LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES

SHIZHANG LI^{1} and XUANYU PAN ${ }^{2,3}$
${ }^{1}$ Department of Mathematics, Columbia University, MC 4406, 2990 Broadway, New York, NY 10027, USA;
email: shanbei@math.columbia.edu
${ }^{2}$ Institute of Mathematics, AMSS, Chinese Academy of Sciences, 55 ZhongGuanCun East Road, Beijing 100190, China
${ }^{3}$ Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn, 53111, Germany; email: pan@amss.ac.cn, panxuanyu@mpim-bonn.mpg.de

Received 16 February 2018; accepted 26 August 2019

Abstract

In this note, we prove the logarithmic p-adic comparison theorem for open rigid analytic varieties. We prove that a smooth rigid analytic variety with a strict simple normal crossing divisor is locally $K(\pi, 1)$ (in a certain sense) with respect to \mathbb{F}_{p}-local systems and ramified coverings along the divisor. We follow Scholze's method to produce a pro-version of the Faltings site and use this site to prove a primitive comparison theorem in our setting. After introducing period sheaves in our setting, we prove aforesaid comparison theorem.

2010 Mathematics Subject Classification: 14G22, 14C30 (primary); 14G20, 32J27 (secondary)

Contents

1 Introduction 2
2 Preliminaries 5
2.1 Abhyankar's lemma 5
2.2 Gysin sequence 6
2.3 The site $X_{\log }$ 7
3 The site $X_{\text {prolog }}$ 11

[^0]4 The structure sheaves 19
5 Primitive comparison 23
6 The period sheaves 29
7 Comparisons 41
7.1 Vector bundles on $X_{\log }$ 41
7.2 Proof of the comparison 45
References 52

1. Introduction

Historically, classical Hodge theory was developed from Hodge's results up through Deligne's papers on mixed Hodge structures in the early 1970s. The famous decomposition theorem is the following.

THEOREM 1.1 (Hodge, Deligne). Let X be a smooth proper variety over complex numbers \mathbb{C} with a strict simple normal crossing (SSNC) divisor D. Then we have

$$
H_{\text {sing }}^{m}(X-D, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} \cong H^{m}\left(X, \Omega_{X}^{\bullet}(\log D)\right) \cong \bigoplus_{i+j=m} H^{i}\left(X, \Omega_{X}^{j}(\log D)\right)
$$

where $\Omega_{X}^{j}(\log D)$ is the sheaf of j-forms with logarithmic singularities along D on X.

The p-adic Hodge theory properly began around 1966 when Tate [Tat67, page 180 Remark] proved a p-adic version of the comparison theorem for an abelian variety of good reduction over a p-adic field. After the works of Fontaine, Messing, Bloch, Kato, et al., Faltings proved the following.

THEOREM 1.2 [Fal88]. Let X be a smooth proper variety over a p-adic field k with an SSNC divisor D. Then there exists a $\operatorname{Gal}(\bar{k} / k)$-equivariant isomorphism

$$
H_{\mathrm{et}}^{m}\left((X-D)_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{i+j=m} H^{i}\left(X, \Omega_{X}^{j}(\log D)\right) \otimes_{K} \mathbb{C}_{p}(-j),
$$

where $\Omega_{X}^{j}(\log D)$ is the sheaf of j-forms with logarithmic singularities along D on X and $\mathbb{C}_{p}=\hat{\overline{\mathbb{Q}}}_{p}$.

Afterward, many people have found other ways to produce this comparison isomorphism. There is another remarkable approach to prove such a comparison,
due to Beilinson (see [Bei12]), using derived de Rham cohomology (of Illusie), h-topology and de Jong's alterations.

Recently, Scholze generalized Theorem 1.2, namely, the de Rham comparison theorem for a smooth proper rigid analytic space over a p-adic field. Moreover, the comparison theorem that he proved allows coefficients to be local systems, see [Sch13a, Theorem 8.4]. However, his theorem does not include the logarithmic case. The purpose of this note is to prove the de Rham comparison in the logarithmic case (for constant coefficients) using the same methods.

It is also worth mentioning that in the work of Colmez-Nizioł, they proved a semistable comparison for semistable formal log-schemes (see [CN17, Corollary 5.26]). In particular, they have already obtained the de Rham comparison in the logarithmic case (for constant coefficients) assuming the appearance of a semistable formal model.

Let k be a discretely valued complete nonarchimedean extension of \mathbb{Q}_{p} with perfect residue field κ. Our main comparison theorem (see Theorems 7.9 and 7.14) is the following:

Theorem 1.3. Let X be a proper smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$ with an SSNC divisor D and complement $U:=X \backslash D$. Then, there is a natural $\operatorname{Gal}(\bar{k} / k)$ equivariant isomorphism

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}} \cong H^{i}\left(X, \Omega_{X}^{\bullet}(\log D)\right) \otimes_{k} B_{\mathrm{dR}}
$$

preserving filtrations. Moreover, the logarithmic Hodge-de Rham spectral sequence

$$
E_{1}^{i, j}=H^{j}\left(X, \Omega_{X}^{i}(\log D)\right) \Longrightarrow H^{i+j}\left(X, \Omega_{X}^{\dot{\bullet}}(\log D)\right)
$$

degenerates. In particular, the logarithmic Hodge-Tate spectral sequence also degenerates and yields the logarithmic Hodge-Tate decomposition

$$
H^{i}\left(U_{\bar{k}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \hat{\bar{k}} \cong \bigoplus_{j} H^{i-j}\left(X, \Omega_{X}^{j}(\log D)\right) \otimes_{k} \hat{\bar{k}}(-j) .
$$

During the preparation of this note, we learned that Diao, Lan, Liu and Zhu have proved a more powerful version of this comparison theorem including allowing more general coefficients (see [DLLZ18, Theorem 1.1]).

We hope our approach following Scholze and using the Faltings site is still interesting in its own.

In the rest of this introduction, we give a brief description of the organization of this note. In Section 2.3 we introduce the Faltings site $X_{\log }$ and show that
the complement of an SSNC divisor is locally $K(\pi, 1)$ (in a certain sense) with respect to \mathbb{F}_{p}-local systems, see Theorem 2.8 and Proposition 2.12. (Shortly after posting the first version of this note on arXiv, we are pointed out that similar result has been obtained by Colmez-Nizioł (see [CN17, 5.1.4]) via similar methods.) The main consequence is that we can compute the cohomology of local systems on U_{ett} via X_{log}. The main ingredients for the proofs are results of Lütkebohmert in [Lüt93], Scholze's $K(\pi, 1)$-result for affinoid spaces and Gysin sequence.

In Section 3, we introduce a general method to produce a pro-site $X_{\text {prolog }}$ of the Faltings site $X_{\text {log }}$. This general method is recapturing [Sch13a, Section 3]. We also show that the pro-site $X_{\text {prolog }}$ shares a lot of good properties, for example, algebraicity and it has a coherent terminal object if the rigid space X is proper over k. Most of the arguments are formal and similar to counterparts in [Sch13a, Section 3].

In Section 4, we introduce structure sheaves on $X_{\log }$ and $X_{\text {prolog }}$. We also show that $X_{\text {prolog }}$ has affinoid perfectoid basis, see Lemma 4.9. The main difference of $X_{\text {prolog }}$ from the pro-étale site is that we are allowed to take any root (not just p-root) of the coordinates defining the divisor D, see Example 4.5. This difference is clear from [Fal88].

In Section 5, we follow the method of Scholze to show the primitive comparison Theorem 5.1 in our setting. A similar result has been obtained by Diao in the setting of (pro)-Kummer étale site, see [Dia17, Proposition 4.4]. To show the comparison theorem for $X_{\text {prolog }}$, we need to enhance some Scholze's results in the case allowing ramified coverings.

In Section 6, we introduce the period sheaves on $X_{\text {prolog. }}$. The new ingredient is a logarithmic version of the period sheaf, $\mathcal{O} \mathbb{B}_{\operatorname{logdR}}^{+}$. The main result of this section is the logarithmic Poincaré lemma, see Corollary 6.10.

In Section 7.1, we introduce a notion of vector bundles on the Faltings site $X_{\text {log }}$ and prove Theorems A and B à la Cartan for them. Then in Section 7.2 we prove the aforesaid de Rham comparison theorem.

Notations and conventions. In this note, unless specified otherwise, we will use the following notations and conventions. Let k be a p-adic field, that is, discretely valued complete nonarchimedean field extension of \mathbb{Q}_{p} with perfect residue field. We denote its ring of integers by \mathcal{O}_{k}. We will use K to denote a perfectoid field which is the completion of some algebraic extension of k.

Let X be a smooth proper rigid space over k of dimension n and let $D=$ $\bigcup_{i \in I} D_{i} \subset X$ be a divisor, here I is a finite index set. For any subset $J \subset I$, we use D^{J} to denote $\bigcap_{i \in J} D_{i}$. We say D is a strict simple normal crossing (SSNC) divisor if all of D^{J} 's are smooth of codimension $|J|$ where $|J|:=$ number of elements in J. Here D^{J} has codimension greater than n means it is
empty. We denote $X \backslash D$ by U. For any rigid space $V \rightarrow X$ admitting a map to X, we denote the preimage of U by V°.
We use notation $\mathbb{D}^{r}(\underline{T})$ to denote r-dimensional unit polydisc with coordinates given by T_{i}. We denote $\mathbb{D}^{r}(\underline{T}) \backslash V\left(T_{1} \cdots T^{r}\right)$ by $\mathbb{D}^{\circ, r}(\underline{T})$.

Let A be a ring, we denote its normalization by A^{v}. If f_{1}, \ldots, f_{r} are r elements in an affinoid algebra A, then we denote $\operatorname{Sp}\left(\left(A\left[\sqrt[m]{f_{1}}, \ldots, \sqrt[m]{f_{r}}\right]\right)^{v}\right)$ by $\operatorname{Sp}\left(\mathrm{A}\left[\sqrt[m]{f_{l}}\right]\right)$.

We use both the language of adic spaces of finite type over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$ and rigid spaces over $\operatorname{Sp}(k)$ interchangeably, we hope this does not confuse the reader.

2. Preliminaries

2.1. Abhyankar's lemma. Let us discuss Abhyankar's Lemma for rigid spaces over p-adic fields. This is more or less already obtained by Lütkebohmert in [Lüt93], see also [Han17, Section 2.2].

Proposition 2.1. Let S be a smooth rigid space over k which is not necessarily quasicompact or quasiseparated. Let

$$
\phi: Y \rightarrow X=S \times \mathbb{D}^{\circ, r}(\underline{z})
$$

be a finite étale covering of degree d. Then after pulling Y back to $S \times \mathbb{D}^{\circ, r}(\underline{T})$ along

$$
S \times \mathbb{D}^{\circ, r}(\underline{T}) \rightarrow S \times \mathbb{D}^{\circ, r}(\underline{z}), z_{i} \mapsto T_{i}^{d!}
$$

it extends to a finite étale covering of $S \times \mathbb{D}^{r}(\underline{T})$.

Proof.

Step 1: Let us first prove this in the case where $r=1$. Since extension of covering is faithful (see [Han17, Proposition 2.9]), by descent it suffices to prove the statement after replacing S by an étale cover of S. Therefore we may assume that the conditions of [Lüt93, Lemma 3.2] are satisfied. Our statement just follows from [Lüt93, Lemma 3.2].

Step 2: Let us prove the general case by induction on r. Write

$$
S \times \mathbb{D}^{\circ, r}=S \times\left(\mathbb{D}^{o, r-1}\right) \times(\mathbb{D} \backslash\{0\}) .
$$

By step 1 we see that after pulling Y back along

$$
S \times\left(\mathbb{D}^{\circ, r-1}(\underline{z})\right) \times\left(\mathbb{D}\left(T_{n}\right) \backslash\{0\}\right) \rightarrow S \times\left(\mathbb{D}^{\circ, r-1}(\underline{z})\right) \times\left(\mathbb{D}\left(z_{n}\right) \backslash\{0\}\right), \quad z_{n} \mapsto T_{n}^{d!}
$$

it extends to a finite étale covering of $S \times\left(\mathbb{D}^{o, r-1}(z)\right) \times \mathbb{D}\left(T_{n}\right)$. Now by induction, we are done.

From the proposition above, we can deduce the following Theorem which can be thought of as the analogue of Abhyankar's Lemma in rigid geometry.

THEOREM 2.2 (Rigid Abhyankar's lemma). Let $N_{1}=\operatorname{Sp}(A)$ be a smooth affinoid space over a p-adic field, let f_{i} be r functions which cut out r smooth divisors. Denote the union of these divisors by D. Let $N_{2} \rightarrow N_{1}$ be a finite morphism which is étale away from D with $N_{2}=\operatorname{Sp}(B)$ being normal. Then for sufficiently divisible $k \in \mathbb{N}$, the map

$$
A\left[\sqrt[k]{f_{i}}\right] \rightarrow\left(B \otimes_{A} A\left[\sqrt[k]{f_{i}}\right]\right)^{v}
$$

is finite étale.
Proof. Since the statement is local on N_{1}, we may assume (by [Kie67, Theorem 1.18], see also [Mit09, Theorem 2.11]) that $A=A_{0}\left\langle T_{i}\right\rangle$ where the divisor D is cut out by $T_{1} T_{2} \cdots T_{r}$. Then we see that $f_{i}=g_{i} \cdot T_{i}$ with g_{i} units.

For a $k \in \mathbb{N}$ to be chosen later, we let $X=\operatorname{Sp}\left(A\left\langle\sqrt[k]{f_{i}}\right\rangle\right), Y=\operatorname{Sp}\left(A\left\langle\sqrt[k]{T_{i}}\right\rangle\right)$ and $W=\left(X \times_{N_{1}} Y\right)^{v}$. Note that $W \rightarrow X$ and $W \rightarrow Y$ are both finite étale, since they are given by adjoining k th root of g_{i}.

What we need to show is that after choosing k sufficiently divisible, the base change map

$$
\left(N_{2} \times_{N_{1}} X\right)^{v} \rightarrow X
$$

is finite étale. But since $W \rightarrow X$ is finite étale, by descent it is enough to check after base changing to W. Because $W \rightarrow N_{1}$ also factors through Y, it suffices to choose k so that the base change to Y is étale. This can be achieved by Proposition 2.1.
2.2. Gysin sequence. Let us gather facts concerning Gysin sequence (cohomological purity) in the setup of rigid spaces as developed by Berkovich (see [Ber95]) and Huber (cf. [Hub96, Section 3.9]).

THEOREM 2.3 (Gysin sequence). Let Y be a smooth rigid space over k, \mathcal{E} an \mathbb{F}_{p}-local system on Y and $Z \subset Y$ a smooth divisor on Y. Then we have a long exact sequence

$$
H_{\mathrm{et}}^{2}(Y, \mathcal{E}) \rightarrow H_{\mathrm{et}}^{2}\left(Y \backslash Z,\left.\mathcal{E}\right|_{Y \backslash Z}\right) \rightarrow H_{\mathrm{et}}^{1}\left(Z,\left.\mathcal{E}\right|_{Z}(-1)\right) \rightarrow H_{\mathrm{et}}^{3}(Y, \mathcal{E}) \rightarrow \cdots
$$

Here $\left.\mathcal{E}\right|_{Z}(-1)$ means the Tate twist of the pullback $\left.\mathcal{E}\right|_{Z}$ of \mathcal{E} to Z.

Proof. This follows from a reinterpretation of [Ber95, Theorem 2.1], where we apply the Theorem in [Ber95] to our case where S and (Y, X) from [Ber95] correspond to $\mathrm{Sp}(k)$ and (Z, Y), which satisfies the condition in [Ber95].
2.3. The site $X_{\text {log }}$. In this subsection we introduce the log-étale site $X_{\text {log }}$ (also known as the Faltings site) of the pair (X, D) and show a comparison theorem between this site and $U_{\text {êt }}$. Note that this site depends on a choice of divisor D, however we suppress that in the notation for the sake of simplicity of notations.

DEFINITION 2.4. Let f be a morphism between two objects $V_{i} \rightarrow X$ over X for $i=1,2$. We denote the restriction of f to V_{2}° by f°.

We define a site $X_{\log }$ as follows: an object of $X_{\log }$ consists of arrows

$$
N \xrightarrow{f} V \xrightarrow{g} X
$$

(denoted by (V, N)) such that:
(1) the morphism g is étale;
(2) N is normal;
(3) the morphism f is finite with $f^{\circ}: N \backslash(g \circ f)^{-1}(D) \rightarrow V \backslash g^{-1}(D)$ being étale and;
(4) $(g \circ f)^{-1}(D)$ is nowhere dense in N.

A morphism in this site from (V, N) to $\left(V^{\prime}, N^{\prime}\right)$ is given by a pair (p, q) of two X-maps in a commutative diagram:

The morphisms

$$
\left\{\left(p_{i}, q_{i}\right):\left(V_{i}, N_{i}\right) \rightarrow(V, N)\right\}
$$

form a covering if $N=\bigcup q_{i}\left(N_{i}\right)$. Notice that by Lemma 2.6(2), the images of N_{i} in N are open subsets.

Similarly, for a $V \rightarrow X$ étale over X we can define a subsite $V_{\mathrm{f}, \log }$ whose objects are consisting of $N \xrightarrow{f} V$ satisfying Definition 2.4(2)-(4). The morphisms are just usual morphisms in the category of rigid spaces over V. Note that by [Han17, Theorem 1.6], we have $V_{\mathrm{f}, \log } \cong V_{\text {fet }}^{\circ}$.

REMARK 2.5. One should note the subtle difference between the above definition of the Faltings site and that in [AGT16, III.8.2]. In particular, the counterpart of the counterexample in [AGT16, III.8.18] in the Faltings site here does not form a covering.

Before introducing the following Lemma, let us fix some notation. Given (V^{\prime}, $\left.N^{\prime}\right) \rightarrow(V, N)$ and $\left(V^{\prime \prime}, N^{\prime \prime}\right) \rightarrow(V, N)$ in $X_{\text {log }}$, let $W:=V^{\prime} \times_{V} V^{\prime \prime}$, and observe that $N^{\prime} \times{ }_{N} N^{\prime \prime}=\left(N^{\prime} \times{ }_{V^{\prime}} W\right) \times_{\left(N \times{ }_{V} W\right)}\left(N^{\prime \prime} \times_{V^{\prime \prime}} W\right)$.

LEmma 2.6. The category $X_{\log }$ has the following properties:
(1) finite projective limit and a terminal object exist. Moreover, the fiber products of $\left(V^{\prime}, N^{\prime}\right) \rightarrow(V, N)$ and $\left(V^{\prime \prime}, N^{\prime \prime}\right) \rightarrow(V, N)$ are given by $(W$, $\left.\left(N^{\prime} \times{ }_{N} N^{\prime \prime}\right)^{\nu}\right)$ (following the notation prior to this Lemma). In particular, the equalizer of two morphisms $(p, q),(s, t):\left(V^{\prime}, N^{\prime}\right) \rightarrow(V, N)$ is given by (eq (p, s), eq $\left.(q, t)^{\nu}\right)$ where eq (\cdot, \cdot) is the equalizer of the two morphisms;
(2) the image of the morphism $(V, N) \rightarrow\left(V^{\prime}, N^{\prime}\right)$ in $\left|N^{\prime}\right|$ is open and;
(3) (V, N) is quasicompact (respectively quasiseparated) if and only if N is quasicompact (respectively quasiseparated) which will be valid if V is quasicompact (respectively quasiseparated).

Before giving the proof of this Lemma, we remark that this Lemma can be plainly generalized to analogous statements for $X_{\mathrm{f}, \log }$. But since we do not need it in the rest of this article, we do not state them here.

Proof. Proof of (1). The existence of finite projective limit and the explicit descriptions just follow from [Han17, Theorem 1.6] and the existence and
 is clearly (X, X).

Proof of (2). Let us consider the morphism $N \rightarrow N_{V}^{\prime}:=N^{\prime} \times{ }_{V^{\prime}} V$. We claim that the image is the union of connected components of N_{V}^{\prime}, (2) clearly follows from this claim. This claim follows from the fact that $N_{V}^{\prime}{ }^{\circ}$ has the same number of connected components as that of N_{V}^{\prime} (see [Han17, Corollary 2.7]) and is dense in N_{V}^{\prime}. But now since $N^{\circ} \rightarrow N_{V}^{\prime}{ }^{\circ}$ is finite étale, therefore the image is the union of connected components of $N_{V}^{\prime}{ }^{\circ}$. Because $N \rightarrow N_{V}^{\prime}$ is finite, therefore the image is the closure of the image of the corresponding circ map.

Proof of (3). Let us first show that if N is quasicompact, then (V, N) is a quasicompact object in this site. Let $\left(V_{i}, N_{i}\right) \rightarrow(V, N)$ be a covering. Because the image of N_{i} is a union of connected components of the preimage of the image of V_{i}, we see that it must be an open subset of N. Since N is quasicompact, finitely
many of $N_{i} \rightarrow N$ would have image covering N. Now if (V, N) is a quasicompact object, it is obvious that the image of N in V is quasicompact. Hence N being finite over that image, is also quasicompact. The statement concerning quasiseparatedness just follows from the description of the fiber product. The statement about V easily follows from the fact that $N \rightarrow V$ is finite.

Definition 2.7. There is a natural morphism between sites

$$
U_{\text {êt }} \rightarrow X_{\log }, \quad(V, N) \mapsto N^{\circ}
$$

inducing a morphism between topoi

$$
u_{X}: \operatorname{Sh}\left(U_{\mathrm{et}}\right) \rightarrow \operatorname{Sh}\left(X_{\log }\right) .
$$

The main result of this section is the following.
Theorem 2.8. Let \mathbb{L} be a \mathbb{F}_{p}-local system on $U_{\text {êt }}$. Then we have:
(1) $u_{X *}(\mathbb{L})(V, N)=\mathbb{L}\left(N^{\circ}\right)$ for an object $(V, N) \in X_{\log }$ and;
(2) $R^{i} u_{X *}(\mathbb{L})=0$ for $i \geqslant 1$.

Before proving this theorem, let us state and prove some Lemmas.
Lemma 2.9. Let \mathcal{E} be a \mathbb{F}_{p}-local system on $S \times \mathbb{D}^{o, r}$ where S is a smooth connected affinoid space over k. Then there is a Kummer map $\mathbb{D}^{r} \xrightarrow{\varphi} \mathbb{D}^{r}$ (that is raise coordinates to sufficiently divisible power) such that $\left(\mathrm{id}_{S} \times \varphi\right)^{*}(\mathcal{E})$ is a restriction of a \mathbb{F}_{p}-local system on $S \times \mathbb{D}^{r}$.

Proof. It follows from Proposition 2.1 and the fact that \mathcal{E} is represented by a finite étale covering of $S \times \mathbb{D}^{\circ}$. .

Lemma 2.10. Let \mathcal{E} be a \mathbb{F}_{p}-local system on $S \times \mathbb{D}^{r} \times \mathbb{D}^{k}=S \times \mathbb{D}^{r+k}$ where S is a smooth connected affinoid space over k. Then for every cohomology class $\alpha \in H_{\mathrm{et}}^{j}\left(S \times \mathbb{D}^{\circ}, r \times \mathbb{D}^{k}, \mathcal{E}\right)$ where $j \geqslant 1$, there is a finite étale covering $N^{\circ} \xrightarrow{\Phi}$ $S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k}$ with $\Phi^{*}(\alpha)=0$ in $H_{\mathrm{et}}^{j}\left(N^{\circ}, \Phi^{*} \mathcal{E}\right)$.

