
SELF-CENTRED SETS 

H. KESTELMAN 

1, Introduction, A subset 5 of an abelian group G is said to have a centre 
at a if whenever x belongs to S so does 2a — x. This note is mainly concerned 
with self-centred sets, i.e. those 5 with the property that every element of 5 
is a centre of S. Such sets occur in the study of space groups: the set of in
version centres of a space group is always self-centred. Every subgroup of G 
is self-centred, so is every coset in G: this is the reason why the set of points of 
absolute convergence of a trigonometric series is self-centred or empty (1). 
A self-centred set of real numbers that is either discrete or consists of rational 
numbers must in fact be a coset (see §3); this does not hold for an arbitrary 
enumerable self-centred set of real numbers (§3.3). An enumerable discrete 
self-centred plane set is either a lattice or (in a suitable basis) it consists of all 
points having integral coordinates (m, n) with mn even (§3.2). 

We discuss linear and plane sets from first principles (§3). This is followed 
(§4) by a more general discussion (applicable to abelian groups) which throws 
light on the earlier more restricted approach. 

All groups to be considered are abelian, the group operation is denoted by 
+ , and the neutral element by 0; kS denotes the set of kx with x in 5, and 
S + T the set of s + t with 5 in 5 and t in T. When S C Rn, nii S and me S 
denote respectively the interior and exterior Lebesgue measures of S. 

It will be convenient to denote the set of centres of an arbitrary set S by 
3 (S) and the set of differences of S (x — y with x and y in S) by S) (5) ; X (S) 
denotes the translation group of 5, i.e. the set of a in G such that S + a = S> 
and @(S) the subgroup of G generated by S, i.e. the set of elements 

n\ x\ + n2 X2 + . . . + nqxq 

where xi, . . . , xq are in S and wi, . . . , nq are arbitrary integers. If 5 is a 
subgroup, we have 3 (S) D 2(5) = ®(S) = 5. It is plain that 5 and its comple
ment in G, cS, have the same translation group; also that every centre of S 
is also a centre of cS, of the closure of 5, and of the interior of S; equally 
obvious, $(S) is always self-centred or empty. If S and T are self-centred, so 
is S r\ Ty and if a G G, 5 + a is self-centred. 

I am grateful to Professor C. A. Rogers for some very helpful discussions 
and suggestions. I am also indebted to a referee who pointed out that there 
is a close connection between some of the results presented below and those 
which, in a greatly generalized form, are contained in T. S. Motzkin's memoir 
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on endovectors (Proc. Symp. Pure Math. (7) (Convexity), Amer. Math. 
Soc. 1963). 

2. Some examples. Before discussing the form of self-centred linear and 
plane sets, we list a few examples in vector spaces of self-centred sets that 
are not cosets. 

(a) The set of real numbers m + ny/2, where m and n are integers and mn 
is even, includes zero but is not a group since it includes 1 and \/2 but not 
1 + V2. 

(b) The set of number pairs (m, n) with m, n restricted as in (a) is self-
centred but not a coset. 

(c) In Rni let G be the lattice of all points with integral coordinates. The 
group 2G has index 2n in G, the points (ei, . . . , en) with er = 0 or 1 being a 
set of representatives of the cosets of 2G in G; any union of these cosets is 
self-centred (see §4). 

(d) Let G be the space of arbitrary sequences of real numbers and E any 
chosen set of natural numbers. Define X to be the subset of G consisting of all 
(xi, X2, . . .) with xr integral whenever r Ç E, and let 5 = 2X. Every point of 
X is a centre of 5; thus 5 is self-centred. 

(e) The set 5 of points (w, n3r) in i?2, where m, n, r are integers and mn is 
even, is self-centred. Those points with m and n even form a subgroup T of S, 
and S is the union of Xo cosets of T. 

(f ) Let if be a Hamel base for the real numbers over the rationals. Take 
jSi, /32 in H and let A be the set of all real numbers whose /3i and /32 components 
in H are zero; define S as the set of all numbers mfii + w/32 + x where x G A 
and m, n are integers with mn even. S is self-centred and not a coset (as in 
(a)). 5 is non-measurable: mi S = 0 (by Steinhaus' theorem) since 

for q = 1, 2, . . . , and meS > 0 since Ko translates of 5 cover i?i. In fact 
mtcS = 0 (see §4), and 5 is of second category. 

