# A RESULT ON DERIVATIONS WITH ALGEBRAIC VALUES 

BY

ONOFRIO M. DI VINCENZO


#### Abstract

Let $R$ be a prime algebra over a field $F$ and let $d$ be a non-zero derivation in $R$ such that for every $x \in R, d(x)$ is algebraic over $F$ of bounded degree. Then $R$ is a primitive ring with a minimal right ideal $e R$, where $e^{2}=e$ and $e R e$ is a finite dimensional central division algebra.


Let $R$ be a prime ring with center $Z$ and let $d$ be a non-zero derivation of $R$. In [3] Herstein proved that if for every $x \in R, d(x)^{n} \in Z$, where $n \geqslant 1$ is a fixed integer, then either $R$ is commutative or $R$ is an order in a 4 -dimensional simple algebra. In this note we will examine a more general situation in the setting of algebras over a field $F$. If $R$ is such an algebra, and $d \neq 0$ a derivation in $R$, we suppose that for every $x \in R d(x)$ is algebraic over $F$ of bounded degree, i.e., there exists a nonconstant polynomial $p_{x}(t) \in F[t]$ depending on $x$ such that $p_{x}(d(x))=0$ and deg. $p_{x}(t) \leqslant n, n \geqslant 1 \mathrm{a}$ fixed integer.

We remark that in this case one cannot expect the same conclusion of Herstein's theorem to hold as the following example shows:

Example. Let $D$ be a finite dimensional division algebra over $F$, say $\operatorname{dim} .{ }_{F} D=n$ and let $V$ be a vector space over $D$ with ${\operatorname{dim}{ }_{\cdot} D} V \geqslant \aleph_{0}$. If $R$ is a dense ring of linear transformations on $V$ over $D$ containing a, a non-zero transformation of finite rank $k$, then $R$ is a primitive ring with minimal right ideal. Now, if $d$ is the inner derivation induced by a then for all $x \in R, \operatorname{rank} d(x) \leqslant 2 k$ and so $d(x)$ is algebraic over $F$ of degree $\leqslant 4 k^{2} n$.

On the other hand one cannot even expect in this case $d$ to be an inner derivation. To see this take $F$ to be a field with a non-zero derivation $d$ and let $R=F_{m}$ be the ring of $m \times m$ matrices over $F$. Now $d$ induces a derivation $d^{\prime}$ in $R$ by setting $d^{\prime}\left(\left(a_{i j}\right)\right)=$ $\left(d\left(a_{i j}\right)\right)$. Clearly $d^{\prime}$ is not inner.
In this note we shall prove the following result: Let $R$ be a prime algebra over a field $F$ and let $d$ be a non-zero derivation in $R$ such that for every $x \in R, d(x)$ is algebraic over $F$ of bounded degree. Then $R$ is a primitive ring with minimal right ideal $e R$, where $e^{2}=e$ and $e R e$ is a finite dimensional central division algebra.

[^0]Notice that in this result $d$ is assumed to be any non-zero derivation not necessarily $F$-linear.

We shall make frequent use of the following two results.
Remark 1. If $a \in R$ is algebraic over $F$ of degree $n$, then $a$ is invertible in $R$ or $a$ is a nilpotent element of index $\leqslant n$ or there exists a polynomial $q(t) \in F[t]$ such that $q(a)$ is a non trivial idempotent in $R$.

Remark 2. Let $a$ be algebraic over $F$ of degree $n$, then for some $0 \neq p_{a}(t) \in F[t]$ of degree $n, 0=p_{a}(a)=p_{a}(a) y$ for all $y \in R$. Writing this explicitly we get

$$
0=a^{n} y+\alpha_{n-1} a^{n-1} y+\ldots+\alpha_{1} a y+\alpha_{0} y \quad \text { where } \alpha_{i} \in F .
$$

Thus $a^{n} y, \ldots, a y, y$ are linearly dependent over $F$, so that $P_{n}(a, y)=S_{n+1}\left(a^{n} y\right.$, $\left.a^{n-1} y, \ldots, a y, y\right)=0$ where $S_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)$ is the standard polynomial in $n+1$ variables. The same argument shows that if every element of $R$ is algebraic over $F$ of bounded degree $n$ then $P_{n}\left(x_{1}, x_{2}\right)$ is a proper polynomial identity for $R$.

Throughout this note $R$ will always be a prime algebra over a field $F, Z$ the center of $R$; $d$ will be a non-zero derivation of $R$ such that, for every $x \in R, d(x)$ is algebraic over $F$ of bounded degree $n$.