Proof. For $j=1$, the lemma is easily deduced from the torsor interpretation of cohomology classes of degree 1 .

In the following, we assume j is at least 2 . We prove the lemma by the induction on r. When $r=0$, it is a special case of [Sch13a, Theorem 4.9]. Suppose that the lemma holds for r. We consider the $(r+1)$-case.

Note that

$$
S \times \mathbb{D}^{\circ, r+1} \times \mathbb{D}^{k}=\left(S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k+1}\right) \backslash\left(S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k} \times\{0\}\right)=: C \backslash \Delta_{1}
$$

where $C=S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k+1}$ and $\Delta_{1}=S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k} \times\{0\}$. The Gysin sequence (Theorem 2.3) applied to the pair (C, Δ_{1}) gives the connecting map

$$
H_{\mathrm{et}}^{j}\left(C \backslash \Delta_{1}, \mathcal{E}\right) \rightarrow H_{\mathrm{ett}}^{j-1}\left(\Delta_{1},\left.\mathcal{E}\right|_{\Delta_{1}}(-1)\right)
$$

mapping α to β. By the induction and $j \geqslant 2$, there is a finite étale covering $f: \Delta_{1}^{\prime} \rightarrow \Delta_{1}$ with $f^{*}(\beta)=0$. It gives us a finite covering of C

$$
f \times \mathrm{id}_{\mathbb{D}}: \Delta_{1}^{\prime} \times \mathbb{D} \rightarrow \Delta_{1} \times \mathbb{D}=S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k} \times \mathbb{D}=C
$$

whose restriction to $\Delta_{1} \times\{0\}$ is f. The map $f \times \mathrm{id}_{\mathbb{D}}$ induces a map from the Gysin sequence of $\left(\Delta_{1}^{\prime} \times \mathbb{D}, \Delta_{1}^{\prime}\right)$ to that of $\left(C, \Delta_{1}\right)$ as follows:

It follows that $\left.\left(f \times \mathrm{id}_{\mathbb{D}}\right)\right|_{C \backslash \Delta_{1}} ^{*}(\alpha)=h(\gamma)$ for some $\gamma \in H_{\mathrm{et}}^{j}\left(\Delta_{1}^{\prime} \times \mathbb{D},\left.\mathcal{E}\right|_{\Delta_{1}^{\prime} \times \mathbb{D}}\right)$.
We claim that there is a finite étale covering $\theta: N \rightarrow \Delta_{1}^{\prime} \times \mathbb{D}$ with $\theta^{*}(\gamma)=0$. This proves that

$$
\left(\left.\theta \circ\left(f \times \mathrm{id}_{\mathbb{D}}\right)\right|_{C \backslash \Delta_{1}}\right)^{*}(\alpha)=0
$$

which is what we need to show in the $(r+1)$-case.
Now we show the claim above. In fact, let \mathcal{E}^{\prime} be the \mathbb{F}_{p}-local system $(f \times$ $\left.\operatorname{id}_{\mathbb{D}}\right)_{*}\left(\left.\mathcal{E}\right|_{\Delta_{1}^{\prime} \times \mathbb{D}}\right)$ on C. Now γ can be viewed as an element in $H_{\mathrm{et}}^{j}\left(C, \mathcal{E}^{\prime}\right)=H_{\mathrm{et}}^{j}\left(\Delta_{1}^{\prime} \times\right.$ $\left.\mathbb{D},\left.\mathcal{E}\right|_{\Delta_{1}^{\prime} \times \mathbb{D}}\right)$. By Lemma 2.9, there is a finite étale covering

$$
\varphi: S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k+1} \rightarrow S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k+1}=\Delta_{1} \times \mathbb{D}=C
$$

such that the pullback $\varphi^{*}\left(\mathcal{E}^{\prime}\right)$ is a restriction of a \mathbb{F}_{p}-local system on $S \times \mathbb{D}^{r} \times \mathbb{D}^{k+1}$. Therefore by the induction (applied to $\varphi^{*}(\gamma)$), we have a finite étale covering $g: W \rightarrow S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k+1}$ with $(\varphi \circ g)^{*}(\gamma)=g^{*}\left(\varphi^{*}(\gamma)\right)=0$. Considering the Cartesian diagram,

we see that θ is a finite étale covering with $\theta^{*}(\gamma)=0$.

Lemma 2.11. Let \mathcal{E} be a \mathbb{F}_{p}-local system on $S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k}$ where S is a smooth connected affinoid space over k. Then for every cohomology class $\alpha \in H_{\mathrm{ett}}^{j}(S \times$ $\left.\mathbb{D}^{\circ, r} \times \mathbb{D}^{k}, \mathcal{E}\right)$ where $j \geqslant 1$, there is a finite étale covering $N^{\circ} \xrightarrow{\varphi} S \times \mathbb{D}^{\circ, r} \times \mathbb{D}^{k}$ with

$$
\varphi^{*}(\alpha)=0 \quad \text { in } H_{\mathrm{et}}^{j}\left(N^{\circ}, \varphi^{*} \mathcal{E}\right)
$$

Proof. It follows from Lemmas 2.9 and 2.10.

Proposition 2.12. Let S be a smooth connected affinoid space over K, and let \mathbb{D}^{r} be the unit ball with coordinates z_{1}, \ldots, z_{r}. Set $\Delta=V\left(z_{1} \cdots z_{r}\right)$ and $\mathbb{D}^{\circ, r}=$ $\mathbb{D}^{r}-\Delta$. Let $f: N^{\circ} \rightarrow S \times \mathbb{D}^{\circ, r}$ be a finite étale covering. For a \mathbb{F}_{p}-local system \mathbb{L} on $S \times \mathbb{D}^{\circ}, r$ and a cohomology class $\alpha \in H_{\mathrm{et}}^{i}\left(N^{\circ},\left.\mathbb{L}\right|_{N^{\circ}}\right)$ where $i \geqslant 1$, there is a finite étale covering $\varphi: M^{\circ} \rightarrow N^{\circ}$ such that

$$
\varphi^{*}(\alpha)=0 \in H_{\mathrm{et}}^{i}\left(M^{\circ},\left.\mathbb{L}\right|_{M^{\circ}}\right)
$$

Proof. This follows from applying Lemma 2.11 to $\mathcal{E}=f_{*}(\mathbb{L})$ and $f_{*}(\alpha)$.
Now we are ready to give the
Proof of Theorem 2.8. The statement (1) is obvious. It is clear that $R^{i} u_{X *}(\mathbb{L})$ is the sheaf associated to the presheaf

$$
(N \xrightarrow{f} V \xrightarrow{g} X) \rightarrow H_{\mathrm{et}}^{i}\left(N^{\circ},(g \circ f)^{*} \mathbb{L}\right)=H_{\mathrm{et}}^{i}\left(N^{\circ},\left.\mathbb{L}\right|_{N^{\circ}}\right) .
$$

The statement (2) is a local property; hence (by [Kie67, Theorem 1.18]) we may assume that V is $S \times \mathbb{D}^{r}$ with finite

$$
f: N \rightarrow S \times \mathbb{D}^{r}=V
$$

such that f° is étale and $V^{\circ}=S \times \mathbb{D}^{\circ, r}$, where S is a smooth and connected affinoid space over k. By [Han17, Theorem 1.6] it suffices to show that, for every cohomology class $\alpha \in H_{\mathrm{ett}}^{i}\left(N^{\circ},\left.\mathbb{L}\right|_{N^{\circ}}\right)$, there is a finite étale covering $N^{\circ} \xrightarrow{g} N^{\circ}$ such that $g^{*}(\alpha)=0$. But this follows from Proposition 2.12.

3. The site $X_{\text {prolog }}$

In this section we introduce the pro-log-étale site $X_{\text {prolog }}$ of the pair (X, D) and show a comparison theorem between it and the previous site $X_{\log }$. It is parallel to [Sch13a, Section 3] except we will use a categorical way to introduce this site.

In the following, we denote by \mathcal{C} a category which has arbitrary finite projective limits and a distinguished terminal object X.

Let \mathcal{C}_{f} be a wide (that is lluf) subcategory of \mathcal{C} such that the morphisms of \mathcal{C}_{f} are stable under the base change via any morphism in \mathcal{C}, that is if $W \rightarrow V \in$ $\operatorname{Hom}_{\mathcal{C}_{f}}$, then $W \times_{V} Z \rightarrow Z$ is in $\operatorname{Hom}_{\mathcal{C}_{f}}$ for any $Z \rightarrow V$. For the category \mathcal{C}, we have a functor $|-|_{\mathcal{C}}: \mathcal{C} \rightarrow$ Top from \mathcal{C} to the category of topological spaces such that

$$
\left|A \times_{B} C\right|_{\mathcal{C}} \rightarrow|A|_{\mathcal{C}} \times_{|B| \mathcal{C}}|C|_{\mathcal{C}}
$$

is surjective with finite fibers for any maps $A \rightarrow B$ and $C \rightarrow B$ in \mathcal{C}. Consider the procategory pro- \mathcal{C} of \mathcal{C}. The functor $|-|_{\mathcal{C}}$ extends to a functor from pro- \mathcal{C} to Top by $\left|\lim _{\longleftarrow} N_{i}\right|=\lim _{\check{L}}\left|N_{i}\right|$, and we denote it by $|-|$.

In the category of pro- \mathcal{C}, we can define several types of morphisms.
Definition 3.1. Let $W \rightarrow V$ be a morphism of pro- \mathcal{C}. We say $W \rightarrow V$ is a \mathcal{C} map (respectively \mathcal{C}_{f} map) if $W \rightarrow V$ is induced by a morphism $W_{0} \rightarrow V_{0}$ in \mathcal{C} (respectively \mathcal{C}_{f}), that is $W=V \times_{V_{0}} W_{0}$ via some map $V \rightarrow V_{0}$.

We say that $W \rightarrow V$ is surjective if the corresponding map $|W| \rightarrow|V|$ is surjective. We say $W \rightarrow V$ is a pro- \mathcal{C} map if $W=\lim W_{j}$ can be written as a cofiltered inverse limit of \mathcal{C} maps $W_{i} \rightarrow V$ over V and $W_{j} \rightarrow W_{i}$ are surjective C_{f} maps for large $j>i$. Note that W_{i} is an object of pro- \mathcal{C}. The presentation $W=\lim _{\leftrightarrows} W_{i}$ is called a pro-C presentation.
We define a full subcategory $X_{\text {proc }}$ of pro-C. The object of this category consists of objects in pro- \mathcal{C} which are pro- \mathcal{C} over X, that is each object has a pro- \mathcal{C} map to X. The morphisms are pro- \mathcal{C} maps.

The following lemma is almost identical to [Sch13a, Lemma 3.10], except we do not state the seventh substatement (which is the only nonformal one) here.

Lemma 3.2.
(1) Let $W \rightarrow V$ be a surjective morphism in \mathcal{C}. For any morphism $W^{\prime} \rightarrow V$ in \mathcal{C}, the base change $W^{\prime} \times_{V} W \rightarrow W^{\prime}$ is surjective.
(2) Let $W \rightarrow V$ be a \mathcal{C} map (respectively \mathcal{C}_{f} map, respectively pro-C map) in pro- \mathcal{C}. For any morphism $W^{\prime} \rightarrow V$ in pro- \mathcal{C}, the base change $W^{\prime} \times_{V} W \rightarrow$ W^{\prime} is a \mathcal{C} map (respectively \mathcal{C}_{f} map, respectively pro-C map) and the map $\left|W^{\prime} \times_{V} W\right| \rightarrow\left|W^{\prime}\right| \times_{|V|}|W|$ is surjective, in particular, $W^{\prime} \times_{V} W \rightarrow W^{\prime}$ is surjective if $W^{\prime} \rightarrow V$ is.
(3) A composition of $E \rightarrow F \rightarrow G$ of two \mathcal{C} maps (respectively \mathcal{C}_{f} maps) in pro- \mathcal{C} is a \mathcal{C} map (respectively \mathcal{C}_{f} map).
(4) A surjective \mathcal{C} map (respectively \mathcal{C}_{f} map) $W \rightarrow V$ with $V \in X_{\text {proC }}$ comes from a pullback via $V \rightarrow V_{0}$ from a surjective map $W_{0} \rightarrow V_{0}$ with $W_{0}, V_{0} \in \mathcal{C}$.
(5) Let $E \rightarrow F \rightarrow G \rightarrow X$ be a sequence of morphisms where all the arrows are pro-C maps. Then $E, F \in X_{\text {proC }}$ and the composition $E \rightarrow G$ is a pro- \mathcal{C} map.
(6) If all maps in \mathcal{C} have open images, then any pro-C map $W \rightarrow V$ in pro- \mathcal{C} has open image.

Proof.

(1) It follows from the surjectivity of the map $\left|W^{\prime} \times_{V} W\right|_{\mathcal{C}} \rightarrow\left|W^{\prime}\right|_{\mathcal{C}} \times_{|V|_{\mathcal{C}}}|W|_{\mathcal{C}}$.
(2) If $W \rightarrow V$ is a \mathcal{C} map (respectively \mathcal{C}_{f} map) then by definition we reduce to the case $W, V \in \mathcal{C}$. Write $W^{\prime}=\lim W_{i}^{\prime}$ with a compatible system of maps $W_{i}^{\prime} \rightarrow V \in \mathcal{C}$. Then $W \times_{V} W^{\prime}=\varlimsup_{\check{L}} W \times_{V} W_{i}^{\prime}$ and $W \times_{V} W^{\prime} \rightarrow W^{\prime}$ is by definition again a \mathcal{C} map (respectively \mathcal{C}_{f} map). As for the topological spaces, we have

$$
\left|W^{\prime} \times_{V} W\right|=\lim _{\leftrightarrows}\left|W \times_{V} W_{i}^{\prime}\right| \rightarrow \underset{\leftrightarrows}{\lim }|W| \times_{|V|}\left|W_{i}^{\prime}\right|=|W| \times_{|V|}\left|W^{\prime}\right|
$$

where the first equality follows from definition, and the last equality is due to that fiber products commute with inverse limits. The middle map is surjective because it is surjective with compact fibers at each finite stage, and inverse limits of nonempty compact spaces are nonempty. Actually, the fibers are nonempty compact spaces.
In the general case, take a pro- \mathcal{C} presentation $W^{\prime}=\lim W_{i}^{\prime} \rightarrow V$. Then we have that $W^{\prime} \times_{V} W=\lim _{\leftarrow} W_{i}^{\prime} \times_{V} W \rightarrow W^{\prime}$ is a pro-C map over W^{\prime} by what we have just proved. The map

$$
\left|W^{\prime} \times_{V} W\right|=\lim _{\leftarrow}\left|W \times_{V} W_{i}^{\prime}\right| \rightarrow \underset{\leftarrow}{\lim }|W| \times_{|V|}\left|W_{i}^{\prime}\right|=|W| \times_{|V|}\left|W^{\prime}\right|
$$

is surjective by the same reasoning as before.
(3) Write $F=F_{0} \times{ }_{G_{0}} G$ as a pullback of a \mathcal{C} map (respectively \mathcal{C}_{f} map) $F_{0} \rightarrow G_{0}$. Moreover, write $G=\underset{\leftrightarrows}{\lim } G_{i}$ with a compatible system of maps $G_{i} \rightarrow G_{0} \in \mathcal{C}$. Then $F=\underset{\leftarrow}{\lim }\left(G_{j} \times{ }_{G_{0}} \overleftarrow{F}_{0}\right)$.
Moreover write $E=F \times_{F_{0}} E_{0}$ as a pullback of a \mathcal{C} map (respectively \mathcal{C}_{f} map) $E_{0} \rightarrow F_{0}^{\prime}$. Therefore the map $F \rightarrow F_{0}^{\prime}$ factors through $G_{j} \times{ }_{G_{0}} F_{0} \rightarrow F_{0}^{\prime}$ for large j. It follows that

$$
E=F \times_{\left(G_{j} \times G_{0} F_{0}\right)}\left(\left(G_{j} \times_{G_{0}} F_{0}\right) \times_{F_{0}^{\prime}} E_{0}\right)
$$

and $E \rightarrow G$ is a pullback of a \mathcal{C} map (respectively \mathcal{C}_{f} map).
(4) Let $V=\lim V_{i}$ be a pro-C presentation over X. Note that $W \rightarrow V$ is induced by a pullback of a morphism $W_{0} \rightarrow V_{0}$ with $W_{0}, V_{0} \in \mathcal{C}$ via some map $V \rightarrow V_{0}$. The map $V \rightarrow V_{0}$ factors through a map $V_{j} \rightarrow V_{0}$ for large j. Therefore, we have $W=W_{0} \times_{V_{0}} V=\left(W_{0} \times_{V_{0}} V_{j}\right) \times_{V_{j}} V$. On the other hand, $|V| \rightarrow\left|V_{j}\right|$ is surjective for large j. Therefore $W_{0} \times_{V_{0}} V_{j} \rightarrow V_{j}$ is surjective.
(5) One can write $E \rightarrow F$ as the composition $E \rightarrow E_{0} \rightarrow F$ of an inverse system $E=\lim E_{i} \rightarrow E_{0}$ of surjective \mathcal{C}_{f} maps $E_{i} \rightarrow E_{j} \rightarrow E_{0}$, and a \mathcal{C} map $E_{0} \rightarrow F$. We check the statement separately in the case that $E \rightarrow F$ is a \mathcal{C} map or an inverse system of surjective \mathcal{C}_{f} maps. Assume that $E \rightarrow F$ is a \mathcal{C} map which is induced by a map $E_{0} \rightarrow F_{0} \in \mathcal{C}$, that is $E=F \times_{F_{0}} E_{0}$ via some map $F \rightarrow F_{0}$. Write $F=\lim _{\longleftarrow} F_{i} \rightarrow G$ as a pro- C presentation. Therefore, $F \rightarrow F_{0}$ factors through $F_{i} \rightarrow F_{0}$ for large i. It follows from (2) and (3) that $E=F \times_{F_{0}} E_{0}=\underset{\leftarrow}{\lim }\left(F_{i} \times_{F_{0}} E_{0}\right) \rightarrow G$ is a pro-C presentation over G, in other words, the composition $E \rightarrow G$ is a pro-C map.

So it reduces us to consider all maps $E \rightarrow F \rightarrow G \rightarrow X$ are inverse systems of surjective \mathcal{C}_{f} maps. Using (1) and (4), it is an easy exercise to show that all the compositions are still inverse systems of surjective \mathcal{C}_{f} maps.
(6) Let $U \rightarrow V$ be a pro-C map with a pro-C presentation $U=\underset{\leftarrow}{\lim } U_{i} \rightarrow V$. Therefore we have $|U| \rightarrow\left|U_{i}\right| \rightarrow|V|$ with $|U| \rightarrow\left|U_{i}\right|$ surjective. It reduces us to show $\left|U_{i}\right| \rightarrow|V|$ has open image. Since $U_{i} \rightarrow V$ is a C map, we have $U_{i}=V \times_{V_{0}} U_{i 0}$ for some map $U_{i 0} \rightarrow V_{0}$ in \mathcal{C}. By (2), we have a surjection $\left|U_{i}\right|=\left|V \times_{V_{0}} U_{i 0}\right| \rightarrow|V| \times_{\left|V_{0}\right|}\left|U_{i 0}\right|$. Therefore, the image of $\left|U_{i}\right| \rightarrow|V|$ is open.

We declare coverings in $X_{\text {proc }}$ as following: a covering in $X_{\text {proC }}$ is given by a family of pro-C maps $\left\{f_{i}: V_{i} \rightarrow V\right\}$ such that $|V|=\bigcup_{i}\left|f_{i}\right|\left(\left|V_{i}\right|\right)$. From Lemma 3.2, we know that $X_{\text {proc }}$ is a site.

Lemma 3.3. Let $M \rightarrow N$ be a \mathcal{C} map (see Definition 3.1). If $M \rightarrow N$ is a covering of $X_{\text {proc, }}$, then $M \rightarrow N$ is induced by a covering $M_{0} \rightarrow N_{0}$ of \mathcal{C}.

Proof. Write $N=\lim N_{i}$ as a pro-C presentation of N. It follows that $|N| \rightarrow\left|N_{i}\right|$ is surjective for large i. Note that $M \rightarrow N$ is induced by a morphism $M_{0}^{\prime} \rightarrow N_{0}^{\prime}$ in \mathcal{C} via some map $N \rightarrow N_{0}^{\prime}$. The map $N \rightarrow N_{0}^{\prime}$ factors over $N_{i} \rightarrow N_{0}^{\prime}$ for large i. Therefore, the map $M \rightarrow N$ is induced by the map $N_{i} \times_{N_{0}^{\prime}} M_{0}^{\prime} \rightarrow N_{i}$. Hence $N_{i} \times_{N_{0}^{\prime}} M_{0}^{\prime} \rightarrow N_{i}$ is a covering, and we may choose N_{i} (respectively $N_{i} \times{ }_{N_{0}^{\prime}} M_{0}^{\prime}$) to be the N_{0} (respectively M_{0}) we are looking for.

EXAMPLE 3.4. We can take $\mathcal{C}=X_{\text {ét }}$ and \mathcal{C}_{f} to be the wide subcategory only allowing finite étale maps to be morphisms. The functor $|-|_{\mathcal{C}}$ is the functor associating to an object its underlying topological space. Then $X_{\text {proc }}$ is just the pro-étale site $X_{\text {proét }}$ introduced in [Sch13a].

EXAMPLE 3.5. Now we specialize our construction above to the Faltings site $\mathcal{C}=X_{\log },|(V, N)|_{\mathcal{C}}=|N|$ for $(V, N) \in X_{\log }$ and we take \mathcal{C}_{f} to be the wide subcategory only allowing morphisms of the form $(V, N) \rightarrow\left(V, N^{\prime}\right)$, namely, every morphism of \mathcal{C}_{f} is a morphism in $V_{\mathrm{f}, \log } \cong V_{\text {fét }}^{\circ}$ for some $V \in X_{\text {ét }}$. Recall that a fiber product of morphisms $\left(V^{\prime}, N^{\prime}\right) \rightarrow(V, N)$ and $\left(V^{\prime \prime}, N^{\prime \prime}\right) \rightarrow(V, N)$ in $X_{\log }$ is given by

$$
\begin{equation*}
\left(W=V^{\prime} \times_{V} V^{\prime \prime},\left(p r_{1}^{*} N^{\prime} \times_{N \times_{V} W} p r_{2}^{*} N^{\prime \prime}\right)^{v}\right) \tag{3.6}
\end{equation*}
$$

where $p r_{1}: W \rightarrow V^{\prime}$ and $p r_{2}: W \rightarrow V^{\prime \prime}$ are the natural projections. It is easy to check $\mathcal{C}, \mathcal{C}_{f}$ and $|-|_{\mathcal{C}}$ satisfy our assumptions of previous results, hence produce a site $X_{\text {prolog }}$. In this site, we will call a pro- \mathcal{C} map (respectively \mathcal{C} map, \mathcal{C}_{f} map, pro-C presentation) by pro-log-étale map (respectively log étale map, finite log étale map, pro-log-étale presentation).