3. Self-centred linear and plane sets. 

3.1. Suppose that S is an infinite set of real numbers which is self-centred but 
not everywhere dense; then S is a linear lattice. 

Proof. Choose a and b ( = a + p) in S. Since S is self-centred, a ± 2p are 
in S and are centres of 5, and by induction a + np 6 5 for all integers n. 
Since S is not everywhere dense, this implies that 5 has no limit points and 
that there is a least positive p, say p0i such that a + p G S. Thus, for every 
integer n, S includes a + npo and a + (n + l)£o but no intermediate number. 

THEOREM 1. Let S be an infinite set of rational numbers which is self-centred 
and includes zero; then S is a group {under addition). 
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Proof. We prove that S is a group by defining an increasing sequence of 
groups whose union is S. Let 0, Xi, x2, . . . be the elements of S. As in 3.1, 
@(xi) C S, and we define Gi as @(xi). If Gi ^ S, let n\ be the least integer r 
for which xr £ Gi. Clearly i?i, the group generated by G\ and xnv is discrete 
and so G2, defined as Hi C\ 5, is self-centred and discrete and therefore a 
group by 3.1. G 2 contains G\ and includes Xi and x2. Now continue inductively. 
Having defined Gi, . . . , Gff as discrete groups with Gi C G2 C • • • C Gq and 
Xi, . . . , xq in Gq, we may, if Gq ^ 5, define ne as the least r for which xr £ Gç, 
iJç as the discrete group generated by Gq and xnq, and Gq+i as i7ç Pi 5. 

COROLLARY. A self-centred set S of rational numbers is a coset of some group ; 
for if a G S, the set S — a is self-centred and includes zero; hence it is a group. 

3.2. The next theorem shows that Example (b) of §2 is the prototype of 
discrete plane self-centred sets that are not lattices. It will be recalled that the 
inversion centres for the plane symmetry groups which include sixfold centres 
and inversion centres are of this type. 

THEOREM 2. Let S be a plane self-centred set that is discrete but not a lattice. 
Then S includes points U, V, W such that S consists of all points P given by 

UP = mUV + nUW where m and n are integers with mn even. 

Proof. If v £ 3)(5), then, since 5 is self-centred, it follows (see §4) that 
2v G S(«S), and so, 5 being discrete, the distances between points of 5 must 
have a positive least value, say ô. Choose U and V in 5 so that UV = 3. As 
in §3.1, the points of 5 on UV form the lattice determined by U and V. Simi
larly, and since 2 Î / F G £(<$), the distances of points of 5 (not on UV) from 
the line UV have a least positive value 8' ; let IF be a point of 5 distant ô' from 

UV. If V and W are taken so that UV = 2UVand UW = 2UW, it follows 

that UV and UW belong to X(S) and 5 contains the lattice determined by 
U, V', W. From the definitions of ô and ô', it follows that the points of 5 in 
the closed parallelogram with sides UV and UW are the vertices and mid
points of the sides of this parallelogram and possibly also the centre of the 
parallelogram. Since S is not a lattice, the second possibility is excluded and 
this proves the result required. 

3.3. It is clear that a plane self-centred set that has limit points (e.g. example 
(e),§2) could not be described by a formula like that in Theorem 2. If S is 
plane and self-centred and consists of points (x, y) with x and y both rational, 
and 5 includes (0, 0) but is not a lattice, we can partially imitate the argument 
used in Theorem 1. First enumerate the points of S as 0, Zi, z2, . . . , let 
Gi = ®(zi), and let zni be the first in the sequence which is not in G\. The 
extension of Gi by zni is a discrete group Hi; and G2, defined as H\ C\ 5, is 
self-centred and discrete and includes %\ and z2. But G2 need not be a group: 
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it could consist of Ui + my2 + nwi where m and n are integers with mn even 
(Theorem 2). We could then continue and obtain a sequence Gi C G 2 C • • • 
where Gq includes Z\, . . . , zq, and if Gff is not a group, it consists of all points 
uq + mvq + nzfç where m and w are integers and mn is even. If S, which is the 
union of the Gg, is not a group, this formula will apply for arbitrarily large q. 

The same considerations apply to a self-centred set of real numbers con
sisting of numbers of the form a + b% where J is a fixed irrational and a and b 
are rational; we have only to map the point a + b% onto the point (a, b). 