We start with
Lemma 1. If $R$ has no nontrivial idempotents then $R$ is a division ring.
Proof. By remark 1 for $x \in R, d(x)$ is either invertible or nilpotent of bounded index. Then by theorem 1.2 of [2] $R=D$, a division ring, or $R=D_{2}$, the $2 \times 2$ matrices over a division ring. Since $D_{2}$ has nontrivial idempotents $R$ must be a division ring.

Lemma 2. If $R$ is commutative then $R$ is a field whose elements are algebraic over $F$ of bounded degree.

Proof. As $R$ is commutative, $R$ is a domain. Then $R$ has no idempotents elements $\neq 0,1$ and by lemma $1 R$ is a field. Now let $x$ be a transcendental element such that $d(x) \neq 0$; we have

$$
0=d(1)=d\left(x x^{-1}\right)=d(x) x^{-1}+x d\left(x^{-1}\right) ; \quad \text { thus } x^{2}=-d(x) d\left(x^{-1}\right)^{-1}
$$

is algebraic over $F$.
Therefore $d(x)=0$ for all transcendental elements of $R$; since $d \neq 0$, there exists $y \in R$ such that $d(y) \neq 0$ and $y$ is algebraic. Let $m$ be its degree; since, for all $x \in R$, $d(x y)=d(x) y+x d(y)$ is algebraic of degree $n$ then $x=(d(x y)-d(x) y) d(y)^{-1}$ is algebraic over $F$ of degree $\leqslant n^{2}(1+m)$.

We are now in a position to prove the main result in the case of a division ring. In the next theorem we will use the techniques given in [3].

Theorem 1. If $R$ is a division ring then $R$ is a finite dimensional over its center $Z$ and all elements of $Z$ are algebraic over $F$ of bounded degree.

Proof. We split the proof into two different cases according as $d(Z) \neq 0$ or $d(Z)=0$.

CASE 1. Since $0 \neq d(Z) \subset Z, Z$ is an infinite field and by lemma 2 all of its elements are algebraic over $F$ of bounded degree. If char. $Z=0$ and $d(a) \neq 0$ for some a in $Z$, then $(d(a+m)) /(a+m)=(d(a)) /(a+m)$ takes on an infinite set of distinct values in $Z$, as $m$ runs over the integers.

If char. $Z=p \neq 0$ then, for $a \in Z d\left(a^{p}\right)=\operatorname{pad}\left(a^{p-1}\right)=0$, so $a^{p} \in Z_{0}$, where $Z_{0}=\{b \in Z: d(b)=0\}$. If $a \notin Z_{0}$ then a is purely inseparable over $Z_{0}$ and so $Z_{0}$ is infinite. Hence $(d(a+b)) /(a+b)=(d(a)) /(a+b)$ takes on an infinite set of distinct values in $Z$ as $b$ runs over $Z_{0}$.

So we have that $(d(c)) / c$ takes on an infinite set of distinct values as $c$ runs over $Z$.
If $x \in R, 0 \neq a \in Z$ then $d(a x)=d(a) x+a d(x)$ is algebraic over $F$ of degree $n$; since $a^{-1} \in Z$ is algebraic of bounded degree we have that, for all $x \in R, d(x)+b x$ is algebraic over $F$ of bounded degree, and $b=(d(a)) / a$ takes an infinite set of distinct values in $Z$.

By remark 2, for all $x, y \in R, P_{m}(\mathrm{~d}(x)+b x, y)=0$ where $m$ is an integer independent of $x, y$ and $b$. As $b \in Z$ we may arrange $P_{m}(d(x)+b x, y)$ with respect to decreasing powers of $b$. Thus we obtain a polynomial in $b$, which is zero for infinitely many distinct values of $b$. By a Van der Monde determinant argument we have that all of its coefficients are zero. In particular $P_{m}(x, y)$ which is the coefficient of the term of highest degree is zero.

Thus $P_{m}\left(\mathrm{x}_{1}, x_{2}\right)$ is a proper polynomial identity for $R$, and $R$ is finite dimensional over $Z$.

CASE 2. Suppose first that $d^{2}=0$; then, for $x, y \in R, d(x) d(y)=d(x d(y))-x d^{2}(y)$ $=d(x d(y)) \in d(R)$; hence $d(R)$ is a subring of $R$ and by hypothesis all of its elements are algebraic over $F$ of bounded degree. Thus $d(R)$ is a division ring and by remark $2 d(R)$ satisfies a proper polynomial identity; so $d(R)$ is finite dimensional over its center $K$.