In concrete terms, the objects of $X_{\text {prolog }}$ are of the form (V, N) where $N=$ $\lim _{\leftarrow} N_{i}$ is a tower of $N_{i} \xrightarrow{f_{i}} V$ such that f_{i} is finite with f_{i}° étale and $N_{i} \rightarrow N_{j}$ is surjective for large $i>j$. The space $|(V, N)|$ is given by $\underset{\longleftarrow}{\lim }\left|\left(V, N_{i}\right)\right|=\lim _{\longleftarrow}^{\leftrightarrows}\left|N_{i}\right|$. The category $X_{\text {prolog }}$ has a natural fibered category structure over $X_{\text {ét }}$, namely we have a natural functor $X_{\text {prolog }} \rightarrow X_{\text {ét }}$ sending (V, N) to V, and associating a morphism $V \xrightarrow{p} V^{\prime}$ in $X_{\text {ett }}$ the pullback map sending $N^{\prime}=\lim _{\leftarrow} N_{i}^{\prime}$ to $p^{*}\left(N^{\prime}\right)=$ $\lim _{\longleftarrow} p^{*}\left(N_{i}^{\prime}\right)=\lim _{\longleftarrow}\left(N_{i}^{\prime} \times_{V^{\prime}} V\right)$.

If there is no confusion seemingly to arise, we will denote an object $(V, N) \in$ $X_{\text {prolog }}$ by N.

LEMMA 3.7.
(1) The category $X_{\text {prolog }}$ has arbitrary finite projective limits.
(2) We have $\pi\left(\left(V^{\prime}, N^{\prime}\right) \times_{(V, N)}\left(V^{\prime \prime}, N^{\prime}\right)\right)=V^{\prime} \times_{V} V^{\prime \prime}$ where π is the fibered structure functor $X_{\text {prolog }} \xrightarrow{\pi} X_{\text {ét }}$.
(3) The pro-log-étale morphisms in pro- $X_{\log }$ have open images.

Proof.

(1) It suffices to check that finite products and equalizers exist. The first case follows from Lemma 3.2 which is formal. The nonformal part is to check
for equalizers and we need to use the fact that locally $|N|$ has only a finite number of connected components. In fact, suppose that $f, g: N^{\prime} \rightarrow N$ are two morphisms of $X_{\text {prolog. }}$. By (the proof of) [KS06, Corollary 6.1.8], we can write $N^{\prime}=\lim N_{i}^{\prime}$ and $N=\lim N_{i}$ as pro-log-étale presentations with the same index category and maps $\overleftarrow{f}_{i}, g_{i}: N_{i}^{\prime} \rightarrow N_{i}$ such that $f=\lim f_{i}$ and $g=\underset{\longleftarrow}{\lim } g_{i}$. Let E_{i} be the equalizer of f_{i} and g_{i} in $X_{\text {log }}$. We get the following diagram (cf. Lemma 2.6):

where $N_{i}^{\prime} \rightarrow N_{j}^{\prime}$ and $N_{i} \rightarrow N_{j}$ are surjective for large i. We may assume that V_{i} and V_{i}^{\prime} are affinoids. Denote the image of E_{i} in N_{j}^{\prime} by E_{j}^{i}. Note that E_{j}^{i} is open and closed by Lemma 2.6(2). Since N_{j}^{\prime} has finitely many connected components, the image E_{j}^{i} stabilizes for i larger than some i_{j}. Hence we see $E_{j}^{\infty}=E_{j}^{i_{j}}$ is the equalizer that we are looking for.
(2) This follows from the description of the fiber product in X_{log}.
(3) It follows from Lemmas 2.6(2) and 3.2(6).

Lemma 3.8.
(1) For an object $(V, N) \in X_{\text {prolo, }}$, if V is affinoid, then (V, N) is a quasicompact object of $X_{\text {prolog. }}$.
(2) The family of all objects $(V, N) \in X_{\text {prolog }}$ with V affinoid is generating $X_{\text {prolog }}$, and stable under fiber products.
(3) The topos $\operatorname{Sh}\left(X_{\text {prolog }}\right)$ is algebraic and all objects (V, N) of $X_{\text {prolog }}$ with V affinoid are quasicompact and quasiseparated.
(4) An object $(V, N) \in X_{\text {prolog }}$ is quasicompact if and only if $|(V, N)|$ is quasicompact.
(5) An object $(V, N) \in X_{\text {prolog }}$ is quasiseparated if and only if $|(V, N)|$ is quasiseparated.

Proof.

(1) It follows from Lemma 3.7(3) that an object (W, M) of $X_{\text {prolog }}$ is quasicompact if $|(W, M)|$ is quasicompact. If V is affinoid, we can write $N=\lim N_{i}$ with N_{i} affinoid. Moreover, the space $\left|N_{i}\right|$ is a spectral space and the transition maps are spectral. Hence the inverse limit $\lim \left|N_{i}\right|$ is a spectral space, and in particular quasicompact. It follows that $\overleftarrow{(V}, N)$ is a quasicompact object of $X_{\text {prolog }}$.
(2) For an object $(V, N) \in X_{\text {prolog }}$, we can use affinoid objects to cover V, that is, $V=\cup V_{i}$. It is clear that $\left\{\left(V_{i},\left.N\right|_{V_{i}}\right)\right\}$ is a covering of (V, N) in $X_{\text {prolog }}$. The family is obviously stable under fiber products.
(3) By (2) and [SGA72, VI Proposition 2.1], the topos $\operatorname{Sh}\left(X_{\text {prolog }}\right)$ is locally algebraic (see [SGA72, VI Definition 2.3]) and all objects (V, N) of $X_{\text {prolog }}$ with V affinoid are quasicompact and quasiseparated. We check the criterion of [SGA72, VI Proposition 2.2 (ii bis)] by considering the class of (V, N) as in (1) that $V \rightarrow X$ factors over an affinoid open subset V_{0} of X. It consists of coherent objects and is still generating $X_{\text {prolog. }}$. Note that $(V, N) \times{ }_{(X, X)}(V$, $N)=(V, N) \times{ }_{\left(V_{0}, V_{0}\right)}(V, N)$ is an object as in (1) which is quasiseparated.
(4) Without loss of generality we may assume $|N| \rightarrow|V|$ is surjective. Therefore, the space $|V|$ is quasicompact if $|(V, N)|$ is quasicompact. Use finitely many objects (V_{i}, N_{i}) of form in (1) to cover (V, N). Note that (V_{i}, N_{i}) are quasicompact by (1). It follows that (V, N) is quasicompact. Conversely, if (V, N) is compact, then we can find finitely many (V_{i}, N_{i}) with V_{i} affinoid cover V. Note that $\left|\left(V_{i}, N_{i}\right)\right|$ is quasicompact by the proof of (1). It follows that $|(V, N)|$ is quasicompact.
(5) Cover (V, N) by $\left(V_{i},\left.N\right|_{V_{i}}\right)$ as in the proof of (2). It follows from [SGA72, VI Corollary 1.17] that the object (V, N) is quasiseparated if and only if (V_{i}, $\left.\left.N\right|_{V_{i}}\right) \times(V, N)\left(V_{j},\left.N\right|_{V_{j}}\right)$ is quasicompact if and only if $\left|\left(V_{i},\left.N\right|_{V_{i}}\right)\right| \times_{|(V, N)|} \mid\left(V_{j}\right.$, $\left.N \mid V_{V_{j}}\right) \mid$ is quasicompact if and only if $|(V, N)|$ is quasiseparated.

There is a natural projection $v: \operatorname{Sh}\left(X_{\text {prolog }}\right) \rightarrow \operatorname{Sh}\left(X_{\log }\right)$ induced by the morphism of sites $X_{\text {prolog }} \rightarrow X_{\log }$ sending (V, N) to the constant tower $(V, \underset{\leftrightarrows}{\lim } N)$.

Lemma 3.9.

(1) Let \mathcal{F} be an abelian sheaf on $X_{\log }$. For any quasicompact and quasiseparated $(V, N)=\left(V, \lim N_{j}\right) \in X_{\text {prolog }}$ and any $i \geqslant 0$, we have

$$
H^{i}\left((V, N), v^{*} \mathcal{F}\right)=\underset{\longrightarrow}{\lim } H^{i}\left(\left(V, N_{j}\right), \mathcal{F}\right) .
$$

(2) Let \mathcal{F} be an abelian sheaf on $X_{\log }$. The adjunction morphism $\mathcal{F} \rightarrow R v_{*} \nu^{*}(\mathcal{F})$ is an isomorphism.

Proof.

(1) We may assume that \mathcal{F} is injective and that X is quasicompact and quasiseparated. Let us work with the subsite $X_{\text {prologqc }} \subset X_{\text {prolog }}$ consisting of quasicompact objects; note that $\operatorname{Sh}\left(X_{\text {prolog } q c}\right)=\operatorname{Sh}\left(X_{\text {prolog }}\right)$. Define a presheaf $G((V, N))=\lim \mathcal{F}\left(\left(V, N_{i}\right)\right)$ where $N=\lim N_{i}$ with $N_{i} \in V_{\mathrm{f}, \log }$. It is clear that $v^{*} \mathcal{F}$ is the sheaf associated to G. It suffices to show G is a sheaf with $H^{i}((V, N), G)=0$ for all $(V, N) \in X_{\text {prolog } q c}$ and $i>0$. By [SGA72, V Proposition 4.3(i) and (iii)], we just need to prove that for any $(V, N) \in X_{\text {prologqc }}$ with a pro-log-étale covering $\left(V_{k}, N_{k}\right) \rightarrow(V, N)$ in $X_{\text {prolog } q c}$, the corresponding Cech complex

$$
\begin{aligned}
0 \rightarrow G((V, N)) & \rightarrow \prod_{k} G\left(\left(V_{k}, N_{k}\right)\right) \\
& \rightarrow \prod_{k, k^{\prime}} G\left(\left(V_{k}, N_{k}\right) \times_{\left(V_{k}, N_{k}\right)}\left(V_{k^{\prime}}, N_{k^{\prime}}\right)\right) \rightarrow \cdots
\end{aligned}
$$

is exact. This shows that G is a sheaf and then all higher cohomology groups vanish.

Since (V, N) is quasicompact, we can pass to a finite subcover and combine them into a single morphism $\left(V^{\prime}, N^{\prime}\right) \xrightarrow{(p, q)}(V, N)$. Write it in a pro-log-étale presentation $N^{\prime}=\underset{\leftarrow}{\lim } N_{i}^{\prime} \rightarrow N$. In the following, we write the Cech complex of G with respect to the covering (p, q) as $\operatorname{Cech}\left(N^{\prime} \rightarrow N\right)$. Therefore, we have

$$
\operatorname{Cech}\left(N^{\prime} \rightarrow N\right)=\underset{\rightarrow}{\lim } \operatorname{Cech}\left(N_{i}^{\prime} \rightarrow N\right)
$$

where $N_{i}^{\prime} \rightarrow N$ is a covering for large i. Therefore, it suffices to show the exactness of $\operatorname{Cech}\left(N_{i}^{\prime} \rightarrow N\right)$. By Lemma 3.3, the cover $N_{i}^{\prime} \rightarrow N$ is induced by a cover $N_{0}^{\prime} \rightarrow N_{0}$ in $X_{\log }$, that is $N_{i}^{\prime}=N_{0}^{\prime} \times_{N_{0}} N$. Therefore, $\operatorname{Cech}\left(N_{i}^{\prime} \rightarrow\right.$ N) is the direct limit of the Cech complexes for some covers in $X_{\log }$. But this is acyclic by the injectivity of G on X_{log}.
(2) Note that $R^{i} \nu_{*} \nu^{*} \mathcal{F}$ is the sheaf on $X_{\log }$ associated to the presheaf (V, $N) \mapsto H^{i}\left((V, N), v^{*} \mathcal{F}\right)$ where (V, N) is considered as an element of $X_{\text {prolog. }}$. Hence, (1) says that we get an isomorphism for $i=0$. Moreover, for i positive, (1) says that $H^{i}\left((V, N), v^{*} \mathcal{F}\right)=H^{i}((V, N), \mathcal{F})$ if $(V$, $N) \in X_{\log }$ is quasicompact and quasiseparated. By the local acyclicity of higher cohomology group, a section of $H^{i}((V, N), \mathcal{F})$ vanishes locally in the
topology $X_{\text {log }}$, so the associated sheaf is trivial. It follows that $R^{i} v_{*} v^{*} \mathcal{F}=0$ for $i>0$.

4. The structure sheaves

In this section, parallel to [Sch13a, Section 4], we introduce the structure sheaves $\mathcal{O}^{+}, \mathcal{O}, \hat{\mathcal{O}}^{+}$and $\hat{\mathcal{O}}$ on our site $X_{\text {prolog }}$. In the following we will not distinguish rigid spaces and their associated adic spaces.

Definition 4.1. With the notations as in Definition 2.7, let X be a rigid space over $\operatorname{Sp}(k)$ with an SSNC divisor D. Consider the following sheaves on $X_{\log }$ and $X_{\text {prolog }}$.
(1) The integral structure sheaf $\mathcal{O}_{X_{\log }}^{+}$on $X_{\log }$ is given by $u_{X, *}\left(\mathcal{O}_{U_{\mathrm{et}}}^{+}\right)$. By [Han17, Theorem 2.6] we have $\left.\mathcal{O}_{X_{\log }}^{+}(V, N)\right)=\mathcal{O}_{N}^{+}(N)$ for an object $(V, N) \in X_{\log }$. The structure sheaf $\mathcal{O}_{X_{\log }}$ on $X_{\log }$ is given by $\mathcal{O}_{X_{\log }}^{+}[1 / p]=u_{X, *}\left(\mathcal{O}_{U_{\mathrm{et}}}^{+}[1 / p]\right.$, namely, $\mathcal{O}_{X_{\text {log }}}(V, N)=\mathcal{O}_{N}(N)$ for quasicompact and quasiseparated (V, N).
(2) The (uncompleted) structure sheaf is defined to be $v^{*} \mathcal{O}_{X_{\log }}$ on $X_{\text {prolog }}$ with subring of integral elements $v^{*} \mathcal{O}_{X_{\text {log }}}^{+}$. If no confusion seems to arise, we will still denote them by $\mathcal{O}_{X_{\log }}$ and $\mathcal{O}_{X_{\log }}^{+}$respectively.
(3) We define the completed integral structure sheaf (on $X_{\text {prolog }}$) to be $\hat{\mathcal{O}}_{X_{\text {log }}}^{+}=$ $\lim _{\leftrightarrows} \mathcal{O}_{X_{\log }}^{+} / p^{n}$, and the completed structure is defined as $\hat{\mathcal{O}}_{X_{\log }}=\hat{\mathcal{O}}_{X_{\log }}^{+}[1 / p]$.

For simplicity, for the rest of this section we assume X is a rigid space over a perfectoid field K.

Definition 4.2. Let $(V, N) \in X_{\text {prolog }}$ with $V \xrightarrow{f} X$. We say that (V, N) is affinoid perfectoid if:
(1) V is affinoid with $V=\operatorname{Sp}\left(R^{\prime}\right)$ and $f^{-1}\left(D_{i}\right)$ is cut out by one equation f_{i};
(2) N has a presentation $N=\lim N_{j}$ for a cofiltered system $\left\{N_{j}=\operatorname{Sp}\left(R_{j}\right)\right\}$ of objects in $V_{\mathrm{f}, \log }$ such that:

- N_{j} are smooth;
- $\left\{N_{j}\right\}$ contains a cofiltered subsystem consisting of all branched coverings $\operatorname{Sp}\left(R^{\prime}\left[\sqrt[k]{f_{i}}\right]\right)$ for all $k \in \mathbb{N}$ and;
- denote by R^{+}the p-adic completion of $\underset{\longrightarrow}{\lim } R_{i}^{\circ}$, and $R=R^{+}[1 / p]$, the pair (R, R^{+}) is a perfectoid affinoid (K, K°)-algebra.

REMARK 4.3. In the above definition (2), one can actually drop the first condition. Indeed, any cofiltered system satisfying second condition automatically has a cofinal subsystem with N_{j} being smooth by Theorem 2.2.

Warning 4.4. In the following, the index of an inverse system in $X_{\text {prolog }}$ is denoted by i. For instance, we will write $N=\underset{\leftarrow}{\lim } N_{i}$. But the readers should be cautious that the i here is not the same as the index of f_{i} 's. Since these two indexing systems have very different meanings, we hope no confusions should arise from this.

We say that (V, N) is perfectoid if it has an open cover by affinoid perfectoid. To an affinoid perfectoid (V, N) as above, we can associate $\hat{N}=\operatorname{Spa}\left(R, R^{+}\right)$ which is an affinoid perfectoid space over $\operatorname{Spa}\left(K, \mathcal{O}_{K}\right)$. One immediately checks that this is well defined, that is independent of the presentation of $N=\lim N_{i}$. Moreover, we have $\hat{N} \sim \lim N_{i}$ in the sense of [Sch12, Definition 7.14], in particular $|\hat{N}|=|N|$.

Example 4.5. Take

$$
X=V=\operatorname{Sp}\left(K\left\langle Z_{1}^{ \pm 1}, \ldots, Z_{n-r}^{ \pm 1}, Z_{n-r+1}, \ldots, Z_{n}\right\rangle\right)=\mathbb{T}^{n-r} \times \mathbb{D}^{r},
$$

denote it by $\mathbb{T}^{n-r, r}$, with the divisor D given by $Z_{n-r+1} \cdots Z_{n}=0$. Then ($\mathbb{T}^{n-r, r}$, $N) \in X_{\text {prolog }}$ with $N=\tilde{\mathrm{T}}^{n-r, r}$ being the inverse limit of the

$$
\operatorname{Sp}\left(K\left\langle Z_{1}^{ \pm 1 / p^{k}}, \ldots, Z_{n-r}^{ \pm 1 / p^{k}}, Z_{n-r+1}^{1 / l}, \ldots, Z_{n}^{1 / l}\right\rangle\right)
$$

is an affinoid perfectoid. Using the notations from discussion before this example, we have

$$
R=K\left\langle Z_{1}^{ \pm 1 / p^{\infty}}, \ldots, Z_{n-r}^{ \pm 1 / p^{\infty}}, Z_{n-r+1}^{1 / \infty}, \ldots, Z_{n}^{1 / \infty}\right\rangle
$$

and

$$
R^{+}=\mathcal{O}_{K}\left\langle Z_{1}^{ \pm 1 / p^{\infty}}, \ldots, Z_{n-r}^{ \pm 1 / p^{\infty}}, Z_{n-r+1}^{1 / \infty}, \ldots, Z_{n}^{1 / \infty}\right\rangle
$$

The following lemma is an analogue of [Sch13a, Lemma 4.5]. The proof is exactly the same.

Lemma 4.6. With the notations as in Definition 4.2, let $(V, N) \in X_{\text {prolog }}$ be an affinoid perfectoid with $N=\lim N_{i}$ and $N_{i}=\operatorname{Spa}\left(R_{i}, R_{i}^{\circ}\right)$ so that $\hat{N}=\mathrm{Spa}$ (R, R^{+}).
Assume that $M_{i}=\operatorname{Spa}\left(S_{i}, S_{i}^{\circ}\right) \rightarrow N_{i}$ is an étale map which can be written as a composition of rational subsets and finite étale maps. For $j \geqslant i$,
write $M_{j}=M_{i} \times_{N_{i}} N_{j}=\operatorname{Spa}\left(S_{j}, S_{j}^{\circ}\right)$ and $M=M_{i} \times_{N_{i}} N=\underset{\longrightarrow}{\lim } M_{j} \in$ pro$\left(\right.$ Rigid $\left./ M_{i}\right)$. Let A_{j} be the p-adic completion of the p-torsion free quotient of $S_{j}^{\circ} \otimes_{R_{j}^{\circ}} R^{+}$. Then:
(1) The completion $\left(S, S^{+}\right)$of the direct limit of the $\left(S_{j}, S_{j}^{\circ}\right)$ is a perfectoid affinoid $\left(K, K^{\circ}\right)$-algebra. Moreover, $\hat{M}=M_{j} \times_{M_{j}} \hat{N}$ in the category of adic spaces over $\operatorname{Spa}\left(K, K^{\circ}\right)$, and $S=A_{j}[1 / p]$ for any $j \geqslant i$, where \hat{M} is similarly defined as \hat{N}, that is $\hat{M}=\mathrm{Spa}\left(\left(\underset{\longrightarrow}{\lim } S_{j}^{\circ}\right)[1 / p], \xrightarrow{\lim } S_{j}^{\circ}\right)$.
(2) For any $j \geqslant i$, the cokernel of the map $A_{j} \rightarrow S^{+}$is annihilated by some power p^{N} of p.
(3) Let $\epsilon>0, \epsilon \in \log \Gamma$. Then there exists some j such that the cokernel of the map $A_{j} \rightarrow S^{+}$is annihilated by p^{ϵ}.

Proof. The proof is the same as [Sch13a, Lemma 4.5]. Roughly speaking, for $M_{i} \subseteq N_{i}$ being a rational subset, it follows from the property that a rational subset of an affinoid perfectoid space is affinoid perfectoid, see [Sch12, Theorem 6.3(ii)]. For $M_{i} \rightarrow N_{i}$ being a finite étale morphism, it follows from the almost purity theorem [Sch12, Theorem 7.9(iii)].

Lemma 4.7. Let $\left(V, N^{\prime}\right) \rightarrow(V, N)$ be a finite log étale morphism in $X_{\text {prolog. If }}$ (V, N) is affinoid perfectoid, then the morphism $\left(V, N^{\prime}\right) \rightarrow(V, N)$ is induced by a finite étale morphism between two objects of $V_{\mathrm{f}, \log }$, that is $N^{\prime}=N \times_{N_{0}} N_{0}^{\prime}$ via some finite étale morphism $N_{0}^{\prime} \rightarrow N_{0}$, and $\left(V, N^{\prime}\right)$ is affinoid perfectoid.

Proof. Use the notations as in Definition 4.2. Suppose that $\left(V, N^{\prime}\right) \rightarrow(V, N)$ is induced by $\left(V, N_{0}^{\prime}\right) \rightarrow\left(V, N_{0}\right)$ in $V_{\text {f.log }}$, that is $\left(V, N^{\prime}\right)=\left(V, N_{0}^{\prime}\right) \times_{\left(V, N_{0}\right)}(V, N)$ via some map $N \rightarrow N_{0}$ of pro- $V_{\mathrm{f}, \log }$ where N_{0} is smooth. By Lemma 2.2, we know there is $N_{0}\left[\sqrt[k]{f_{i}}\right]=N_{1} \rightarrow N_{0}$ for large k such that $N_{1}^{\prime}:=N_{1} \times_{N_{0}} N_{0}^{\prime} \rightarrow N_{1}$ is finite étale. Now by our assumption of (V, N) being affinoid perfectoid, we may find N_{2} inside the tower of N dominating N_{1}. Therefore N^{\prime} is induced by the morphism $N_{2}^{\prime}:=N_{2} \times_{N_{0}} N_{0}^{\prime} \rightarrow N_{2}$ which is finite étale. One checks (V, N^{\prime}) is an affinoid perfectoid: it consists of cofinal system of smooth N_{j}^{\prime} 's since N^{\prime} is induced by a finite étale morphism; the completed algebra being perfectoid follows from almost purity (see [Sch12, Theorem 7.9]); and since our system has a subsystem dominating $\operatorname{Sp}\left(R^{\prime}\left[\sqrt[k]{f_{i}}\right]\right)$, throwing them in our system gives rise to a presentation of N^{\prime}.