4. Centres of subsets of an abelian group. For the discussion of non-
enumerable self-centred sets in Rn and for subsets of general abelian groups, 
it is basic that a set that has more than one centre must have translational 
symmetry: 

LEMMA 1. For any subset S of an abelian group, 23){3(5)} C X(S). 

Proof. If a and b are centres of S, and x G S, then 

2(b - a) + x = 2b - (2a - x) G S. 

Thus 2(b — a) + S CZ S, and if we interchange a and b we get 

2(b - a) + S = S. 

THEOREM 3. Suppose that S is a self-centred subset of an abelian group G. 
Then S is a union of cosets of 2®{3)(S)) in G. 

Proof. Since 5 C 3K«S), and X(S) is a group, Lemma 1 implies that 
2@{©(5)} C £(S) , and so a Ç 5 implies a + 2®{£)(S)} C 5. 

COROLLARY. If G is a normed vector space, and S in Theorem 3 has interior 
points, then S = G since 3) (S) contains a sphere about the origin and so 
©{£)(£)} = G\ see also Theorem 5. 

One can readily construct self-centred sets in a vector space by using 

THEOREM 4. If G is a subgroup of a vector space over the real numbers and S 
is the union of any aggregate of cosets of G in \G, then S is self-centred. 

Proof. If x and y belong to S, then 2x and 2y belong to G and so does 
2x — 2y; hence 2x — y and y are in the same coset of G. Since 5 contains the 
whole of the coset of G including y, this means that 2x — y £ S and so 5 is 
self-centred. 

THEOREM 5. If S in Rn is self-centred and mtS > 0, then S = Rn. 

Proof. By a theorem of Steinhaus, 3)(5) contains a sphere about the origin. 
Thus @{S)(5)} = Rn and so S = Rn by Theorem 3. 

THEOREM 6. If S C Rn and X(S) is everywhere dense (e.g. in Ri if S has 
arbitrarily close centres, in particular if 3? (5) is non-enumerable), then there are 
just two possibilities: 
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either (a) S is non-measurable with mtS = mtcS = 0, 
or else (b) S is measurable and one of S and cS has measure zero. 

Proof. If mtS > 0, it follows by elementary density arguments that almost 
all points of Rn have the form s + t with 5 in S and t in X(S). So, if S is measur
able, mS > 0 implies mcS = 0. But if 5 is non-measurable, mt S must be zero. 
The same applies to cS, which has the same translation group as S. 

We can illustrate (a) by taking a Hamel base for the real numbers over the 
rationals and assuming that it includes 1. If / is the set of elements of the 
base other than 1, and S is the group generated by the rational multiples of 
elements of / , then Ri is covered by Ko translates of 5. This implies that 
me S > 0, and since rS = S for all non-zero rational numbers r, S and therefore 
X(S) are everywhere dense in Ri. Any non-enumerable group S of real numbers 
with mS = 0 is plainly everywhere dense and illustrates (b). 

4.2. The special property of self-centred sets of rational numbers described 
in Theorem 1 is a consequence of Theorem 3 and the following 

THEOREM 7. If G is a group of rational numbers {under addition), then either 
2G has index 2 in G or else 2G = G (in which case x Ç G implies x/2n £ G for 
all integers n). 

Proof. Suppose 2G ^ G and let a be a number in G which is not in 2G. 
Write the elements of G as a — Xi, X2y Xsj . . . j Gni the group generated by 
xi, X2, . . . , xn, is discrete and we write it as ®(yn). 2G consists of the even 
multiples of yn and so a must be an odd multiple of yn and 

Gn = 2GnKJ (2Gn + a). 

Since G is the union of the Gn, and 2G the union of the 2Gn, this proves that 
G = 2GKJ (2G + a). 

By contrast, we note that if G is the group generated by 1 and \ / 2 , then 
2G has index 4 in G} a set of representatives of G/2G being 0,1, v % 1 + A/2 . 
In general, 

THEOREM 8. If G is an abelian group and pG ^ G for some prime p, then the 
index of pG in G is either infinite or else an integral multiple of p. 

Proof. Suppose pG has finite index k in G. Let a be an element of G not in 
pG. Then ka 6 pG\ if k is not a multiple of p, and its residue (mod p) is s, 
then clearly sa G pG. Since p is prime, there exist integers /x and v such that 
1 = \xs + vp and so a — usa + vpa Ç pGy which is a contradiction. 

