p(x, z)

∣∣∣∣
x=b(z)

and

F±(b(z)) = e−b(z)γ±
∫ b(z)

−∞
e−uγ±h(u) du + eb(z)β±

∫ ∞

b(z)

e−uβ±h(u) du.
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Note that, for B = 0, (17) reduces to Equation (3.14) of [11]. For B > 0, (17) defines a
switching curve z 
→ b(z) = b(z, m) which depends on the initial condition z. The uniqueness
of this curve is established by fixing m ∈ [k, K] and z ∈ R, and by proceeding analogously to
Lemma 3.1 of [11]. In particular, we have the following result.

Theorem 1. For each m ∈ [k, K] and each initial condition z, there exists a unique number
b(z, m) ∈ R such that the optimal stopping time (8) is given by

τ ∗ = τ(x, z, m)∗ = inf{t ≥ 0 | xt ≤ b(z, m)},
where b(z, m) and the total expected reward φ(x, z, m) are given by (17) and (16), respectively.

4. The Gittins indices

Suppose now that we are given an allocation problem with N projects evolving according
to the dynamics given by (1) and (2). The Gittins index Mj(xj , zj ) for project j is defined as
the smallest value of the terminal reward which makes immediate stopping profitable, if the
project is in state xj and the noise in state zj . The value for Mj follows from solving (17), and
the optimal policy A∗ will be ‘to continue the project with leading index’.
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