THEOREM 4.8. The set of $(V, N) \in X_{\text {prolog }}$ which are affinoid perfectoid form a basis for the topology.

Proof. Use the notations as in Example 4.5. If $(X, D)=\left(\mathbb{T}^{n-r, r}, D\right)$, then we have made an explicit cover of X by an affinoid perfectoid $\tilde{\mathrm{T}}^{n-r, r} \in X_{\text {prolog. }}$. Let (V, N) be an object of $X_{\text {prolog }}$ with $V \rightarrow X$ étale, $N=\underset{\longleftrightarrow}{\lim } N_{i} \xrightarrow{h} V$ where $N_{i} \xrightarrow{h_{i}} V \in$ $V_{\mathrm{f}, \log }$. By [Kie67, Theorem 1.18] and [Hub96, Corollary 1.6.10], we may assume that V admits an étale morphism $V \xrightarrow{f} \mathbb{T}^{n-r, r}$ with divisor given by $f^{-1}(D)$. We may further assume that f is the composite of a rational open embedding and a finite étale morphism. Therefore, $\left(V, f^{*}\left(\tilde{\mathrm{~T}}^{n-r, r}\right)\right)=\left(V, V \times_{\mathbb{T}^{n-r, r}} \tilde{\mathrm{~T}}^{n-r, r}\right) \in X_{\text {prolog }}$ is affinoid perfectoid by Lemma 4.6. By Lemma 4.7, we know $\left(V, h_{i}^{*}\left(f^{*}\left(\tilde{T}^{n-r, r}\right)\right)\right.$ is also affinoid perfectoid. Note that:
(1) $N \times_{V} f^{*}\left(\tilde{\mathrm{~T}}^{n-r, r}\right)=h^{*}\left(f^{*}\left(\tilde{\mathrm{~T}}^{n-r, r}\right)\right)=\lim _{\leftrightarrows} h_{i}^{*}\left(f^{*}\left(\tilde{\mathrm{~T}}^{n-r, r}\right)\right)$ and;
(2) the completion of a direct limit of perfectoid affinoid $\left(K, K^{\circ}\right)$-algebra is again perfectoid affinoid.

Therefore $\left(V, N \times_{V} f^{*}\left(\tilde{\mathrm{~T}}^{n-r, r}\right)\right)$ is affinoid perfectoid which covers (V, N).
Lemma 4.9. Assume that $(V, N) \in X_{\text {prolog }}$ is affinoid perfectoid with $\hat{N}=$ $\operatorname{Spa}\left(R, R^{+}\right)$.
(1) For any nonzero element $b \in K^{\circ}$, we have $\mathcal{O}_{X_{\log }^{+}}^{+}((V, N)) / b=R^{+} / b$ and it is almost equal to $\left(\mathcal{O}_{X_{\log }}^{+} / b\right)((V, N))$.
(2) The image of $\left(\mathcal{O}_{X_{\log }}^{+} / b_{1}\right)((V, N))$ in $\left(\mathcal{O}_{X_{\log }}^{+} / b_{2}\right)((V, N))$ is equal to R^{+} / b_{2} for any nonzero nilpotent elements $b_{1}, b_{2} \in K^{\circ}$ with $\left|b_{1}\right|<\left|b_{2}\right|$
(3) We have $\hat{\mathcal{O}}_{X_{\log }}^{+}((V, N))=R^{+}$and $\hat{\mathcal{O}}_{X_{\log }}((V, N))=R$.
(4) The ring $\hat{\mathcal{O}}_{X_{\log }}^{+}((V, N))$ is the p-adic completion of $\left.\mathcal{O}_{X_{\log }}^{+}(V, N)\right)$.
(5) The cohomology groups $H^{i}\left((V, N), \hat{\mathcal{O}}_{X}^{+}\right)$are almost zero for $i>0$.

Proof. The proof is almost identical to the proof of [Sch13a, Lemma 4.10]. We sketch the proof for the sake of completeness. As in the proof of [Sch13a, Lemma 4.10], it suffices to show that $N \rightarrow \mathcal{F}(N)=\left(\mathcal{O}_{\hat{N}}^{+}(\hat{N}) / b\right)^{a}=\left(\mathcal{O}_{N}^{+}(N) / b\right)^{a}$ is a sheaf of almost K°-algebra, with $H^{i}(N, \mathcal{F})=0$ for $i>0$.

Let N be a quasicompact object being covered by $N_{k} \rightarrow N$. By quasicompactness of N, we can assume that the covering consists of only one pro-log-étale morphism $N^{\prime} \rightarrow N$. Write $N^{\prime}=\lim _{\leftrightarrows} N_{i}^{\prime} \rightarrow N_{0}^{\prime} \rightarrow N$, where $N_{0}^{\prime} \rightarrow N$ is log-étale morphism and $N_{i}^{\prime} \rightarrow N_{j}^{\prime}$ is surjective finite log-étale for $i>j \geqslant 0$. Note that the morphism q of a morphism $(W, M) \xrightarrow{(p, q)}\left(V, M^{\prime}\right)$ of
$X_{\log }$ can be written as a composition of an étale morphism and a morphism of $W_{\mathrm{f}, \mathrm{log}}$, for example, $M \rightarrow p^{*} M^{\prime} \rightarrow M^{\prime}$. Therefore, we can assume that $N_{0}^{\prime} \rightarrow N$ is induced by an étale morphism $V_{0}^{\prime} \rightarrow V$ of $X_{\text {et }}$. Furthermore, by Lemma 4.7, the morphisms $N_{i}^{\prime} \rightarrow N_{j}^{\prime}$ are induced by finite étale morphisms of $\left(\pi\left(N_{j}^{\prime}\right)_{\mathrm{f}, \text { log }}\right.$.

On the other hand, we have to show that the complex

$$
\mathcal{C}\left(N^{\prime}, N\right): 0 \rightarrow \mathcal{F}(N) \rightarrow \mathcal{F}\left(N^{\prime}\right) \rightarrow \mathcal{F}\left(N^{\prime} \times_{N} N^{\prime}\right) \rightarrow \cdots
$$

is exact. Note that $\mathcal{F}\left(N^{\prime}\right)=\underset{\longrightarrow}{\lim } \mathcal{F}\left(N_{j}^{\prime}\right)$. So we have

$$
\mathcal{C}\left(N^{\prime}, N\right)=\underset{\longrightarrow}{\lim \mathcal{C}}\left(N_{i}^{\prime}, N\right) .
$$

and one reduces to the case that $N^{\prime} \rightarrow N$ is a composite of rational embeddings and finite étale maps. In this case, both N and N^{\prime} are affinoid perfectoid, giving rise to perfectoid spaces \hat{N}^{\prime} and \hat{N}, and an étale cover $\hat{N}^{\prime} \rightarrow \hat{N}$. Then Lemma 4.6 implies that
$\mathcal{C}\left(N^{\prime}, N\right): 0 \rightarrow\left(\mathcal{O}_{\hat{N}_{\mathrm{et}}}^{+}(\hat{N}) / b\right)^{a} \rightarrow\left(\mathcal{O}_{\hat{N}_{\mathrm{et}}}^{+}\left(\hat{N}^{\prime}\right) / b\right)^{a} \rightarrow\left(\mathcal{O}_{\hat{N}_{\mathrm{et}}}^{+}\left(\hat{N}^{\prime} \times_{\hat{N}} \hat{N}^{\prime}\right) / b\right)^{a} \rightarrow \cdots$
is exact. Note that $\mathcal{F}\left(N^{\prime}\right)=\underset{\longrightarrow}{\lim \mathcal{F}}\left(N_{j}^{\prime}\right)$. Therefore the statement follows from the vanishing of $H^{i}\left(W_{\mathrm{et}}, \mathcal{O}_{W_{\mathrm{et}}}^{+a}\right)=0$ for $i>0$ and any affinoid perfectoid space W, see [Sch12, Proposition 7.13].

Lemma 4.10. Assume that (V, N) is an affinoid perfectoid, with $\hat{N}=\operatorname{Spa}(R$, R^{+}). Let \mathbb{L} be an \mathbb{F}_{p}-local system on $U=X \backslash D$. Then for all $i>0$, the cohomology group

$$
H^{i}\left((V, N), v^{*}\left(u_{X}(\mathbb{L}) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right)\right)^{a}=0
$$

and it is almost finitely generated projective R^{+a} / p-module $M(N)$ for $i=0$. If $\left(V^{\prime}, N^{\prime}\right)$ is affinoid perfectoid, corresponding to $\hat{N}^{\prime}=\operatorname{Spa}\left(R^{\prime}, R^{\prime+}\right)$, and $\left(V^{\prime}\right.$, $\left.N^{\prime}\right) \rightarrow(V, N)$ some map in $X_{\text {prolog, }}$ then $M\left(N^{\prime}\right)=M(N) \otimes_{R^{+a} / p} R^{\prime+a} / p$.

Proof. We just need to notice that $\nu^{*}\left(u_{X, *}(\mathbb{L})\right)$ will be extended to an \mathbb{F}_{p}-local system on N_{k} for some k in the index category of N (by Theorem 2.2). Therefore it follows from [Sch13a, Lemma 4.12].

5. Primitive comparison

Following [Sch13a, Section 5], in this section we show the primitive comparison in our setting.

THEOREM 5.1. Let K be an algebraically closed complete extension of \mathbb{Q}_{p}, and let X be a proper smooth rigid analytic space over $\operatorname{Sp}(K)$ with an SSNC divisor D. Let \mathbb{L} be an \mathbb{F}_{p}-local system on $(X-D)_{\text {ét. }}$. Then there is an isomorphism of almost finitely generated $K^{\circ a}$-modules

$$
H^{i}\left(X_{\log }, u_{X, *}(\mathbb{L})\right) \otimes_{\mathbb{F}_{p}} K^{o a} / p \cong H^{i}\left(X_{\log }, u_{X *}(\mathbb{L}) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right)
$$

for all $i \geqslant 0$, where u_{X} is defined in Definition 2.7.
One can see the finiteness from the proof. We remark a more direct proof which is based on the primitive comparison of Scholze and functorial embedded resolution for rigid spaces over characteristic 0 fields due to Temkin.

REMARK 5.2.

(1) Assume \mathbb{L} comes from an \mathbb{F}_{p}-local system on X. Then by [Sch13a, Theorem 5.1], Theorems 2.3 and 2.8 we have that $H^{i}\left(X_{\log }, u_{X, *}(\mathbb{L})\right)$ is a finite dimensional \mathbb{F}_{p} vector space for all $i \geqslant 0$, which vanishes for $i>2 \operatorname{dim} X$.
(2) In general, by [Han17, Theorem 1.6] and [Tem18, Theorem 1.1.13], we can find a U^{\prime} finite étale over U such that:

- $\left.\mathbb{L}\right|_{U^{\prime}} \cong \mathbb{F}_{p}^{\oplus r}$ and;
- U^{\prime} admits a smooth compactification with complement divisor SSNC.

Hence we have the finiteness for $H^{i}\left(X_{\log }, u_{X, *}(\mathbb{L})\right)$ as in (1).
Lemma 5.3. Let k be a complete nonarchimedean field. Let V be an affinoid smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$. Let $D=\bigcup_{i=1}^{l} D_{i}$ be an SSNC divisor in V and let $x \in D_{i_{1} i_{2} \ldots i_{r}} \backslash \bigcup_{j \in\left\{1,2, \ldots, l \backslash \backslash i_{1}, i_{2}, \ldots, i_{r}\right\}} D_{i_{1} i_{2} \ldots i_{r} j}$ with closure $M=\overline{\{x\}}$. Then there exists a rational subset $U \subset V$ containing M, with $U \cong S \times \mathbb{D}^{m}(s)$, together with an étale map $S \xrightarrow{\phi} \mathbb{T}^{n-r}$ satisfying the following two conditions:
(1) ϕ factors as a composite of rational embeddings and finite étale maps and;
(2) $D_{i_{j}} \cap U$ is given by the vanishing locus of s_{j} and if $i \notin\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ then $D_{i} \cap U=\varnothing$.

Proof. By [Mit09, Theorem 2.11] we may first find a rational subset $U_{0} \subset V$ containing M such that $U_{0} \cong S_{0} \times \mathbb{D}^{r}(\underline{s})$, where S_{0} is a smooth affinoid, satisfying our condition (2). Note that one can find such a rational containing M because of condition (1) of [Mit09, Theorem 2.11].

Now we may apply [Sch13a, Lemma 5.2] to our ($x, S_{0} \times\{0\}$) to find a rational subset $S \subset S_{0}$ together with ϕ satisfying our condition (1).

LEMMA 5.4. Let k be a complete nonarchimedean field. Let X be a proper smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$. Let $\bigcup_{i \in I} D_{i}=D \subset X$ be an $S S N C$ divisor where $I=\{1,2, \ldots, r\}$. For any integer $N \geqslant 1$ and N distinct elements $\gamma_{N}<$ $\gamma_{N-1}<\cdots<\gamma_{1}=1$ in the norm group Γ of k, one may find N finite covers $\mathcal{U}^{(i)}=$ $\bigcup_{J \subset I}\left\{U_{l}^{J,(i)}\right\}$ of X by affinoid open subsets. Here $U_{l}^{J,(i)} \cong S_{l}^{J,(i)} \times \mathbb{D}^{|J|}\left(\underline{s} / p^{\gamma_{i}}\right)$ where $S_{l}^{J,(i)}$ (viewed as $\left.S_{l}^{J,(i)} \times\{0\}\right)$ are affinoid open subsets of D_{J}, such that the following conditions hold:
(1) $D \cap U_{l}^{J,(i)}$ is given by vanishing locus of coordinates on the disc;
(2) for all i, J and l, the closure $\overline{S_{l}^{J,(i+1)}}$ of $S_{l}^{J,(i+1)}$ in D_{J} is contained in $S_{l}^{J,(i)}$. Hence the closure of $U_{l}^{J,(i+1)}$ in X is contained in $U_{l}^{J,(i)}$;
(3) for all land $J, S_{l}^{J,(N)} \subset \cdots \subset S_{l}^{J,(1)}$ is a chain of rational subsets. Hence the same holds for $U_{l}^{J,(i)}$,s;
(4) for J, J^{\prime}, l and l^{\prime}, the intersection $U_{l}^{J,(1)} \cap U_{l^{\prime}}^{J^{\prime},(1)} \subset U_{l}^{J,(1)}$ is a rational subset and;
(5) for all l and J, there is an étale map $S_{l}^{J,(1)} \rightarrow \mathbb{T}^{n-|J|}$ that factors as a composite of rational subsets and finite étale maps.

Proof. The proof is almost identical to that of [Sch13a, Lemma 5.3] except we use Lemma 5.3 to replace [Sch13a, Lemma 5.2] in the argument.

LEMMA 5.5. Let K be a complete nonarchimedean field extension of \mathbb{Q}_{p} that contains all roots of unity; choose a compatible system $\zeta_{l} \in K$ of lth roots of unity. Let

$$
\begin{gathered}
R_{0}=\mathcal{O}_{K}\left\langle T_{1}^{ \pm 1}, \ldots, T_{n-r}^{ \pm 1}, T_{n-r+1}, \ldots, T_{n}\right\rangle \\
R^{\prime}=\mathcal{O}_{K}\left\langle T_{1}^{ \pm 1 / p^{\infty}}, \ldots, T_{n-r}^{ \pm 1 / p^{\infty}}, T_{n-r+1}^{1 / \infty}, \ldots, T_{n}^{1 / \infty}\right\rangle
\end{gathered}
$$

where $T^{1 / \infty}$ means adjoining all power roots of T, and

$$
R=\mathcal{O}_{K}\left\langle T_{1}^{ \pm 1 / p^{\infty}}, \ldots, T_{n-r}^{ \pm 1 / p^{\infty}}, T_{n-r+1}^{ \pm 1 / p^{\infty}}, \ldots, T_{n}^{ \pm 1 / p^{\infty}}\right\rangle
$$

Let S_{0} be an R_{0}-algebra which is p-adically complete flat over \mathbb{Z}_{p} with the p-adic topology. Let $\Delta:=\mathbb{Z}_{p}^{n-r} \times \widehat{\mathbb{Z}}^{r}$ such that the kth basis vector acts on R^{\prime} via

$$
\prod T_{j}^{i_{j}} \mapsto \zeta^{i_{k}} \prod T_{j}^{i_{j}}
$$

where $\zeta^{i_{k}}=\zeta_{l}^{i_{k} l}$ whenever $i_{k} l \in \mathbb{Z}$. Let $\Delta \rightarrow \Delta_{\infty}:=\mathbb{Z}_{p}^{n}$ be the obvious projection. Then:
(1) $H_{\mathrm{cont}}^{q}\left(\Delta_{\infty}, S_{0} / p^{m} \otimes_{R_{0} / p^{m}} R / p^{m}\right) \rightarrow H_{\mathrm{cont}}^{q}\left(\Delta, S_{0} / p^{m} \otimes_{R_{0} / p^{m}} R^{\prime} / p^{m}\right)$ is an almost isomorphism;
(2) $H_{\text {cont }}^{q}\left(\Delta_{\infty}, R / p^{m}\right)$ is an almost finitely presented R_{0}-module for all m;
(3) the map

$$
\bigwedge^{q} R_{0}^{n}=H_{\mathrm{cont}}^{q}\left(\Delta_{\infty}, R_{0}\right) \rightarrow H_{\mathrm{cont}}^{q}\left(\Delta, R^{\prime}\right)\left(=^{a} H_{\mathrm{cont}}^{q}\left(\Delta_{\infty}, R\right) \text { by }(1) \text { above }\right)
$$

is injective with cokernel killed by $\zeta_{p}-1$;
(4) $H_{\mathrm{cont}}^{q}\left(\Delta_{\infty}, S_{0} / p^{m} \otimes_{R_{0} / p^{m}} R / p^{m}\right)=S_{0} / p^{m} \otimes_{R_{0} / p^{m}} H_{\text {cont }}^{q}\left(\Delta_{\infty}, R / p^{m}\right)$ for all m and;
(5) $H_{\text {cont }}^{q}\left(\Delta_{\infty}, S_{0} \hat{\otimes}_{R_{0}} R\right)=S_{0} \hat{\otimes}_{R_{0}} H_{\text {cont }}^{q}\left(\Delta_{\infty}, R\right)$.

Proof. (1) follows from [Ols09, Lemma 3.10], notice that the action of Δ is continuous with respect to the p-adic topology on these Δ-modules. (2) to (5) follows from (the proof of) [Sch13a, Lemma 5.5].

Lemma 5.6. Let K be as in the previous Lemma. Let (V, N) be an object in $X_{\text {log }}$ with an étale map $V \rightarrow \mathbb{T}^{n-r, r}$ as one of the $V_{k}^{J,(1)}$'s in Lemma 5.4. Let \mathbb{L} be an \mathbb{F}_{p}-local system on $U_{\text {êt }}$. Then:
(1) For $i>n=\operatorname{dim} X$, the cohomology group

$$
H^{i}\left((V, N),\left(u_{X, *} \mathbb{L}\right) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right)
$$

is almost zero as \mathcal{O}_{K}-module.
(2) Assume $V^{\prime} \subset V$ is a rational subset which is strictly contained in V. Then the image of

$$
\begin{aligned}
& H^{i}\left((V, N),\left(u_{X, *} \mathbb{L}\right) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right) \\
& \quad \rightarrow H^{i}\left(\left(V^{\prime}, N^{\prime}=V^{\prime} \times_{V} N\right),\left(u_{X, *} \mathbb{L}\right) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right)
\end{aligned}
$$

is an almost finitely generated \mathcal{O}_{K}-module.
Proof. This follows from the proof of [Sch13a, Lemma 5.6]. In the argument we need to replace [Sch13a, Lemma 4.5] by Lemmas 4.6 and 4.7, [Sch13a, Lemma 4.12] by Lemma 4.10, [Sch13a, Lemma 5.3] by Lemma 5.4 and [Sch13a, Lemma 5.5] by Lemma 5.5.

LEMMA 5.7. Let K be a perfectoid field of characteristic 0 containing all p-power roots of unity. Let \mathbb{L} be an \mathbb{F}_{p}-local system on $U_{\text {ét. }}$. Then

$$
H^{j}\left(X_{\log },\left(u_{X *} \mathbb{L}\right) \otimes \mathcal{O}_{X}^{+} / p\right)
$$

is an almost finitely generated \mathcal{O}_{K}-module, which is almost zero for $j>2 \operatorname{dim} X$.

Proof. Consider the projection $\mu: X_{\log } \rightarrow X_{\text {an }}$ sending U to (U, U). Previous Lemma 5.6 shows that $R^{j} \lambda_{*}\left(u_{X *} \mathbb{L} \otimes \mathcal{O}_{X}^{+} / p\right)$ is almost zero for $j>\operatorname{dim} X$. Notice that any covering of (X, X) in $X_{\text {log }}$ can be refined by ones meeting the condition of previous Lemma. The cohomological dimension of $X_{\text {an }}$ is $\leqslant \operatorname{dim} X$ by [dJvdP96, Proposition 2.5.8], we get the desired vanishing result. The proof above is similar to the counterpart of [Sch13a, Lemma 5.8].

The proof of almost finitely generatedness is also similar to that in [Sch13a, Lemma 5.8]. Again, we have to replace [Sch13a, Lemma 5.3] by Lemma 5.4 and [Sch13a, Lemma 5.6] by Lemma 5.6.

DEFINITION 5.8. Let (X, D) be as before. The tilted integral structure sheaf $\hat{\mathcal{O}}_{X_{\log }^{b}}^{+}$ is given by $\underset{\lim }{\longleftarrow} \mathcal{O}_{X_{\log }}^{+} / p$ where the inverse limit is taken along the Frobenius map. $\operatorname{Set} \hat{\mathcal{O}}_{X_{\log }^{b}}=\overleftarrow{\hat{\mathcal{O}}}_{X_{\log }^{b}}^{+}[1 / p]$.

The next lemma follows from repeating the argument of its untilted version (Lemma 4.9).

LEMMA 5.9. Let K be a perfectoid field of characteristic 0 , and let X be an adic space associated to a rigid space over $\operatorname{Sp}(K)$. Let $N \in X_{\text {prolog }}$ be affinoid perfectoid, with $\hat{N}=\operatorname{Spa}\left(R, R^{+}\right)$where $\left(R, R^{+}\right)$is a perfectoid affinoid $\left(K, K^{o}\right)$ algebra. Let $\left(R^{b}, R^{b+}\right)$ be its tilt. Then we have:
(1) $\hat{\mathcal{O}}_{X_{\log }^{b}}^{+}(N)=R^{b+}$ and $\hat{\mathcal{O}}_{X_{\log }^{b}}(N)=R^{b}$;
(2) The cohomology groups $H^{i}\left(N, \hat{\mathcal{O}}_{X_{\log }^{b}}^{+}\right)$are almost zero for $i>0$, with respect to the almost setting defined by the maximal ideal of topologically nilpotent elements in K°.