Example (e) in §2 shows that the index can be Ko. 

The following is an analogue of Theorem 7. 

THEOREM 9. Suppose G is an abelian group which is the union of a sequence 
of cyclic groups G\ C Gi C • . • , and p is a prime such that pG ^ G. Then pG 
has index p in G. 

https://doi.org/10.4153/CJM-1966-098-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-098-3


SELF-CENTRED SETS 979 

Proof, If G is finite, it follows from Theorem 8 that its order is a multiple of 
p, say ph. G is then cyclic and generated by some element g of order ph, and 
prg = psg if and only if p(r — s) is a multiple of ph, i.e. r — s is a multiple 
of h. Hence pG is composed of pg, 2pg, . . . , hpg, i.e. pG has order A and G/pG 
has £ members. 

Now suppose G is infinite. We know from Theorem 8 that the index of pG 
is at least p. Suppose if possible that the index exceeds p, and that xi, # 2 , . . . , xp+i 
are in different cosets of pG. Take n so large that xi, #2, . . . , #P+i all belong to 
Gw; then it follows that the index of pGn in Gn exceeds p. Hence, from the first 
case considered, Gn cannot be finite. Suppose Gn = ®{g)\ then rg and s g are 
in the same coset of pG if and only if r — s is a multiple of p ; this means that 
pGn has as many cosets in Gn as there are residue classes (mod p): in other 
words, pGn has index p in Gn, which is a contradiction. 

5. The relation between ®(S) and ®{£)(£)}. It is of interest to examine 
the relation between ®(S) and its subgroup ®{J)(5)} for arbitrary sets S. 
Since 5 — b C 35 (5) for every 6 in 5, we have 

(1) ®(S - b) C ®{©(5)} = ®{©(S - 6)} C ®(5 - b), 

©{£)(£)} = ® ( 5 - b). 
Also 

(2) ®(S) = ®(S - J) + ®(i) = ®{5)(5)} + ®(i) . 

It follows that ®(5) = ®{SD(5)} if 5 includes an element of @{£)(S)}; in 
particular, if 0 G S, or if S includes an element x and also 2x. 

However, if 5 and ®{35(S)} a r e disjoint, we see from (2) that @(5) is 
generated by ®{£)(S)} and any one element of 5 and that ®(5)/®{J)(5)} is 
cyclic. In particular, if G is a normed space and ®(S) is of second Baire cate
gory, then so is @{£)(5)} since a countable union of translates of the latter 
compose ®(5). Finally, ®(5) = ®{2)(5)} whenever ®(5) is a subfield of Rx; 
this follows from (1) and 

THEOREM 10. / / 5 C Ri and ®(S) is a field, then ®(S + a) = ®(S) for all 
a in ®(S). 

Proof. Since ®(S + a) = a®(a~1S + 1) if a 9^ 0, it is enough to prove that 
®(S + 1) = ®(5). If x £ ®(5), then clearly 

(3) x = y0 + n0 

for some yQ in ®(5 + 1) and some integer w0. By taking x = | it follows that 
® ( 5 + 1) includes non-zero integers; these (with zero) form a group, say 
®(k). Hence the integer n0 in (3) can be restricted so that 0 < n0 < k, and 
so ®(S + 1) has finite index in ®(5), say j . This means that for every x in 
®(S),jx G ®(5 + 1) and hence ®(5) C ®(5 + 1) C ®(5). 

It is clear that Theorem 10 has an analogue for abelian groups in general. 
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THEOREM 11. Suppose that S is a subset of an abelian group and that &(S) 
has no proper subgroup of finite index. Let a be any element of ®{S) and r an 
integer, r > 2. Then ®{S + ra) = ®(S). 

Proof. As in the proof of Theorem 10, x 6 ®(S) implies that x = y0 + nQra 
for some y0 in ®(S + ra) and some integer n0. By taking x = a, we get 
y0 = a — no ra, and since r > 2, this means that ®(S + ra) includes non-zero 
integral multiples of a and consequently a group ®(ka) where k is some positive 
integer; thus every x in ® (5) can be written as y0 + ra0 a with 0 < m0 < k; 
this implies that &(S + m) has finite index in @(5) and is therefore identical 
wi th® (S). 

REFERENCE 

1. J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. 
France, 80 (1952), 253-317. 

University College, London 

https://doi.org/10.4153/CJM-1966-098-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-098-3