Now we can follow Scholze's method to show Theorem 5.1.
Proof of Theorem 5.1. To simplify our notations, throughout the proof, we still denote $\nu^{*}\left(u_{X, *}(\mathbb{L})\right)$ by $u_{X, *}(\mathbb{L})$. Note that K^{b} is an algebraically closed field of characteristic p. Fix an element $\pi \in \mathcal{O}_{K^{b}}$ such that $(\pi)^{\sharp}=p$. Note that $\hat{\mathcal{O}}_{X_{\log }^{b}}^{+}$
is a sheaf of perfect flat $\mathcal{O}_{K^{b}}$-algebras with $\hat{\mathcal{O}}_{X_{\log }^{b}}^{+} / \pi^{k}=\mathcal{O}_{X}^{+} / p^{k}$ (by Lemmas 5.9 and 4.9). Let $M_{k}=H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\text {log }}^{b}}^{+} / \pi^{k}\right)^{a}$. It follows from Lemma 5.7 that M_{k} satisfy the hypotheses of [Sch13a, Lemma 2.12]. Hence there is some $r \in \mathbb{N}$ such that $M_{k}=\left(K^{b o} / \pi^{k}\right)^{r}$ as almost K^{b}-modules, compatibly with the Frobenius action. By Theorem 4.8, Lemma 5.9 and [Sch13a, Lemma 3.18], we have

$$
R \underset{\leftarrow}{\lim }\left(u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}^{+} / \pi^{k}\right)^{a}=\left(u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}^{+}\right)^{a} .
$$

Therefore, we have

$$
H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}^{+}\right)^{a} \cong \lim _{\leftarrow} H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}^{+} / \pi^{k}\right)^{a} \cong\left(\mathcal{O}_{K^{b}}^{a}\right)^{r} .
$$

Note that the site $X_{\text {prolog }}$ is algebraic and the final object $(X, X) \in X_{\text {prolog }}$ is coherent. We invert π and get

$$
H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}\right) \cong\left(K^{b}\right)^{r}
$$

which is still compatible with the action of Frob. Then we use the Artin-Schreier sequence

$$
0 \rightarrow u_{X, *}(\mathbb{L}) \rightarrow u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}} \xrightarrow{h} u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}} \rightarrow 0
$$

where the map h sends $v \otimes f$ to $v \otimes\left(f^{p}-f\right)$. This is an exact sequence of sheaves: by Lemma $2.9, u_{X, *}(\mathbb{L})$ is locally coming from a \mathbb{F}_{p}-local system on $X_{\text {ét }}$, moreover, $u_{X, *}\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p}$ on $X_{\log }$. Therefore, it suffices to check the map h is surjective locally on affinoid perfectoid $N \in X_{\text {prolog }}$ and over which $u_{X, *}(\mathbb{L})$ is trivial. Note that $\hat{N}_{\text {Fét }}^{b} \cong \hat{N}_{\text {Fét }}$, and finite étale covers of \hat{N} come via pullback from finite étale covers in $X_{\text {prolog }}$ by [Sch12, Lemma 7.5(i)].

Denote $X_{\text {prolog }}$ by X. The Artin-Schreier sequence gives

$$
\cdots H_{\mathbb{F}_{p}^{r}}^{\cdots} \xrightarrow{\left.\cdots, u_{X, *}(\mathbb{L})\right) \longrightarrow H^{i}\left(X, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}\right) \longrightarrow H^{i}\left(X, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}\right) \cdots}
$$

where the map $\left(K^{b}\right)^{r} \rightarrow\left(K^{b}\right)^{r}$ is coordinate-wise $x \mapsto x^{p}-x$. The map $\left(K^{b}\right)^{r} \rightarrow$ $\left(K^{b}\right)^{r}$ is surjective since K^{b} is algebraically closed. Using Lemma 3.9(2), we have

$$
\begin{aligned}
H^{i}\left(X_{\log }, u_{X, *}(\mathbb{L})\right) & =H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L})\right) \\
& =H^{i}\left(X_{\text {prolog }}, u_{X, *}(\mathbb{L}) \otimes \hat{\mathcal{O}}_{X_{\log }^{b}}{ }^{\text {Frob }=\text { id }}=\mathbb{F}_{p}^{r} .\right.
\end{aligned}
$$

which implies the theorem.

REMARK 5.10. By the same proof, one has the following variant of Theorem 5.1: let X be a proper smooth rigid analytic space over $\operatorname{Sp}(k)$ with an SSNC divisor D. Let \mathbb{L} be an \mathbb{F}_{p}-local system on $(X-D)_{\text {ét. }}$. Then there is an isomorphism of almost finitely generated $\hat{\bar{k}}^{\circ a}$-modules

$$
H^{i}\left(\left(X, X_{\bar{k}}\right), v^{*}\left(u_{X, *}(\mathbb{L})\right)\right) \otimes_{\mathbb{F}_{p}} \hat{\bar{k}}^{\circ a} / p \cong H^{i}\left(\left(X, X_{\bar{k}}\right), v^{*}\left(u_{X *}(\mathbb{L})\right) \otimes \mathcal{O}_{X_{\log }}^{+} / p\right)
$$

for all $i \geqslant 0$. Here $X_{\bar{k}}$ is the prosystem of X_{l} where l / k runs through all finite extension of k, see also [Sch13a, Proposition 3.15] and the discussion before it.

6. The period sheaves

Definition 6.1. On $X_{\log }$ we have the sheaf of log differentials

$$
\Omega_{X_{\log }}^{1}(\log D):=\lambda^{-1}\left(\Omega_{X}^{1}(\log D)\right) \bigotimes_{\lambda^{-1}\left(\mathcal{O}_{X}\right)} \mathcal{O}_{X_{\log }}
$$

where $\lambda: X_{\log } \rightarrow X_{\text {ét }}$ is the natural map sending $(V \rightarrow X)$ to (V, V). Note that this is a locally finite free sheaf of $\mathcal{O}_{X_{\text {log }}}$-modules.

The following definitions are similar to [Sch13a, Definition 6.1].
Definition 6.2. Let X be a rigid space over $\operatorname{Sp}(k)$ with SSNC divisor D. We have the following sheaves on $X_{\text {prolog }}$.
(1) The sheaf $\mathbb{A}_{\text {inf }}:=W\left(\hat{\mathcal{O}}_{X_{\text {log }}^{b}}^{+}\right)$and its rational version $\mathbb{B}_{\text {inf }}:=\mathbb{A}_{\text {inf }}[1 / p]$. We have $\theta: \mathbb{A}_{\text {inf }} \rightarrow \hat{\mathcal{O}}_{X_{\log }}^{+}$extended to $\theta: \mathbb{B}_{\text {inf }} \rightarrow \hat{\mathcal{O}}_{X_{\mathrm{log}}}$.
(2) The positive de Rham sheaf is given by $\mathbb{B}_{\mathrm{dR}}^{+}:=\lim _{\leftarrow} \mathbb{B}_{\text {inf }} /(\operatorname{ker} \theta)^{n}$ with its filtration $\mathrm{Fil}^{i} \mathbb{B}_{\mathrm{dR}}^{+}=(\operatorname{ker} \theta)^{i} \mathbb{B}_{\mathrm{dR}}^{+}$.
(3) The de Rham sheaf $\mathbb{B}_{\mathrm{dR}}=\mathbb{B}_{\mathrm{dR}}^{+}\left[t^{-1}\right]$, where t is any element that generates $\mathrm{Fil}^{1} \mathbb{B}_{\mathrm{dR}}^{+}$. It has the filtration $\mathrm{Fil}^{i} \mathbb{B}_{\mathrm{dR}}=\sum_{j \in \mathbb{Z}} t^{-j} \mathrm{Fil}^{i+j} \mathbb{B}_{\mathrm{dR}}^{+}$.

The analogue of [Sch13a, 6.2-6.7] holds in our setting with the same proof, let us summarize it in the following:

Remark 6.3. Let K be a perfectoid field which is the completion of some algebraic extension of k and fix $\pi \in K^{b}$ such that $\pi^{\sharp} / p \in\left(K^{\circ}\right)^{\times}$. Let (V, N) be an affinoid perfectoid in the localized site $X_{\text {prolog }} / \mathrm{Spa}\left(K, K^{\circ}\right)$ with $\hat{N}=\operatorname{Spa}\left(R, R^{+}\right)$. Then we have:
(1) There is an element $\xi \in \mathbb{A}_{\text {inf }}\left(K, K^{\circ}\right)$ that generates $\operatorname{ker}\left(\theta: \mathbb{A}_{\text {inf }}\left(R, R^{+}\right) \rightarrow\right.$ R^{+}), and is not a zero divisor in $\mathbb{A}_{\text {inf }}\left(R, R^{+}\right)$.
(2) We have a canonical isomorphism

$$
\mathbb{A}_{\mathrm{inf}}(V, N)=\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right)
$$

and analogous statements hold for $\mathbb{B}_{\mathrm{inf}}, \mathbb{B}_{\mathrm{dR}}^{+}$and \mathbb{B}_{dR}. In particular, $\mathrm{Fil}^{1} \mathbb{B}_{\mathrm{dR}}^{+}(V$, $N)$ is a principal ideal in $\mathbb{B}_{\mathrm{dR}}^{+}$generated by a nonzero divisor $\xi \in \mathbb{A}_{\text {inf }}\left(K, K^{\circ}\right)$.
(3) All $H^{i}((V, N), \mathcal{F})$ are almost zero for $i>0$, where \mathcal{F} is any of the sheaves above. In particular,

$$
\operatorname{gr} \cdot \mathbb{B}_{\mathrm{dR}}(V, N)=\operatorname{gr} \bullet \mathbb{B}_{\mathrm{dR}}\left(R, R^{+}\right)=R\left[\xi^{ \pm 1}\right] .
$$

(4) Let S be a profinite set, and let $\left(V, N^{\prime}\right)=(V, N \times S) \in X_{\text {prolog }}$ which is again affinoid perfectoid. Then

$$
\mathcal{F}\left(V, N^{\prime}\right)=\operatorname{Hom}_{\text {cont }}(S, \mathcal{F}(V, N))
$$

for any of the sheaves

$$
\mathcal{F} \in\left\{\hat{\mathcal{O}}_{X_{\mathrm{log}}}, \hat{\mathcal{O}}_{X_{\mathrm{log}}}^{+}, \hat{\mathcal{O}}_{X_{\mathrm{log}}^{b}}, \hat{\mathcal{O}}_{X_{\mathrm{log}}^{b}}^{+}, \mathbb{A}_{\mathrm{inf}}, \mathbb{B}_{\mathrm{inf}}, \mathbb{B}_{\mathrm{dR}}^{+}, \mathbb{B}_{\mathrm{dR}}, \operatorname{gr}^{i} \mathbb{B}_{\mathrm{dR}}\right\}
$$

For all $i \in \mathbb{Z}$, we have gri $\mathbb{B}_{\mathrm{dR}} \cong \hat{\mathcal{O}}_{X_{\mathrm{log}}}(i)$ as sheaves on $X_{\text {prolog }}$ where (i) denotes a Tate twist in the same sense as in [Sch13a, Proposition 6.7].

Definition 6.4. On $X_{\log }$ we have the sheaf of log differentials

$$
\Omega_{X_{\log }}^{1}(\log D):=\lambda^{-1}\left(\Omega_{X}^{1}(\log D)\right) \bigotimes_{\lambda^{-1}\left(\mathcal{O}_{X}\right)} \mathcal{O}_{X_{\log }}
$$

where $\lambda: X_{\log } \rightarrow X_{\text {ett }}$ is the natural morphism of sites sending $(V \rightarrow X)$ to (V, V). Note that this is a locally finite free sheaf of $\mathcal{O}_{X_{\log }}$-modules.

REMARK 6.5. Note that the (V, N)'s in $X_{\log }$ satisfying the following conditions:
(1) V (hence N) is an affinoid space;
(2) there is an étale morphism $V \rightarrow \mathbb{T}^{n-r, r}(\underline{Z})$ such that

$$
g^{-1}(D)=\bigcup_{l=n-r+1}^{n} V\left(Z_{l}\right)
$$

where $g: V \rightarrow X$ is the structure map;
(3) there is a finite étale morphism $N \rightarrow V\left[\sqrt[m]{Z_{l}}\right]$;
form a basis of $X_{\log }$ by Theorem 2.2 and Lemma 5.3. For (V, N) satisfying the above conditions with $N=\operatorname{Sp}(R)$, we have an isomorphism

$$
\Omega_{X_{\log }}^{1}(\log D)(V, N) \cong \bigoplus_{1 \leqslant l \leqslant n} R \cdot \frac{d Z_{l}}{Z_{l}} .
$$

Hence for such a (V, N), we have $\Omega_{X_{\log }}^{1}(\log D)(V, N)=\Omega_{N}^{1}\left(\log \left(f^{-1} D\right)\right)(N)$. Here $f: N \rightarrow X$ is induced from $N \rightarrow V \rightarrow X$.

Definition 6.6. Let X be a smooth rigid adic space over $\operatorname{Sp}(k)$ where k is a discretely valued complete nonarchimedean extension of \mathbb{Q}_{p} with perfect residue field κ. Consider the following sheaves on $X_{\text {prolog }}$.
(1) The sheaf of differentials

$$
\Omega_{X}^{1}(\log D):=v^{*}\left(\Omega_{X_{\log }}^{1}(\log D)\right) .
$$

(One should notice the difference between v^{-1} and v^{*}.) We also define $\Omega_{X}^{i}(\log D):=\wedge^{i} \Omega_{X}^{1}(\log D)$.
(2) The positive logarithmic structural de Rham sheaf $\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}$is given by the sheafification of the presheaf sending affinoid perfectoid (V, N) with

$$
N=\underset{\leftarrow}{\lim } N_{i}=\underset{\leftarrow}{\lim } \operatorname{Sp}\left(R_{i}\right) \quad \text { and } \quad \hat{N}=\operatorname{Sp} a\left(R, R^{+}\right)
$$

to the colimit over i of

$$
\lim _{r} \frac{\left(\left(R_{i}^{\circ} \hat{\otimes}_{W(k)}\left(\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right) / \operatorname{ker}(\theta)^{r}\right)\right)\left[\left(1 \otimes\left[f_{k}^{b}\right]\right) /\left(f_{k} \otimes 1\right)\right][1 / p]\right)}{\operatorname{ker}(1 \otimes \theta)^{r}} .
$$

Here $\left\{f_{k} \in \mathcal{O}(V)\right\}$ are defining functions of D_{k} given as part of the definition of (V, N) being affinoid perfectoid. The completed tensor product is the p-adic completion of the tensor product. Here $1 \otimes \theta$ is the tensor product of the map $R_{i}^{\circ} \rightarrow R^{+}$and $\theta: \mathbb{A}_{\text {inf }}\left(R, R^{+}\right) \rightarrow R^{+}$, moreover it sends $\left(1 \otimes\left[f_{k}^{b}\right]\right) /\left(f_{k} \otimes 1\right)$ to 1 . Note that R contains all roots of f_{k}, therefore we have $f_{k}^{b}=\left(f_{k},\left(f_{k}\right)^{1 / p}, \ldots,\right) \in\left(R^{+}\right)^{b}$, in particular $\theta\left(\left[f_{k}^{b}\right]\right)=f_{k}$.
(3) The uncompleted logarithmic structure de Rham sheaf is given by $\mathcal{O} \mathbb{B}_{\log d \mathrm{R}}^{u c}:=\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}\left[t^{-1}\right]$ where t is a generator of $\mathrm{Fil}^{1} \mathbb{B}_{\mathrm{dR}}^{+}$.

It is clear that we still have the map $\theta: \mathcal{O} \mathbb{B}_{\log d \mathrm{R}}^{+} \rightarrow \hat{\mathcal{O}}_{X}^{+}$which induces its filtration

$$
\mathrm{Fil}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}=(\operatorname{ker} \theta)^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} .
$$

We also have a filtration on $\mathcal{O} \mathbb{B}_{\log d R}^{u c}$ by

$$
\operatorname{Fil}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{u c}=\sum_{j \in \mathbb{Z}} t^{-j} \mathrm{Fil}^{i+j} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}
$$

(4) Finally, the logarithmic structure de Rham sheaf is defined to be the completion of uncompleted logarithmic structure de Rham sheaf with respect to the filtration defined above

$$
\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}:=\widehat{\mathcal{O} \mathbb{B}_{\log d \mathrm{R}}^{u c}}
$$

(We thank Zhu for pointing out to us that the original sheaf we defined was not complete, and we need to take completion with respect to this filtration, cf. [DLLZ18, Remark 3.11].) Note that $\mathcal{O} \mathbb{B}_{\log d R}$ is equipped with the filtration coming from that on $\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{u c}$, with respect to which it is complete, and that both two sheaves have the same graded pieces.

REMARK 6.7.
(1) It is easy to check that the colimit over i of ($\odot)$ does not depend on the presentation of N, and it does define a presheaf.
(2) Later on we will see that for a set of basis (V, N) of $X_{\text {prolog }}$, there is a cofinal system of i 's such that the outcomes (\odot) corresponding to i are the same, see Proposition 6.8.
(3) Note that we have a natural $\mathbb{B}_{\mathrm{dR}}^{+}$-linear connection with log poles:

$$
\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} \otimes_{\mathcal{X}_{X_{\log }}} \Omega_{X_{\log }}^{1}(\log D)
$$

sending

$$
\frac{1 \otimes\left[f_{k}^{b}\right]}{f_{k} \otimes 1} \mapsto-\frac{1 \otimes\left[f_{k}^{b}\right]}{\left(f_{k} \otimes 1\right)^{2}} d f_{k}=-\frac{1 \otimes\left[f_{k}^{b}\right]}{f_{k} \otimes 1} \cdot d \log \left(f_{k}\right)
$$

extended from the connection $\mathcal{O}_{X_{\log }} \xrightarrow{\nabla} \Omega_{X_{\log }}^{1}(\log D)$. Because $t \in \mathbb{B}_{\mathrm{dR}}^{+}$, inverting it, we get a natural \mathbb{B}_{dR}-linear connection with \log poles:

$$
\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{u c} \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{u c} \otimes_{\mathcal{X}_{X_{\log }}} \Omega_{X_{\log }}^{1}(\log D) .
$$

Take completion with respect to the induced filtration, we get:

$$
\mathcal{O} \mathbb{B}_{\log d \mathrm{R}} \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log d R} \otimes_{\mathcal{X}_{X_{\log }}} \Omega_{X_{\log }}^{1}(\log D) .
$$

(4) The definition of these de Rham period sheaves uses the fact that X is defined over a p-adic field. This is the crucial place where we have to use this fact. (We thank Bhargav Bhatt for reminding us this in a private communication.)

We describe $\mathcal{O} \mathbb{B}_{\log d R}^{+}$in the following proposition (see also [Sch13a, Proposition 6.10] and [Sch16]). Let $U \subset X$ be an open subspace. Let K be a perfectoid field which is the completion of an algebraic extension of k. We get the base change U_{K} of U to $\operatorname{Sp}(K)$, and again consider $U_{K} \in X_{\text {prolog }}$ by slight abuse of notation. Let $\varphi: U \rightarrow \mathbb{T}^{n-r, r}(\underline{Z})$ (cf. Example 4.5) be an étale morphism such that $f_{k}:=\varphi^{*}\left(Z_{n-r+k}\right)(k=1, \ldots, r)$ defines the component D_{k} of $D \cap U$. Note that such U 's form a basis of X. Let $\tilde{U}=U \times_{\mathbb{T}^{n-r, r}} \tilde{\mathbb{T}}^{n-r, r}$. Taking a further base change to K, we get (U_{K}, \tilde{U}_{K}) $\in X_{\text {prolog }}$ is perfectoid.

Proposition 6.8. Let notations be as above. Consider the localized site $X_{\text {prolog }} /\left(U_{K}, \tilde{U}_{K}\right)$. We have the elements

$$
u_{i}=Z_{i} \otimes 1-\left.1 \otimes\left[Z_{i}^{b}\right] \in \mathcal{O} \mathbb{B}_{\log d \mathrm{R}}^{+}\right|_{(U, \tilde{U})}
$$

for $i=1, \ldots, n-r$, and

$$
u_{j}=1-\left.\frac{1 \otimes\left[Z_{j}^{b}\right]}{Z_{j} \otimes 1} \in \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}\right|_{(U, \tilde{U})}
$$

for $j=n-r+1, \ldots, n$. Here we abuse the notations by using Z_{j} to denote $\varphi^{*}\left(Z_{j}\right)=f_{j}$. We will also use Z_{j} (respectively $\left[Z_{j}^{b}\right]$) to denote $Z_{j} \otimes 1$ (respectively $\left.\left[Z_{j}^{\mathrm{b}}\right] \otimes 1\right)$ to simplify our notations.

The map

$$
\left.\mathbb{B}_{\mathrm{dR}}^{+}\right|_{\left(U_{K}, \tilde{U}_{K}\right)} \llbracket X_{1}, \ldots,\left.X_{n} \rrbracket \rightarrow \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+}\right|_{\left(U_{K}, \tilde{U}_{K}\right)}
$$

sending X_{i} to u_{i} is an isomorphism of sheaves over $X_{\text {prolog }} /\left(U_{K}, \tilde{U}_{K}\right)$.

Proof.

Step 0: Definition of the map.
Let (V, N) be an affinoid perfectoid over $\left(U_{K}, \tilde{U}_{K}\right)$ where $N=\lim N_{i}$ with $N_{i}=\operatorname{Spa}\left(R_{i}, R_{i}^{\circ}\right)$ and $\hat{N}=\operatorname{Spa}\left(R, R^{+}\right)$. For each r and i, we use the fact that

$$
\frac{\mathbb{B}_{\mathrm{dR}}^{+}\left(R, R^{+}\right) \llbracket X_{1}, \ldots, X_{n} \rrbracket}{\left(\xi, X_{i}\right)^{r}} \cong \frac{\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right) \llbracket X_{1}, \ldots, X_{n} \rrbracket[1 / p]}{\left(\xi, X_{i}\right)^{r}}
$$

to define the morphism

$$
\begin{aligned}
& \frac{\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right) \llbracket X_{1}, \ldots, X_{n} \rrbracket[1 / p]}{\left(\xi, X_{i}\right)^{r}} \\
& \quad \rightarrow \frac{\left(\left(R_{i}^{\circ} \hat{\otimes}_{W(\kappa)}\left(\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right) / \operatorname{ker}(\theta)^{r}\right)\right)\left[\left(1 \otimes\left[f_{k}^{b}\right]\right) /\left(f_{k} \otimes 1\right)\right][1 / p]\right)}{\operatorname{ker}(1 \otimes \theta)^{r}}=: S_{i, r},
\end{aligned}
$$

by sending any element $a \in \mathbb{A}_{\text {inf }}\left(R, R^{+}\right)$to $1 \otimes a$ and X_{i} to u_{i} as described in the statement of this proposition. Here we used the fact that the ideal $\left(\xi, X_{i}\right)$ is sent inside $\operatorname{ker}(1 \otimes \theta)$. Taking inverse limit over r and then colimit over i gives the morphism in the statement of this proposition.

We want to show that for any N_{i} there exists a higher $N_{i^{\prime}} \rightarrow N_{i}$ such that the morphism

$$
\frac{\mathbb{A}_{\mathrm{inf}}\left(R, R^{+}\right) \llbracket X_{1}, \ldots, X_{n} \rrbracket[1 / p]}{\left(\xi, X_{i}\right)^{r}} \rightarrow S_{i^{\prime}, r}
$$

is an isomorphism for all r. This shows in particular that in Definition 6.6(2), there is a cofinal system of i 's for which the outcomes (\odot) are the same.

Step 1: Construct a section.
Let i be large enough, so that we get a log étale morphism $\left(V, N_{i}\right) \rightarrow \mathbb{T}^{n-r, r}$ where $N_{i}=\operatorname{Spa}\left(R_{i}, R_{i}^{\circ}\right)$. By Theorem 2.2, we see that there is an $m \in \mathbb{N}$ such that $\left(N_{i} \times_{\mathbb{T}^{n-r, r}} \mathbb{T}^{n-r, r}\left[\sqrt[m]{Z_{l}}\right]\right)^{v}=: \operatorname{Spa}\left(R_{i^{\prime}}, R_{i^{\prime}}^{\circ}\right) \rightarrow \mathbb{T}^{n-r, r}\left[\sqrt[m]{Z_{l}}\right]$ is étale. We will take $\operatorname{Spa}\left(R_{i^{\prime}}, R_{i^{\prime}}^{\circ}\right)$ to be the $N_{i^{\prime}}$ we want.

To simplify the notations further, let us denote $\mathbb{B}_{r}:=\mathbb{B}_{\mathrm{dR}}^{+}\left(R, R^{+}\right) \llbracket X_{1}$, $\ldots, X_{n} \rrbracket /\left(\xi, X_{i}\right)^{r}$. For technical reason we also want to consider, for each r, the $\mathbb{B}_{\mathrm{dR}}^{+}\left(R, R^{+}\right)$-algebra $\mathbb{B}_{r}^{\prime}:=\mathbb{B}_{\mathrm{dR}}^{+}\left(R, R^{+}\right)\left[X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right] /$ $\left(\xi, X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right)^{r}$. There is a natural morphism $\mathbb{B}_{r}^{\prime} \xrightarrow{\beta_{r}} \mathbb{B}_{r}$ where $\beta_{r}\left(\tilde{X}_{l}\right)=\left[\left(Z_{l}^{1 / m}\right)^{\mathrm{b}}\right] /\left(1-X_{l}\right)^{1 / m}-\left[\left(Z_{l}^{1 / m}\right)^{\mathrm{b}}\right]$. Note that $1 /\left(1-X_{l}\right)^{1 / m}$ can be written as a power series in $\mathbb{Q} \llbracket X_{l} \rrbracket$, hence our expression makes sense. We still denote the composition $\theta \circ \beta_{r}$ by θ.

In the following, we will show that there is a natural morphism $R_{i^{\prime}} \rightarrow \mathbb{B}_{r}^{\prime}$, whose image is contained in an open and bounded (with respect to the p-adic topology induced from \mathbb{B}_{r}) subring inside \mathbb{B}_{r}^{\prime}, which is compatible with θ map for all r.

First note that for all r, there is a map

$$
W(\kappa)\left[p^{-1}\right]\left[Z_{1}^{ \pm 1}, \ldots, Z_{n-r}^{ \pm 1}, Z_{n-r+1}^{1 / m}, \ldots, Z_{n}^{1 / m}\right] \rightarrow \mathbb{B}_{r}^{\prime}
$$

by sending $Z_{j} \mapsto X_{j}+\left[Z_{j}^{b}\right]$ for $j \leqslant n-r$ and $Z_{l}^{1 / m} \mapsto \tilde{X}_{l}$ for all $l>n-r$.
Now we need the following lemma.

LEMMA 6.9. Let \mathcal{O} be an excellent complete rank 1 valuation ring with a pseudouniformizer ϖ, and let F be its fraction field which is viewed as a
nonarchimedean field. Let A_{0}^{+}be a finitely presented flat \mathcal{O}-algebra. Let $A=$ $\widehat{A_{0}^{+}}[1 / p]$, where the completion is with respect to ϖA_{0}^{+}, which is an affinoid F-algebra. Let $U=\operatorname{Sp}(B)$ be an affinoid rigid space admitting an étale map $U \rightarrow \operatorname{Sp}(A)$. Then there exists a finitely presented \mathcal{O}-flat A_{0}^{+}-algebra B_{0}^{+}, such that $B_{0}=B_{0}^{+}[1 / p]$ is étale over $A_{0}^{+}[1 / p]$ and B° is the ϖ-adic completion of B_{0}^{+}.

Proof. This is a slight generalization of [Sch13a, Lemma 6.12] and it follows from the same proof as [Sch13a, Proof of Lemma 6.12].

Apply the above lemma to $\mathcal{O}=W(\kappa), A_{0}^{+}=W(\kappa)\left[Z_{1}^{ \pm 1}, \ldots, Z_{n-r}^{ \pm 1}, Z_{n-r+1}^{1 / m}\right.$, $\left.\ldots, Z_{n}^{1 / m}\right]$ and $B=R_{i^{\prime}}$ gives a finitely generated $W(\kappa)\left[Z_{1}^{ \pm 1}, \ldots, Z_{n-r}^{ \pm 1}, Z_{n-r+1}^{1 / m}\right.$, $\left.\ldots, Z_{n}^{1 / m}\right]$-algebra $R_{i^{\prime} 0}^{\circ}$ whose generic fiber $R_{i^{\prime} 0}$ is étale over

$$
W(\kappa)\left[p^{-1}\right]\left[Z_{1}^{ \pm 1}, \ldots, Z_{n-r}^{ \pm 1}, Z_{n-r+1}^{1 / m}, \ldots, Z_{n}^{1 / m}\right] .
$$

By Hensel's Lemma, we get a unique lift $R_{i^{\prime} 0} \rightarrow \mathbb{B}_{r}^{\prime}$. In particular we get a lift of $R_{i^{\prime} 0}^{\circ}$. This extends to the p-adic completion with image lands in an open bounded subring (see [Sch13a, Lemma 6.11 and its proof]). Hence we get a lift of $R_{i^{\prime}} \rightarrow \mathbb{B}_{r}^{\prime}$ with image lands in an open bounded subring.

Step 2: Injectivity of (\odot).
After composing with β_{r}, we get a map (recall that $\left[Z_{l}^{b}\right] / Z_{l}=1-X_{l}$)

$$
S_{i^{\prime}, r} \rightarrow \mathbb{B}_{r}
$$

for which the composition

$$
\mathbb{B}_{r} \rightarrow S_{i^{\prime}, r} \rightarrow \mathbb{B}_{r}
$$

is the identity. Therefore we see that (\odot) is injective.
Step 3: Surjectivity of (\odot).
Now we only need to show that

$$
\mathbb{B}_{r} \rightarrow S_{i^{\prime}, r}
$$

is surjective. Let us consider the following commutative diagrams

and

where $\alpha_{r}\left(\tilde{X}_{l}\right)=Z_{l}^{1 / m} \otimes 1-1 \otimes\left[\left(Z_{l}^{1 / m}\right)^{b}\right], \delta_{r}\left(Y_{l}\right)=\left[Z_{l}^{b}\right] / Z_{l}$ for all $l>n-r$ and ϵ_{r} is the natural morphism. Note that δ_{r} is a surjection. Also the formula $\gamma_{r}\left(1-X_{l}\right)=\left[Z_{l}^{b}\right] / Z_{l}$ tells us that $\left[Z_{l}^{b}\right] / Z_{l}$ is in the image of γ_{r}. Therefore to show γ_{r} is surjective, it suffices to show that α_{r} is surjective. This just follows from the argument in [Sch16] and is written down below for the sake of completeness of our argument.

First the map

$$
\frac{R_{i^{\circ}}^{\circ}\left[X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right]}{\left(X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right)^{r}} \longrightarrow\left(R_{i^{\prime}}^{\circ} \hat{\otimes}_{W(k)} R_{i^{\prime}}^{\circ}\right) /\left(\operatorname{ker} \theta_{i^{\prime}}\right)^{r}
$$

is injective, with cokernel killed by a power of p , where $\theta_{i^{\prime}}: R_{i^{\prime}}^{\circ} \hat{\otimes}_{W(\kappa)} R_{i^{\prime}}^{\circ} \rightarrow R_{i^{\prime}}^{\circ}$ is the multiplication map. Here we used the fact that $\operatorname{Sp}\left(R_{i^{\prime}}\right) \rightarrow \mathbb{T}^{n-r, r}\left[\sqrt[m]{Z_{l}}\right]$ is étale.

Recall that we have constructed, in step 1 , a map $R_{i^{\prime}}^{\circ} \rightarrow \mathbb{B}_{r}^{\prime}$ taking values in some open and bounded subring. Composing with the projection onto $\mathbb{B}_{\mathrm{dR}}^{+} / \operatorname{ker}(\theta)^{r}$, we see that there is a map $R_{i^{\prime}} \rightarrow \mathbb{B}_{\mathrm{dR}}^{+} / \operatorname{ker}(\theta)^{r}$ compatible with θ taking values in some open and bounded subring $\mathbb{B}_{r, 0} \subset \mathbb{B}_{\mathrm{dR}}^{+} / \operatorname{ker}(\theta)^{r}$ (notice the typo in [Sch16] here). Now we apply $\hat{\otimes}_{R_{i^{\prime}}} \mathbb{B}_{r, 0}$ to the map $\left(\odot^{\circ}\right)$. We get

$$
\begin{aligned}
& \mathbb{B}_{r, 0}\left[X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right] /\left(X_{1}, \ldots, X_{n-r}, \tilde{X}_{n-r+1}, \ldots, \tilde{X}_{n}\right)^{r} \\
& \quad \rightarrow\left(R_{i^{\prime}}^{\circ} \hat{\otimes}_{W(\kappa)} \mathbb{B}_{r, 0}\right) /\left(\left(\operatorname{ker} \theta_{i^{\prime}}\right)^{r} \hat{\otimes}_{R_{i^{\prime}}^{\circ}} \mathbb{B}_{r, 0}\right)
\end{aligned}
$$

is an isomorphism up to a bounded power of p. Finally we invert p and use

$$
\left(\left(\operatorname{ker} \theta_{i^{\prime}}\right)^{r} \hat{\otimes}_{R_{i^{\prime}}} \mathbb{B}_{r, 0}\right) \subset(\operatorname{ker} \theta)^{r}
$$

to conclude that α_{r} is a surjection.

COROLLARY 6.10 (Logarithmic Poincaré lemma). Let X be a smooth rigid space of dimension n over $\operatorname{Sp}(k)$ with $S S N C$ divisor D. The following sequence of
sheaves on $X_{\text {prolog }}$ is exact.

$$
\begin{aligned}
0 \rightarrow \mathbb{B}_{\mathrm{dR}}^{+} & \rightarrow \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}(\log D) \xrightarrow{\nabla} \cdots \\
& \cdots \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}^{+} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{n}(\log D) \rightarrow 0 .
\end{aligned}
$$

Moreover, the derivation ∇ satisfies Griffiths transversality with respect to the filtration on $\mathcal{O} \mathbb{B}_{\log \mathrm{d} \mathrm{R}}^{+}$, and with respect to the grading giving $\Omega_{X}^{i}(\log D)$ degree i, the sequence is strict exact.

Proof. This follows from Proposition 6.8 and the equation

$$
d\left(X_{l}\right)=d\left(1-\frac{\left[Z_{l}^{b}\right]}{Z_{l}}\right)=\frac{\left[Z_{l}^{b}\right]}{Z_{l}^{2}} d Z_{l}=\frac{\left[Z_{l}^{b}\right]}{Z_{l}} \frac{d Z_{l}}{Z_{l}}=\left(1-X_{l}\right) \cdot d \log \left(Z_{l}\right) .
$$

REMARK 6.11. From the above corollary, especially the strict exactness, we get the following exact sequence

$$
\begin{aligned}
0 \rightarrow \mathbb{B}_{\mathrm{dR}} & \rightarrow \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}(\log D) \xrightarrow{\nabla} \cdots \\
& \ldots \xrightarrow{\nabla} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{n}(\log D) \rightarrow 0
\end{aligned}
$$

which share the same properties as the sequence above.
In particular, we get the following short exact sequence, which is due to Faltings in the case of algebraic varieties, see [Fal88, Theorem 4.3].

Corollary 6.12 (Faltings's extension). Let X be a smooth rigid space over $\operatorname{Sp}(k)$ with SSNC divisor D. Then we have a short exact sequence of sheaves over $X_{\text {prolog, }}$

$$
0 \rightarrow \hat{\mathcal{O}}_{X_{\log }}(1) \rightarrow \operatorname{gr}^{1} \mathcal{O} \mathbb{B}_{\operatorname{log~dR}}^{+} \rightarrow \hat{\mathcal{O}}_{X_{\log }} \otimes_{\mathcal{O}_{X_{\log }}} \Omega_{X}^{1}(\log D) \rightarrow 0
$$

Corollary 6.13. Let $X \rightarrow \mathbb{T}^{n-r, r}, \tilde{X}, K$ and X_{i} be as above. For any $i \in \mathbb{Z}$, we have an isomorphism of sheaves over $X_{\text {prolog }} /\left(X_{K}, \tilde{X}_{K}\right)$,

$$
\operatorname{gr}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \cong \xi^{i} \hat{\mathcal{O}}_{X_{\log }}\left[X_{1} / \xi, \ldots, X_{n} / \xi\right] .
$$

In particular,

$$
\operatorname{gr} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \cong \hat{\mathcal{O}}_{X_{\log }}\left[\xi^{ \pm 1}, X_{1}, \ldots, X_{n}\right]
$$

where ξ and X_{i} have degree 1 .

The following is analogous to [Sch13a, Proposition 6.16].
Proposition 6.14. Let $X=\operatorname{Spa}\left(R, R^{\circ}\right)$ be an affinoid adic space of finite type over $\operatorname{Spa}\left(k, k^{\circ}\right)$ with an étale map $X \rightarrow \mathbb{T}^{n-r, r}$ that factors as a composite of rational embeddings and finite étale maps.
(1) Assume that K contains all roots of unity. Then

$$
H^{q}\left(X_{K, \text { prolog }}, \mathrm{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=0
$$

unless $q=0$, in which case it is $R \hat{\otimes}_{k} K$.
(2) We have

$$
H^{q}\left(X_{\text {prolog }}, \operatorname{gr}^{i} \mathcal{O} \mathbb{B}_{\log d \mathrm{R}}\right)=0
$$

unless $i=0$ and $q=0,1$. We also have $H^{0}\left(X_{\text {prolog }}, \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=R$ and $H^{1}\left(X_{\text {prolog }}, \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log d \mathrm{R}}\right)=R \log \chi$. Here $\chi: \operatorname{Gal}(\bar{k} / k) \rightarrow \mathbb{Z}_{p}^{\times}$is the cyclotomic character and

$$
\log \chi \in \operatorname{Hom}_{\text {cont }}\left(\operatorname{Gal}(\bar{k} / k), \mathbb{Q}_{p}\right)=H_{\text {cont }}^{1}\left(\operatorname{Gal}(\bar{k} / k), \mathbb{Q}_{p}\right)
$$

is its logarithm.
Proof. (1) As before, denote $X_{K} \times_{\mathbb{T}_{K}^{n-r, r}} \tilde{\mathbb{T}}_{K}^{n-r, r}=: \tilde{X}_{K}$ where $\widehat{\tilde{X}_{K}}=\operatorname{Spa}\left(\hat{R}, \hat{R}^{\circ}\right)$. We see that $\tilde{X}_{K} \rightarrow X_{K}$ is a $\mathbb{Z}_{p}^{n-r} \times \hat{\mathbb{Z}}^{r}$-cover and all multiple-fold fiber products of \tilde{X}_{K} over X_{K} are affinoid perfectoid. By Corollary 6.13 and Remark 6.3 we see that all higher cohomology groups of the sheaves considered vanish and

$$
H^{q}\left(X_{K, \mathrm{prolog}}, \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=H_{\mathrm{cont}}^{q}\left(\mathbb{Z}_{p}^{n-r} \times \hat{\mathbb{Z}}^{r}, \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\left(\tilde{X}_{K}\right)\right)
$$

Note that we may write

$$
\operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\left(\tilde{X}_{K}\right)=\hat{R}\left[V_{1}, \ldots, V_{n}\right]
$$

where $V_{i}=t^{-1} \log \left(\left[T_{i}^{\mathrm{b}}\right] / T_{i}\right)$ and $t=\log ([\epsilon])$. Let γ_{i} be the i th basis vector of $\mathbb{Z}_{p}^{n-r} \times \hat{\mathbb{Z}}^{r}$, then we have (cf. [Sch13a, Lemma 6.17])

$$
\gamma_{i}\left(V_{j}\right)=V_{j}+\delta_{i j} .
$$

Next we claim the inclusion

$$
\left(R \hat{\otimes}_{k} K\right)\left[V_{1}, \ldots, V_{n}\right] \subset \hat{R}\left[V_{1}, \ldots, V_{n}\right]
$$

induces an isomorphism on the continuous group cohomologies. This can be seen via checking the graded pieces given by the degree of polynomials. On the gradeds
the group action on V_{i} 's is trivial, therefore it suffices to check that $R \hat{\otimes}_{k} K \subset \hat{R}$ induces an isomorphism on continuous group cohomologies. This just follows from Lemmas 4.6(2) and 5.5, cf. [Sch13a, Lemma 6.18].

Last we need to compute

$$
H_{\text {cont }}^{q}\left(\mathbb{Z}_{p}^{n-r} \times \hat{\mathbb{Z}}^{r},\left(R \hat{\mathbb{\otimes}}_{k} K\right)\left[V_{1}, \ldots, V_{n}\right]\right) .
$$

But since all the factors $\hat{\mathbb{Z}}_{(p)}:=\prod_{l \neq p} \mathbb{Z}_{l}$ act trivially on $\left(R \hat{\mathbb{Q}}_{k} K\right)\left[V_{1}, \ldots, V_{n}\right]$ which has p-adic topology, we see that the continuous group cohomology is the same as

$$
H_{\text {cont }}^{q}\left(\mathbb{Z}_{p}^{n},\left(R \hat{\otimes}_{k} K\right)\left[V_{1}, \ldots, V_{n}\right]\right)
$$

Now the last paragraph of the proof of [Sch13a, Proposition 6.16(i)] shows that these cohomology groups are 0 whenever $q>0$ and is equal to $R \hat{\otimes}_{k} K$ when $q=0$.
(2) Let k^{\prime} be the completion of $\bigcup_{p \nmid n} k\left(\mu_{n}\right)$ and take K as the completion of $k^{\prime}\left(\mu_{p^{\infty}}\right)$. Also let us denote $G=\operatorname{Gal}\left(k\left(\mu_{\infty}\right) / k\right)=H \times \Gamma$ where $H=$ $\operatorname{Gal}\left(\left(\bigcup_{p \nmid n} k\left(\mu_{n}\right)\right) / k\right)$ and $\Gamma=\operatorname{Gal}\left(k\left(\mu_{p^{\infty}}\right) / k\right)$. By the same argument as in the proof of [Sch13a, Proposition 6.16(ii)], we see that

$$
H^{q}\left(X_{\text {prolog }}, \operatorname{gr}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=H_{\mathrm{cont}}^{q}\left(G, R \hat{\otimes}_{k} K(i)\right)
$$

and

$$
H_{\mathrm{cont}}^{q}\left(\Gamma, R \hat{\otimes}_{k} K(i)\right)=R_{k^{\prime}} \otimes_{\mathbb{Q}_{p}} H_{\mathrm{cont}}^{q}\left(\Gamma, \mathbb{Q}_{p}(i)\right)
$$

and the latter is well known, see [Tat67]. Moreover we know that the action of H on $\log \chi$ is trivial and

$$
H_{\mathrm{cont}}^{q}\left(H, R_{k^{\prime}}\right)=0
$$

unless $q=0$ in which case it is R. Indeed, since H is a profinite group, we know that $H_{\text {cont }}^{q}\left(H, R_{k^{\prime}}\right)=\left(H_{\text {cont }}^{q}\left(H, R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}\right)\right)[1 / p]$. Now it suffices to show that $H_{\text {cont }}^{q}\left(H, R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}\right)=0$ for all $q>0$, and $H_{\text {cont }}^{0}\left(H, R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}\right)=R^{\circ}$. We claim that $H_{\text {cont }}^{q}\left(H,\left(R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}\right) / \varpi^{m}\right)=0$ for all $m>0$, unless $q=0$ in which case it is given by R° / ϖ^{m}. To prove this claim we simply notice that by induction on m and the fact that $R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}$ is ϖ-torsion free, it suffices to prove it when $m=1$ which follows from Hilbert 90 . The above claim yields that $H_{\text {cont }}^{q}(H$, $\left.R^{\circ} \hat{\otimes}_{\mathcal{O}_{k}} \mathcal{O}_{k^{\prime}}\right)=R^{q} \varliminf_{\mathrm{lim}_{m}} R^{\circ} / \varpi^{m}$, which easily implies what we want.

Put all these together along with Hochschild-Serre spectral sequence yields the results we want.

Corollary 6.15. Let X be a smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$ with an SSNC divisor D. Let i, j be two integers and let m be a positive integer, then we have:
(1) $R^{q} \nu_{*}\left(\mathrm{Fil}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} / \mathrm{Fil}^{i+m} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=0$ unless $q=0,1$ and $0 \in[i, i+m)$, in which case $R^{0} v_{*}$ is given by $\mathcal{O}_{X_{\log }}$ and $R^{1} v_{*}$ is given by $\mathcal{O}_{X_{\log }} \cdot \log \chi$.
(2) $R^{q} \nu_{*} \mathrm{Fil}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}=0$ unless $q=0,1$ and $i \leqslant 0$ in which case $R^{0} \nu_{*}$ is given by $\mathcal{O}_{X_{\log }}$ and $R^{1} v_{*}$ is given by $\mathcal{O}_{X_{\log }} \log \chi$. The above computation also holds for $i=-\infty$ where Fil $^{-\infty} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}=\mathcal{O} \mathbb{B}_{\log \mathrm{dR}}$.
(3) $R^{i} v_{*} \hat{\mathcal{O}}_{X_{\log }}(j)=0$ unless

- $i=j$ in which case it is given by $\Omega_{X_{\log }}^{j}(\log D)$ or;
- $i=j+1$ in which case it is given by $\Omega_{X_{\log }}^{j}(\log D) \cdot \log \chi$. (Note the typo in [Sch13a, Remark 6.20].)
Moreover the isomorphism $R^{1} v_{*} \hat{\mathcal{O}}_{X_{\log }}(1) \cong \Omega_{X_{\log }}^{1}(\log D)$ is given by the Faltings's extension (cf. Corollary 6.12).

Proof. (1) trivially follows from Proposition 6.14(2).
(2) follows from (1) by commuting limit and colimit with cohomology.
(3) follows from applying $R v_{*}$ to j th graded piece of the equation in Remark 6.11 which reads

$$
0 \rightarrow \hat{\mathcal{O}}_{X_{\log }}(j) \rightarrow \operatorname{gr}^{j} \mathcal{O} \mathbb{B}_{\log d R} \rightarrow \operatorname{gr}^{j-1} \mathcal{O} \mathbb{B}_{\log d R} \otimes_{\mathcal{O}_{X_{\log }}} \Omega_{X_{\log }^{1}}^{1}(\log D) \rightarrow \cdots .
$$

The last statement can be seen via the natural morphism from the sequence in Corollary 6.12 to the above sequence where $j=1$.

REMARK 6.16. Let $X=\operatorname{Sp}(R) \xrightarrow{f} \mathbb{T}^{n-r, r}$ be as in Proposition 6.14. Denote $f^{*}\left(T_{l}\right)$ by f_{l} where $l>n-r$. Then by the same argument, one can show that

$$
H^{q}\left(\left(X, X\left[\sqrt[m]{f_{l}}\right] \bar{k}\right), \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\log \mathrm{dR}}\right)=0
$$

unless $q=0$, in which case it is $R\left[\sqrt[m]{f_{l}}\right] \hat{\otimes}_{k} \hat{\bar{k}}$.
Remark 6.17. Let X be a smooth adic space over $\operatorname{Spa}\left(C, \mathcal{O}_{C}\right)$ where C is an algebraically closed nonarchimedean extension of \mathbb{Q}_{p}. Similar as in [Sch13b, Proposition 3.23 and Lemma 3.24], one can show that there is a commutative diagram

where the vertical maps are obtained in the same fashion as above.

7. Comparisons

7.1. Vector bundles on $X_{\log }$.

Definition 7.1. A vector bundle \mathcal{F} on $X_{\log }$ is a sheaf of $\mathcal{O}_{X_{\log }}$-modules such that there exist a finite affinoid covering $\left(V_{i}, N_{i}\right) \rightarrow(X, X)$ and finite projective $\Gamma\left(N_{i}, \mathcal{O}_{N_{i}}\right)$-modules M_{i} with isomorphism

$$
\left.\mathcal{F}\right|_{\left(V_{i}, N_{i}\right)} \cong M_{i} \otimes_{\Gamma\left(N_{i}, \mathcal{O}_{N_{i}}\right)} \mathcal{O}_{X_{\log }} .
$$

Here $\left(M_{i} \otimes_{\Gamma\left(N_{i}, \mathcal{O}_{N_{i}}\right)} \mathcal{O}_{X_{\text {log }}}\right)(W, M):=M_{i} \otimes_{\Gamma\left(N_{i}, \mathcal{O}_{N_{i}}\right)} \Gamma\left(M, \mathcal{O}_{M}\right)$ for any object (W, M) over $\left(V_{i}, N_{i}\right)$, and by affinoid covering we mean a covering with all V_{i} (hence N_{i}) being affinoid.

REMARK 7.2. Note that since M_{i} 's are assumed to be finite projective, they are direct summand in finite free modules. Therefore $M_{i} \otimes_{\mathcal{O}(N)} \mathcal{O}_{X_{\log }}$ indeed defines a sheaf on the localized site $X_{\log } /(V, N)$. We say \mathcal{F} is represented by a finite projective module on $(V, N) \in X_{\log }$ if one can find an M and an isomorphism as in the previous definition.

Theorem 7.3 (Theorem A). Let \mathcal{F} be a vector bundle on $X_{\text {log. }}$. Then there exists a positive integer m such that for any affinoid $V \xrightarrow{f} X$ étale over X with $f^{-1}\left(D_{l}\right)$ being defined by f_{l} (where D_{l} is the lth component of D), there exist a finite projective $\mathcal{O}\left(V\left[\sqrt[m]{f_{l}}\right]\right)$-module M and an isomorphism

$$
\left.\mathcal{F}\right|_{\left(V, V\left[\sqrt[m]{\left.f_{l}\right]}\right)\right.} \cong M \otimes_{\mathcal{O}\left(V\left[\sqrt[m]{\left.f_{l}\right]}\right)\right.} \mathcal{O}_{X_{\log }} .
$$

Proof. Let V_{i} and N_{i} be as in the definition, by passing to refinement we may assume the preimage of D_{l} in V_{i} is defined by a single function $f_{i . l}$. Then by Theorem 2.2 we can find a positive integer m such that $N_{i}\left[\sqrt[m]{f_{i, l}}\right] \rightarrow V_{i}\left[\sqrt[m]{f_{i, l}}\right]$ is finite étale. Consider the following diagram:

From the diagram and our choice of m, we see that $\coprod_{i} N_{i}^{\prime} \rightarrow V\left[\sqrt[m]{f_{l}}\right]$ is an étale covering in the usual sense in rigid geometry and our sheaf \mathcal{F} is represented by finite projective modules M_{i} on ($V_{i}^{\prime}, N_{i}^{\prime}$). Therefore étale descent implies what we want.

Theorem 7.4 (Theorem B). For any vector bundle \mathcal{F} and any affinoid $(V, N) \in$ X_{log}, assume one of the following conditions holds:
(1) $\left.\mathcal{F}\right|_{(V, N)}$ is represented by a finite projective $\mathcal{O}(N)$-module M or;
(2) preimage of D_{l} in V is defined by a single function f_{l} for all l;
then we have

$$
H^{q}((V, N), \mathcal{F})=0
$$

for all $q>0$.
Proof. We first observe that the statement of this theorem for objects satisfying condition (2) implies the statement for objects satisfying condition (1). Indeed, we can cover V by V_{i} satisfying (2). Therefore by the statement for objects satisfying condition (2), we see that $\left(V_{i}, V_{i} \times_{V} N\right) \rightarrow(V, N)$ is an acyclic cover for \mathcal{F}. Hence by Čech-to-cohomology spectral sequence we see that $H^{q}((V, N), \mathcal{F})$ is the same as q th Čech cohomology for this covering, which is the cohomology of Čech complex associated to the affinoid covering $\left\{V_{i} \times_{V} N\right\}$ for our finite projective module M. Hence we get $H^{q}((V, N), \mathcal{F})=0$ as N is an affinoid.

From now on we will assume that our (V, N) satisfies condition (2). We will prove the vanishing of cohomology by induction on q (the starting case $q=1$ follows from the same argument), therefore we will assume for objects satisfying (2) the cohomology of \mathcal{F} vanishes up to degree $q-1$.

Let $\xi \in H^{q}((V, N), \mathcal{F})$ be a cohomology class. Then there exists a covering by qcqs objects $\left(V^{\prime}, N^{\prime}\right) \rightarrow(V, N)$ such that ξ pulls back to zero in $H^{q}\left(\left(V^{\prime}, N^{\prime}\right), \mathcal{F}\right)$. Then by Theorems 2.2 and 7.3 we can find an m such that:
(1) $\left.\mathcal{F}\right|_{\left(V, N\left[\sqrt[m]{f_{l}}\right]\right.}$ is represented by a finite projective $\mathcal{O}\left(N\left[\sqrt[m]{\left.f_{l}\right]}\right)\right.$-module M;
(2) $N^{\prime \prime}=:\left(N\left[\sqrt[m]{f_{l}}\right] \times{ }_{N} N^{\prime}\right)^{\nu} \rightarrow N\left[\sqrt[m]{f_{l}}\right]$ is an étale covering.

Let $k^{\prime}=k\left[\zeta_{m}\right]$ where ζ_{m} is a primitive m th root of unity. Let us consider the following diagram

where subscript $(\cdot)_{k^{\prime}}$ means the base change of spaces from k to k^{\prime}. The cohomology class ξ is assumed to be zero on $\left(V^{\prime}, N^{\prime}\right)$, hence it is zero on (V^{\prime}, $\left.N_{k^{\prime}}^{\prime \prime}\right)$. Now by Čech-to-cohomology spectral sequence

$$
E_{2}^{a, b}=\check{\mathrm{H}}^{a}\left(\beta, \underline{H}^{b} \mathcal{F}\right) \Longrightarrow H^{a+b}\left(\left(V, N\left[\sqrt[m]{f_{l}}\right]_{k^{\prime}}\right), \mathcal{F}\right)
$$

and induction hypotheses, we have an exact sequence as follows

$$
0 \rightarrow \check{\mathrm{H}}^{q}(\beta, \mathcal{F}) \rightarrow H^{q}\left(\left(V, N\left[\sqrt[m]{f_{l}}\right]_{k^{\prime}}\right), \mathcal{F}\right) \rightarrow \mathrm{H}^{q}\left(\left(V^{\prime}, N_{k^{\prime}}^{\prime \prime}\right), \mathcal{F}\right) .
$$

From this sequence, we see that $\xi_{\left(V, N\left[\sqrt[m]{l} \int_{l l^{\prime}}\right)\right.}$ is represented by a class in Čech cohomology of \mathcal{F} associated to the cover given by β. Moreover, for $q \geqslant 1$, we have that $\check{\mathrm{H}}^{q}(\beta, \mathcal{F})$ is zero by (1), (2) and étale descent. It follows that $\xi_{\left.(V, N[\sqrt[m]{f}]]_{k^{\prime}}\right)}=0$.

Therefore, as above, by induction hypotheses and Čech-to-cohomology spectral sequence we see that ξ is represented by a class in $\check{H}^{q}(\alpha, \mathcal{F})$, the Čech cohomology of \mathcal{F} associated to the cover given by α. Now we notice that the j th fold product of $\left(V, N\left[\sqrt[m]{f_{l}}\right]_{k^{\prime}}\right)$ over (V, N) is isomorphic to $\left(V, N\left[\sqrt[m]{f_{l}}\right]_{k^{\prime}}\right) \times$ $G \times \cdots \times G$ with $(j-1)$-st copies of G 's appearing in the product. Here G is the Galois group of the covering $N\left[\sqrt[m]{f_{l}}\right]_{k^{\prime}}$ over N. The sheaf condition gives us an action of G on M and $\check{H}^{q}(\alpha, \mathcal{F})=H^{q}(G, M)$ which is zero because M is divisible and G is a finite group. This proves that $\xi=0$.

Corollary 7.5. Let $\lambda: X_{\log } \rightarrow X_{\text {ét }}$ be the morphism of sites sending U to (U, U). Then we have

$$
R \lambda_{*} \mathcal{O}_{X_{\log }} \cong \mathcal{O}_{X_{\mathrm{ct}}} .
$$

Therefore for any vector bundle \mathcal{F} on $X_{\text {ét }}$, we have

$$
\mathcal{F} \cong R \lambda_{*} \lambda^{*} \mathcal{F} .
$$

In particular, we see that $\lambda^{*}(\cdot)$ gives a fully faithful embedding from the category of vector bundles on $X_{\text {et }}$ to that on $X_{\text {log }}$.

Proof. The first assertion follows from Theorem A and B above. The second assertion follows from adjunction formula.

THEOREM 7.6. For any vector bundle \mathcal{F} on $X_{\text {log }}$, the cohomology groups

$$
H^{q}((X, X), \mathcal{F})
$$

are finite dimensional k vector spaces for all q.
Proof. By Lemma 5.4 we may find two affinoid coverings $\left\{V_{i}\right\}$ and $\left\{V_{i}^{\prime}\right\}$ of X, such that:
(1) $V_{i}^{\prime} \Subset_{X} V_{i}$ for all i;
(2) V_{i} (hence V_{i}^{\prime}) satisfies condition (2) in Theorem B , that is, $D_{l} \cap V_{i}$ is given by vanishing of $f_{i, l}$.

Now by Theorem A, there is an m such that $\left.\mathcal{F}\right|_{\left(V_{i}, V_{i}\left[\sqrt[m]{\left.f_{i}, l\right)}\right.\right.}$ is represented by a finite projective module M_{i}. By the same reasoning $\left.\mathcal{F}\right|_{\left(V_{i}^{\prime}, V_{i}^{\prime} \mid \Gamma^{m} \sqrt{\left.f_{i}, l\right]}\right)}$ is represented by $\left.M_{i}\right|_{V_{i}^{\prime}\left[\sqrt[m]{\left.f_{i, l}\right]}\right.}$. By Theorem B, we see that the covering $\coprod_{i}\left(V_{i}, V_{i}\left[\sqrt[m]{\left.f_{i, l}\right]}\right) \rightarrow(X\right.$, $X)\left(\right.$ respectively $\left.\coprod_{i}\left(V_{i}^{\prime}, V_{i}^{\prime}\left[\sqrt[m]{f_{i, l}}\right]\right) \rightarrow(X, X)\right)$ is acyclic for \mathcal{F}. Therefore we see that

$$
\begin{aligned}
H^{q}((X, X), \mathcal{F}) & =\check{H}^{q}\left(\coprod_{i}\left(V_{i}, V_{i}\left[\sqrt[m]{f_{i, l}}\right]\right) \rightarrow(X, X), \mathcal{F}\right) \\
& =\check{H}^{q}\left(\coprod_{i}\left(V_{i}^{\prime}, V_{i}^{\prime}\left[\sqrt[m]{f_{i, l}}\right]\right) \rightarrow(X, X), \mathcal{F}\right) .
\end{aligned}
$$

On the other hand, by our choice of V_{i} and V_{i}^{\prime}, we have that $V_{i}^{\prime}\left[\sqrt[m]{f_{i, l}}\right]$ is strictly contained in $V_{i}\left[\sqrt[m]{f_{i, l}}\right]$. Therefore the map from the Čech complex of (V_{i}, $\left.V_{i}\left[\sqrt[m]{f_{i, l}}\right]\right)$ to that of ($\left.V_{i}^{\prime}, V_{i}^{\prime}\left[\sqrt[m]{f_{i, l}}\right]\right)$ is strictly continuous and an isomorphism on cohomology groups. Hence we see that these cohomology groups are finite dimensional k vector spaces. See also the proof of Kiehl's proper mapping theorem in [Bos14, 6.4].

The above theorem implies the following base change lemma, which will be used later.

Lemma 7.7. Let X be a smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$ with an SSNC divisor D. Let \mathcal{A} be a vector bundle on $X_{\log }$. Then for all $i, j \in \mathbb{Z}$, we have an isomorphism

$$
H^{j}((X, X), \mathcal{A}) \otimes_{k} \operatorname{gr}^{i} B_{\mathrm{dR}} \cong H^{j}\left(\left(X, X_{\bar{k}}\right), \mathcal{A} \otimes_{\mathcal{O}_{X_{\log }}} \operatorname{gr}^{i} \mathcal{O} \mathbb{B}_{\operatorname{logdR}}\right)
$$

where the latter group is computed on $X_{\text {prolog }}$.
Proof. By twisting, it suffices to prove the case where $i=0$. The statement reads

$$
H^{j}((X, X), \mathcal{A}) \otimes_{k} \hat{\bar{k}} \cong H^{j}\left(\left(X, X_{\bar{k}}\right), \mathcal{A} \otimes_{\mathcal{O}_{X_{\log }}} \operatorname{gr}^{0} \mathcal{O} \mathbb{B}_{\operatorname{logdR}}\right)
$$

To this end, let $\left\lfloor\left(V_{i}, V_{i}\left[\sqrt[m]{f_{i, l}}\right]\right)\right.$ be an acyclic covering of \mathcal{A} as in the proof of Theorem 7.6. Denote the Čech complex associated to \mathcal{A} and this covering by \mathcal{C}^{\bullet}. By Remark 6.16 , we know that RHS is cohomology groups of $\mathcal{C}^{\bullet} \hat{\otimes}_{k} \hat{\bar{k}}$. Therefore we reduce to the statement

$$
H^{j}\left(\mathcal{C}^{\bullet}\right) \hat{\otimes}_{k} \hat{\bar{k}} \cong H^{j}\left(\mathcal{C}^{\bullet} \hat{\otimes}_{k} \hat{\bar{k}}\right)
$$

This follows from the fact that $\mathcal{C} \bullet$ has finite dimensional (as k vector spaces) cohomology groups.

REMARK 7.8.
(1) There are interesting vector bundles on $X_{\text {log }}$ not coming from $X_{\text {êt }}$. Assume $D \subset X$ is a smooth divisor, the 'square root' of the ideal sheaf of D, given by $\sqrt{I_{D}}(V, N)=\left\{a \in \Gamma\left(N, \mathcal{O}_{N}\right) \mid a^{2} \in g^{*} I_{(D)}\right\}$ (for $g: N \rightarrow V$), is such an example.
(2) One can develop a more general theory of 'coherent' sheaf and prove similar theorems as above for these sheaves. We will not work it out in this note however, since it is irrelevant to the theme of this note.
7.2. Proof of the comparison. In this subsection, let k be a discretely valued complete nonarchimedean extension of \mathbb{Q}_{p} with perfect residue field κ. Let X be a smooth adic space over $\operatorname{Spa}\left(k, \mathcal{O}_{k}\right)$ with an SSNC divisor D. Denote $X \backslash D$ by U. Denote an algebraic closure of k by \bar{k} and its completion by $\hat{\bar{k}}$. Let $A_{\mathrm{inf}}, B_{\mathrm{inf}}$, and so on be the period rings as defined by Fontaine.

THEOREM 7.9. There is a canonical isomorphism

$$
H^{m}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right) \otimes_{B_{\mathrm{dR}}^{+}} B_{\mathrm{dR}} \cong H^{m}\left(X, \Omega_{X_{\log }^{\circ}}(\log D)\right) \otimes_{k} B_{\mathrm{dR}}
$$

compatible with filtrations and $\operatorname{Gal}(\bar{k} / k)$-actions.
Moreover, we have a $\operatorname{Gal}(\bar{k} / k)$-equivariant isomorphism

$$
H^{m}\left(\left(X, X_{\bar{k}}\right), \hat{\mathcal{O}}_{X_{\log }}\right) \cong \bigoplus_{a+b=m} H^{a}\left(X, \Omega_{X}^{b}(\log D)\right) \otimes_{k} \hat{\bar{k}}(-b) .
$$

REMARK 7.10. By Corollary 7.5, we have canonical isomorphisms:

$$
H^{m}\left(X, \Omega_{X_{\log }}(\log D)\right) \cong H^{m}\left((X, X), \Omega_{X_{\log }}(\log D)\right)
$$

and

$$
H^{a}\left(X, \Omega_{X}^{b}(\log D)\right) \cong H^{a}\left((X, X), \Omega_{X}^{b}(\log D)\right)
$$

where the left hand side denotes the cohomology computed on the rigid space X and the right hand side denotes the cohomology computed on the Faltings site $X_{\text {log }}$.

Proof. In the filtered derived category we have

$$
\begin{aligned}
R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right) \otimes_{B_{\mathrm{dR}}^{+}} B_{\mathrm{dR}} & =R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}\right) \\
& =R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathcal{O} \mathbb{B}_{\log \mathrm{dR}} \otimes_{\mathcal{O}_{X_{\log }}} \Omega_{X_{\log }}^{\cdot}(\log D)\right)
\end{aligned}
$$

where the second equality follows from Poincaré lemma (cf. the equation in Remark 6.11). We claim that the natural map of filtered complexes

$$
\Omega_{X_{\log }}^{*}(\log D) \rightarrow \mathcal{O} \mathbb{B}_{\log d R} \otimes_{\mathcal{O}_{\log ^{\log }}} \Omega_{X_{\log }}^{\bullet}(\log D)
$$

induces a quasi-isomorphism
$R \Gamma\left((X, X), \Omega_{X_{\log }}^{\cdot}(\log D)\right) \otimes_{k} \mathrm{~B}_{\mathrm{dR}} \rightarrow R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathcal{O} \mathbb{B}_{\operatorname{logdR}} \otimes_{\mathcal{O}_{\mathrm{X}_{\log }}} \Omega_{X_{\log }}^{\bullet}(\log D)\right)$.
It suffices to check the claim above on graded pieces. Further filtering by using naive filtration of $\Omega_{X_{\text {log }}}^{*}(\log D)$, one is reduced to show that for any vector bundle \mathcal{A} on $X_{\log }$ and $i \in \mathbb{Z}$, the map

$$
R \Gamma((X, X), \mathcal{A}) \otimes_{k} \operatorname{gr}^{i} \mathrm{~B}_{\mathrm{dR}} \rightarrow R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathcal{A} \otimes_{\mathcal{O}_{X_{\log }}} \operatorname{gr}^{i} \mathcal{O} \mathbb{B}_{\log \mathrm{R}}\right)
$$

is a quasi-isomorphism. This follows from Lemma 7.7.
Therefore we have constructed a quasi-isomorphism

$$
R \Gamma\left((X, X), \Omega_{X_{\log }}^{\cdot}(\log D)\right) \otimes_{k} \mathrm{~B}_{\mathrm{dR}} \rightarrow R \Gamma\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right) \otimes_{B_{\mathrm{dR}}^{+}} B_{\mathrm{dR}}
$$

in filtered derived category. Now we get comparison results, by taking cohomology of both sides (respectively of the 0th graded piece of both sides).

Let us make a remark about the notion of local systems on sites $X_{\log }$ and $X_{\text {prolog }}$.
REMARK 7.11. Note that for any \mathbb{Z} / p^{n}-local system \mathbb{L}_{n} on $U,\left(u_{X, *} \mathbb{L}_{n}\right)(V, N)=$ $\mathbb{L}_{n}\left(N^{\circ}\right)$ for any $(V, N) \in X_{\log }$ (see Theorem 2.8). By Lemma 3.9(1), for any (V, $\left.N=\lim _{\leftarrow} N_{i}\right) \in X_{\text {prolog }}$ and any $i \geqslant 0$ we have

$$
H^{i}\left((V, N), v^{*}\left(u_{X, *} \mathbb{L}_{n}\right)\right)=\underset{i}{\lim } H^{i}\left(\left(N_{i}^{\circ}\right), \mathbb{L}_{n}\right) .
$$

If no confusion shall arise, we will still denote $u_{X, *} \mathbb{L}_{n}$ (respectively $\left.v^{*}\left(u_{X, *} \mathbb{L}_{n}\right)\right)$ by \mathbb{L}_{n}.

Recall the notion of lisse \mathbb{Z}_{p}-sheaf as in [Sch13a, Definition 8.1]. Analogously, we make the following definition.

DEFINITION 7.12. Let $\hat{\mathbb{Z}}_{p}:=\lim _{\longleftarrow} \mathbb{Z} / p^{n}$ as sheaves on $X_{\text {prolog. }}$. Then a lisse $\hat{\mathbb{Z}}_{p^{-}}$ sheaf on $X_{\text {prolog }}$ is a sheaf \mathbb{L} of $\hat{\mathbb{Z}}_{p}$-modules on $X_{\text {prolog }}$, such that locally \mathbb{L} is isomorphic to $\hat{\mathbb{Z}}_{p} \otimes_{\mathbb{Z}_{p}} M$, where M is a finitely generated \mathbb{Z}_{p}-module.

In concrete terms, \mathbb{L} is a lisse $\hat{\mathbb{Z}}_{p}$-sheaf just means that there is a covering $\coprod_{j}(V, N)_{j} \rightarrow(X, X)$ in $X_{\text {prolog }}$ such that for each j there is a finitely generated \mathbb{Z}_{p}-module M_{j} and a (noncanonical) isomorphism

$$
\left.\left.\mathbb{L}\right|_{(V, N)_{j}} \simeq\left(\hat{\mathbb{Z}}_{p} \otimes_{\mathbb{Z}_{p}} M_{j}\right)\right|_{(V, N)_{j}}:={\left.\underset{m}{\lim _{m}}\left(v^{*}\left(u_{X, *} M_{j} / p^{m}\right)\right)\right|_{(V, N)_{j}}}
$$

Note that if X is connected, then all the M_{j} 's are automatically isomorphic to each other as finitely generated \mathbb{Z}_{p}-modules.

Proposition 7.13. Let \mathbb{L}_{\bullet}. be a lisse \mathbb{Z}_{p}-sheaf on $U_{\text {ét }}$. Then $\mathbb{L}=\underset{\leftarrow}{\lim } v^{*}\left(u_{X, *} \mathbb{L}_{m}\right)$ is a lisse sheaf of $\hat{\mathbb{Z}}_{p}$-modules on $X_{\text {prolog. }}$. This functor gives an equivalence of categories. Moreover, $R^{j} \lim _{\longleftarrow} v^{*}\left(u_{X, *} \mathbb{L}_{m}\right)=0$ for $j>0$.

Proof. Without loss of generality, let us assume that X is connected. First notice that there exists a system of finite étale covers $\left\{U_{m}\right\}$ to U and a compatible system of isomorphisms $\left.\left.\mathbb{L}_{m}\right|_{U_{m}} \xrightarrow{\simeq}\left(M / p^{m}\right)\right|_{U_{m}}$ where M is a finitely generated \mathbb{Z}_{p}-module. By [Han17, Theorem 1.6], each U_{m} extends to an $N_{m} \rightarrow X$. Let $N=\underset{\longleftarrow}{\lim } N_{m}$, then $(X, N) \rightarrow(X, X)$ is a covering in $X_{\text {prolog }}$. We see that, with \mathbb{L} as defined in this proposition, we have an isomorphism $\left.\left.\mathbb{L}\right|_{(X, N)} \simeq\left(\hat{\mathbb{Z}}_{p} \otimes_{\mathbb{Z}_{p}} M\right)\right|_{(X, N)}$. Hence \mathbb{L} as defined in this proposition is a lisse sheaf of $\hat{\mathbb{Z}}_{p}$-modules on $X_{\text {prolog }}$. Conversely, let \mathbb{L} be a lisse sheaf of $\hat{\mathbb{Z}}_{p}$-modules. Let $(V, N)_{j}$ and $M_{j}=M$ be as in the discussion before this proposition. Then we see that $\left.\left.\mathbb{L}\right|_{N_{j}^{\circ}} \simeq\left(\hat{\mathbb{Z}}_{p} \otimes_{\mathbb{Z}_{p}} M_{j}\right)\right|_{N_{j}^{\circ}}$ gives rise to a lisse sheaf of $\hat{\mathbb{Z}}_{p}$-modules on $U_{\text {proét }}$; here each $N_{j}=\lim N_{j, l}$ is a pro-object in $V_{\text {profét }}$ and $N_{j}^{\circ}:=\lim _{\longleftarrow} N_{j, l}^{\circ}$ naturally is an object in $U_{\text {proét }}$. Therefore by [Sch13a, Proposition 8.2], we get back a lisse \mathbb{Z}_{p}-sheaf on $U_{\text {ét }}$. One verifies that this construction is an inverse to the functor described in this proposition, therefore the two categories are equivalent under $\mathbb{L}_{\bullet} \mapsto \mathbb{L}=\lim _{\longleftarrow} v^{*}\left(u_{X, *} \mathbb{L}_{n}\right)$.

To check that $R^{j} \lim v^{*}\left(u_{X, *} \mathbb{L}_{n}\right)=0$, we verify the conditions in [Sch13a, Lemma 3.18] for $\mathcal{F}_{m}=\mathbb{L}_{m}$. The condition (i) of [Sch13a, Lemma 3.18] trivially follows from the fact that \mathbb{L}_{m} takes value in finite abelian groups. The condition (ii) of [Sch13a, Lemma 3.18] follows from Proposition 2.12, Theorem 2.8, Lemma 3.9(1) and [Kie67, Theorem 1.18]. Indeed, [Kie67, Theorem 1.18] tells us that there is an open cover $\left\{V_{i}\right\}$ of X with each V_{i} of the form $S \times \mathbb{D}^{r}$ (and $D \cap V_{i}=S \times \Delta$) as in Proposition 2.12. Now we take N_{i} to be the prosystem
of all $N_{i, l}$ over V_{i}. By Theorem 2.8 and Lemma 3.9(1), we have $H^{j}\left(\left(V_{i}, N_{i}\right)\right.$, $\left.\mathbb{L}_{m}\right)={\underset{\longrightarrow}{\lim }}_{l} H^{j}\left(N_{i, l}^{\circ}, \mathbb{L}_{m}\right)$ which is zero by Proposition 2.12.

In this note, we will only consider the case where $\mathbb{L}_{m}=\mathbb{Z} / p^{m}$.
THEOREM 7.14. We have a natural $\operatorname{Gal}(\bar{k} / k)$-equivariant isomorphism

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}}^{+} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right)
$$

Remark 7.15. Here by $H_{\mathrm{ett}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right)$ we mean $\lim _{\leftarrow_{m}} H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z} / p^{m}\right)$. Note that U is the complement of an SSNC divisor in a proper smooth adic spaces. It is easy to check that $H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z} / p^{m}\right)=\underset{\rightarrow l / k}{\lim } H_{\mathrm{et}}^{i}\left(U_{l}, \mathbb{Z} / p^{m}\right)$ where the left hand side is understood as the étale cohomology of \mathbb{Z} / p^{m} on the adic space $U_{\bar{k}}$ and the colimit on the right hand side is taking over finite field extensions l of k.

It follows from Theorem 2.8 that

$$
H^{i}\left(U_{l}, \mathbb{Z} / p^{m}\right)=H^{i}\left(\left(X, X_{l}\right), \mathbb{Z} / p^{m}\right)
$$

By Remark 7.11, we can take the colimit over finite field extensions l of k and get

$$
H^{i}\left(U_{\bar{k}}, \mathbb{Z} / p^{m}\right)=H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{Z} / p^{m}\right) .
$$

Taking inverse limit over m, we have
where the first identity is due to the finiteness of $H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{Z} / p^{m}\right)$ (Remark 6.3) and the second identity is due to Proposition 7.13 and the fact that R lim and $R \Gamma\left(\left(X, X_{\bar{k}}\right),-\right)$ commute. Therefore, we have

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \hat{\mathbb{Z}}_{p}\right) .
$$

Before we start the proof of Theorem 7.14, we need a preliminary discussion on A-R p-adic projective systems, cf. [Fu11, 10.1].

LEMMA 7.16. Let $\mathbb{L}=\lim v^{*}\left(u_{X, *} \mathbb{L}_{m}\right)$ be a lisse sheaf of $\hat{\mathbb{Z}}_{p}$-modules on $X_{\text {prolog }}$. Let H_{m} be the cohomology group $H^{i}\left(U_{\bar{k}}, \mathbb{L}_{m}\right)=H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{L}_{m}\right)$. Then the system $\left(H_{m}\right)_{m \in \mathbb{N}}$ is A-R p-adic.

Proof. The proof is similar to the case of schemes. We may assume that the inverse system \mathbb{L}^{\bullet} satisfies $\mathbb{L}_{m+1} / p^{m} \cong \mathbb{L}_{m}$. We apply results in the theory of
l-adic systems to prove this lemma. In fact, we denote $R \Gamma\left(U_{\bar{k}}, \mathbb{L}_{m}\right)$ by K_{m}^{\bullet}. We claim that the natural maps

$$
\begin{equation*}
u_{n}: K_{n+1}^{\bullet} \otimes_{\mathbb{Z} / p^{n+1}}^{L} \mathbb{Z} / p^{n} \xrightarrow{\cong} K_{n}^{\bullet} \tag{:8}
\end{equation*}
$$

are isomorphisms in the derived category. Note that $H^{j}\left(K_{n}^{\bullet}\right)=H^{j}\left(U_{\bar{k}}, \mathbb{L}_{n}\right)$ is zero if $j \notin[0,2 \operatorname{dim}(X)]$. Represent each K_{n}^{\bullet} by a bounded above complex of flat \mathbb{Z} / p^{n}-modules with $K_{n}^{j}=0$ for $j>2 \operatorname{dim}(X)$. Moreover, the complex $\cdots \rightarrow$ $K_{n}^{-1} \rightarrow K_{n}^{0} \rightarrow 0$ is a resolution of $\operatorname{coker}\left(K_{n}^{-1} \rightarrow K_{n}^{0}\right)$ by flat \mathbb{Z} / p^{n}-modules. It follows that

$$
\operatorname{Tor}_{\mathbb{Z} / p^{n}}^{i}\left(\operatorname{coker}\left(K_{n}^{-1} \rightarrow K_{n}^{0}\right), \mathbb{Z} / p\right)=H^{-i}\left(K_{n}^{\bullet} \otimes_{\mathbb{Z} / p^{n}} \mathbb{Z} / p\right)=H^{-i}\left(K_{1}^{\bullet}\right)=0
$$

for $i>0$ where we use the fact that $K_{n}^{\bullet} \otimes_{\mathbb{Z} / p^{n}} \mathbb{Z} / p \cong K_{1}^{\bullet}$. Therefore, by the local flatness criterion [Mat86, Theorem 22.3], we conclude that $\operatorname{coker}\left(K_{n}^{-1} \rightarrow K_{n}^{0}\right)$ is a flat \mathbb{Z} / p^{n}-module. It follows that the complex K_{n}^{\bullet} is quasi-isomorphic to the bounded complex of flat \mathbb{Z} / p^{n}-modules

$$
0 \rightarrow \operatorname{coker}\left(K_{n}^{-1} \rightarrow K_{n}^{0}\right) \rightarrow K_{n}^{1} \rightarrow \cdots \rightarrow K_{n}^{2 \operatorname{dim}(X)} \rightarrow 0 .
$$

By [Fu11, Lemma 10.1.14], each complex K_{n}^{\bullet} is isomorphic in the derived category to a complex L_{n}^{\bullet} of free \mathbb{Z} / p^{n}-modules of finite ranks with $L_{n}^{j}=0$ for $j \notin[0,2 \operatorname{dim}(X)]$. The natural isomorphism u_{n} gives an isomorphism

$$
v_{n}: L_{n+1}^{\bullet} \otimes_{\mathbb{Z} / p^{n+1}}^{L} \mathbb{Z} / p^{n} \xlongequal{\cong} L_{n}^{\bullet}
$$

in the derived category. By [Fu11, Lemma 10.1.13], this isomorphism v_{n} is induced by a quasi-isomorphism $L_{n+1}^{\bullet} \otimes_{\mathbb{Z} / p^{n+1}}^{L} \mathbb{Z} / p^{n} \xrightarrow{\cong} L_{n}^{\bullet}$ of complexes. We apply [Fu11, Proposition 10.1.15] to the system $\left(L_{m}^{\bullet}\right)_{m \in \mathbb{Z}}$ and show that $H^{i}\left(L_{m}^{\bullet}\right)=H_{m}$ is A-R p-adic.

We give a proof of our claim as follows.
LEmma 7.17. The natural morphism u_{n} (see (:3)) is an isomorphism in the derived category.

Proof. Take an injective resolution of the \mathbb{Z} / p^{m}-modules

$$
\mathbb{L}_{m} \xrightarrow{q i s} I^{0} \rightarrow I^{1} \rightarrow \cdots .
$$

Note that $H^{j}\left(K_{m}^{\bullet}\right)=H^{j}\left(U_{\bar{k}}, \mathbb{L}_{m}\right)$ is zero if $j \notin[0,2 \operatorname{dim}(X)]$. The truncated complex $I^{\prime \bullet}$

$$
I^{0} \rightarrow \cdots \rightarrow \operatorname{Im}\left(I^{2 \operatorname{dim}(X)-1} \rightarrow I^{2 \operatorname{dim}(X)}\right) \rightarrow 0
$$

is an $R \Gamma\left(U_{\bar{k}},-\right)$-acyclic resolution of \mathbb{L}_{m}. In the following, we let $m=n+1$. Take a resolution A^{\bullet} of \mathbb{Z} / p^{n} by free \mathbb{Z} / p^{n+1}-modules

$$
\cdots \rightarrow A^{-1} \rightarrow A^{0} \rightarrow \mathbb{Z} / p^{n} \rightarrow 0 .
$$

We have that

$$
\begin{aligned}
\mathbb{Z} / p^{n} \otimes_{\mathbb{Z} / p^{n+1}}^{L} K_{n+1}^{\bullet} & \cong A^{\bullet} \otimes_{\mathbb{Z} / p^{n+1}} \Gamma\left(U_{\bar{k}}, I^{\bullet \bullet}\right) \\
& \cong \Gamma\left(U_{\bar{k}}, A^{\bullet} \otimes_{\mathbb{Z} / p^{n+1}} I^{\bullet \bullet}\right) \\
& \cong R \Gamma\left(U_{\bar{k}}, \mathbb{Z} / p^{n} \otimes_{\mathbb{Z} / p^{n+1}}^{L} I^{\bullet \bullet}\right) \\
& \cong R \Gamma\left(U_{\bar{k}}, \mathbb{L}_{n}\right)=K_{n}^{\bullet}
\end{aligned}
$$

where the second isomorphism is due to that A^{i} are free \mathbb{Z} / p^{n+1}-modules, the third isomorphism is due to that $A^{i} \otimes I^{\prime j}$ is $R \Gamma$-acyclic and the last isomorphism is due to our assumption $\mathbb{L}_{n+1} / p^{n} \cong \mathbb{L}_{n}$.

Proof of Theorem 7.14. This follows from the argument in [Sch13a, Theorem 8.4], for the sake of completeness let us repeat the argument below.

First we claim that

$$
H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{Z} / p^{m}\right) \otimes_{\mathbb{Z}_{p}} A_{\mathrm{inf}}^{a} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{A}_{\mathrm{inf}}^{a} / p^{m}\right)
$$

Indeed, when $m=1$ this follows from Remark 5.10 (applied to $\mathbb{L}=\mathbb{F}_{p}$) and the general case follows from induction. Notice that the almost setting here is with respect to [$\hat{\mathfrak{m}}$], the ideal generated by ($[a], a \in \hat{\mathfrak{m}}$) where $\hat{\mathfrak{m}}$ is the maximal ideal in $\hat{\bar{k}}^{\circ}$. Now the sheaves $\mathbb{A}_{\text {inf }}^{a} / p^{m}$ satisfy the hypotheses of the almost version of [Sch13a, Lemma 3.18]. Therefore we may pass to the inverse limit $\mathbb{A}_{\text {inf }}^{a}$ and get an almost isomorphism

$$
H^{i}\left(\left(X, X_{\bar{k}}\right), \hat{\mathbb{Z}}_{p}\right) \otimes_{\mathbb{Z}_{p}} A_{\mathrm{inf}}^{a} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{A}_{\mathrm{inf}}^{a}\right)
$$

Now we invert p and get almost isomorphisms

$$
H^{i}\left(\left(X, X_{\bar{k}}\right), \hat{\mathbb{Z}}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{inf}}^{a} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{inf}}^{a}\right) .
$$

Since [$\hat{\mathfrak{m}}$] becomes the unit ideal in $B_{\text {inf }} / \operatorname{ker}(\theta)$, multiplication by ξ^{l} (where ξ is any generator in $\operatorname{ker}(\theta)$) gives that

$$
H^{i}\left(\left(X, X_{\vec{k}}\right), \hat{\mathbb{Z}}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\text {inf }} /(\operatorname{ker}(\theta))^{l} \cong H^{i}\left(\left(X, X_{\vec{k}}\right), \mathbb{B}_{\mathrm{inf}} /(\operatorname{ker}(\theta))^{l}\right)
$$

Again the sheaves $\mathbb{B}_{\text {inf }} /(\operatorname{ker}(\theta))^{l}$ satisfy the conditions in [Sch13a, Lemma 3.18], hence we have that

$$
H^{i}\left(\left(X, X_{\bar{k}}\right), \hat{\mathbb{Z}}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}}^{+} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right),
$$

which is what we want by Remark 7.15.

Finally let us show Theorem 1.3, which we restate below.
Theorem 7.18. The Hodge-de Rham spectral sequence

$$
E_{1}^{j, i}=H^{i}\left(X, \Omega_{X}^{j}(\log D)\right) \Longrightarrow H^{i+j}\left(X, \Omega_{X}^{\bullet}(\log D)\right)
$$

degenerates, and there is $a \operatorname{Gal}(\bar{k} / k)$-equivariant isomorphism

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}} \cong H^{i}\left(X, \Omega_{X}^{\cdot}(\log D)\right) \otimes_{k} B_{\mathrm{dR}}
$$

preserving filtrations. In particular, there is also a $\operatorname{Gal}(\bar{k} / k)$-equivariant isomorphism

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} \hat{\bar{k}} \cong \bigoplus_{j} H^{m-j}\left(X, \Omega_{X}^{j}(\log D)\right) \otimes_{k} \hat{\bar{k}}(-j)
$$

Proof. By Theorem 7.14, we have

$$
H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}}^{+} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right)
$$

In particular, $H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right)$is a free B_{dR}^{+}-module of finite rank. This, together with Theorem 7.9, implies that

$$
\sum_{j} \operatorname{dim}_{k} H^{i-j}\left(X, \Omega_{X}^{j}(\log D)\right)=\operatorname{dim}_{B_{\mathrm{dR}}}\left(H^{i}\left(X, \Omega_{X}^{\bullet}(\log D)\right) \otimes_{k} B_{\mathrm{dR}}\right),
$$

hence the Hodge-de Rham spectral sequence degenerates. Also by Theorem 7.9, we get
$H_{\mathrm{et}}^{i}\left(U_{\bar{k}}, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} B_{\mathrm{dR}} \cong H^{i}\left(\left(X, X_{\bar{k}}\right), \mathbb{B}_{\mathrm{dR}}^{+}\right) \otimes_{B_{\mathrm{dR}}^{+}} B_{\mathrm{dR}} \cong H^{i}\left(X, \Omega_{X}^{\dot{*}}(\log D)\right) \otimes_{k} B_{\mathrm{dR}}$.

Acknowledgements

The first author wants to express his gratitude to his advisor Johan de Jong for his warm encouragement and all the discussions on this project. The first author also wants to thank David Hansen for lecturing on [Sch13a] at Columbia University, which inspired him to work on this project as an initiative to understand [Sch13a] better, as well as for keeping track of his progress and sharing the excitements. The second author is thankful to Gerd Faltings for his two lectures on p-adic Hodge theory at the Max Planck Institute which brings his attention to this project. We thank Bhargav Bhatt, Dingxin Zhang and Weizhe Zheng for helpful discussions. We thank Hansheng Diao, Kai-Wen Lan, Ruochuan Liu and Xinwen Zhu for communicating with us. We especially thank Xinwen Zhu heartily for many precious comments and advice on an early draft of this note. We also thank Pierre Colmez and Wiesława Nizioł for communications concerning the first version of this note. The second author is partially supported by NSFC No. 11688101.

Conflict of interest declaration

None.

References

[AGT16] A. Abbes, M. Gros and T. Tsuji, The p-adic Simpson Correspondence, Annals of Mathematics Studies, 193 (Princeton University Press, Princeton, NJ, 2016).
[Bei12] A. Beilinson, ' p-adic periods and derived de Rham cohomology', J. Amer. Math. Soc. 25(3) (2012), 715-738.
[Ber95] V. G. Berkovich, 'On the comparison theorem for étale cohomology of nonArchimedean analytic spaces', Israel J. Math. 92(1-3) (1995), 45-59.
[Bos14] S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes in Mathematics, 2105 (Springer, Cham, 2014).
[CN17] P. Colmez and W. Nizioł, ‘Syntomic complexes and p-adic nearby cycles’, Invent. Math. 208(1) (2017), 1-108.
[Dia17] H. Diao, ‘Foundations of logarithmic adic spaces', Preprint, 2017, arXiv:1709.05781.
[DLLZ18] H. Diao, K.-W. Lan, R. Liu and X. Zhu, 'Logarithmic Riemann-Hilbert correspondences for rigid varieties’, Preprint, 2018, arXiv:1803.05786.
[dJvdP96] J. de Jong and M. van der Put, 'étale cohomology of rigid analytic spaces', Doc. Math. 1(01) (1996), 1-56.
[Fal88] G. Faltings, 'p-adic Hodge theory', J. Amer. Math. Soc. 1(1) (1988), 255-299.
[Fu11] L. Fu, Etale Cohomology Theory, Nankai Tracts in Mathematics, 13 (World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2011).
[Han17] D. Hansen, 'Artin vanishing in rigid analytic geometry', http://www.math.columbia.ed u/\%7Ehansen/artin.pdf, August 2017.
[Hub96] R. Huber, étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg \& Sohn, Braunschweig, 1996).
[KS06] Ma. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 332 (Springer, Berlin, 2006).
[Kie67] R. Kiehl, 'Die de Rham Kohomologie algebraischer Mannigfaltigkeiten über einem bewerteten Körper’, Publ. Math. Inst. Hautes Études Sci. 33 (1967), 5-20.
[Lüt93] W. Lütkebohmert, 'Riemann's existence problem for a p-adic field', Invent. Math. 111(2) (1993), 309-330.
[Mat86] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8 (Cambridge University Press, Cambridge, 1986), Translated from the Japanese by M. Reid.
[Mit09] K. Mitsui, ‘Criterion for minimality of rigid analytic surfaces’, http://www.math.kyoto -u.ac.jp/preprint/2009/20mitsui.pdf, 2009.
[Ols09] M. C. Olsson, 'On faltings' method of almost étale extensions', in Algebraic Geometry-Seattle 2005, Part 2, Proceedings of Symposia Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 811-936.
[Sch12] P. Scholze, 'Perfectoid spaces', Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245-313.
[Sch13a] P. Scholze, 'p-adic Hodge theory for rigid-analytic varieties', Forum Math. Pi 1 (2013), e1, 77.
[Sch13b] P. Scholze, 'Perfectoid spaces: a survey', in Current Developments in Mathematics 2012 (International Press, Somerville, MA, 2013), 193-227.
[Sch16] P. Scholze, ' p-adic Hodge theory for rigid-analytic varieties-corrigendum [MR 3090230]’, Forum Math. Pi 4 (2016), e6, 4.
[Tat67] J. T. Tate, 'p-divisible groups', in Proc. Conf. Local Fields (Driebergen, 1966) (Springer, Berlin, 1967), 158-183.
[Tem18] M. Temkin, 'Functorial desingularization over Q: boundaries and the embedded case', Israel J. Math. (2018), doi:10.1007/s11856-018-1656-6.
[SGA72] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, 270, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

[^0]: (C) The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