If $r \in R$ and $d(r) \neq 0$ then $d\left(r d(r)^{-1}\right)=1+r d\left(d(r)^{-1}\right)=1-r d(r)^{-1} d^{2}(r) d(r)^{-1}$ $=1$; this says that there exists $u \in R$ such that $d(u)=1$. Hence if $a \in Z, a=a 1=$ $a d(u)=d(a u)-d(a) u=d(a u)$ is in $Z \cap d(R) \subset K$, and so $Z$ is contained in $K$.

On the other hand if $a \in K$ and $a$ is not in $Z$ then by the result of [4] we have that char. $R=2, a^{2} \in Z$ and $d(x)=\lambda_{a}(a x-x a)$ for some $\lambda_{a} \neq 0$ in $Z$.

If $b \neq a$ is in $K-Z$ we also have $d(x)=\lambda_{b}(b x-x b)$ for some $\lambda_{b} \neq 0$ in $Z$. Thus for all $x \in R$ we obtain $\lambda_{a}(a x-x a)=d(x)=\lambda_{b}(b x-x b)$ and so $\left(\lambda_{a} a+\lambda_{b} b\right) x=$ $x\left(\lambda_{a} a+\lambda_{b} b\right)$; that is $\lambda_{a} a+\lambda_{b} b \in Z$.

This implies that $b$ is in $Z(a)$, hence $K=Z(a)$ where $a^{2} \in Z$. We have proved that $d(R)$ is a vector space finite dimensional over $Z$ and by a result of [1] $R$ is finite dimensional over $Z$. This fact can be also proved by the following argument:

If $d(c)=0$, then if $d(r) \neq 0, d\left(\operatorname{crd}(r)^{-1}\right)=\ldots=c$, so $c \in d(R)$. If $n=\operatorname{dim} ._{z} d(R)$, then given $x_{1}, \ldots, x_{n+1} \in R$, there exist

$$
z_{1}, \ldots, z_{n+1} \in Z \quad \text { with } 0=\sum_{i} z_{i} d\left(x_{i}\right)=d\left(\sum_{i} z_{i} x_{i}\right) .
$$

Thus the $Z$ vector space $R / d(R)$ has dimension $\leqslant n$, which implies $R$ is finite dimensional over $Z$.

Now suppose $d^{2} \neq 0$ and let $r \in R$ be such that $d^{2}(r) \neq 0$.
If $\bar{Z}$ is the algebraic closure of $Z$ then $d$ can be extended to a $\bar{Z}$-linear derivation $d$ on $R^{\prime}=R \otimes_{Z} \bar{Z}$. Such derivation does not satisfy the hypothesis of the theorem, however $R^{\prime}$ satisfies again the relation

$$
\sum_{\sigma \in S_{n}} \alpha_{\sigma} d\left(x_{\sigma(1)}\right) \ldots d\left(x_{\sigma(n)}\right)=0
$$

which is obtained in $R$ by linearizing the identity $P_{n}(d(x), d(y))=0$.
$R^{\prime}$ is a simple ring with 1 and if $\alpha \in \bar{Z}$ is a root of a polynomial of $F[t]$ satisfied by $d(r)$ then $u=d(r)-\alpha \neq 0$ is a zero divisor in $R^{\prime}$. Let $L=\left\{x \in R^{\prime}: x u=0\right\}$; since $u$ is a zero divisor $L \neq 0$, since $d(u)=d^{2}(r) \neq 0$ is invertible $L d(u) \neq 0$.

Let $x_{1}, \ldots, x_{n}$ be in $L$; thus $x_{i} u=0$ and so $0=d\left(x_{i} u\right)=d\left(x_{i}\right) u+x_{i} d(u)$. Now

$$
\sum_{\sigma} \alpha_{\sigma} d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n)}\right)=0
$$

therefore

$$
\sum_{\sigma} \alpha_{\sigma} d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n)}\right) u=0 .
$$

But

$$
\begin{aligned}
& d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n)}\right) u=d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n-1)}\right)\left(d(u) x_{\sigma(n)}+u d\left(x_{\sigma(n)}\right)\right) u \\
= & \left.d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n-1)}\right) u d\left(x_{\sigma(n)}\right)\right) u=\ldots=u d\left(x_{\sigma(1)}\right) u d\left(x_{\sigma(2)}\right) u \ldots u d\left(x_{\sigma(n)}\right) u .
\end{aligned}
$$

Then we have

$$
\text { (*) } 0=\sum_{\sigma} \alpha_{\sigma} d\left(u x_{\sigma(1)}\right) \ldots d\left(u x_{\sigma(n)}\right) u=\sum_{\sigma} \alpha_{\sigma} u d\left(x_{\sigma(1)}\right) u \ldots u d\left(x_{\sigma(n)}\right) u .
$$

But $d\left(x_{\sigma(i)}\right) u=-x_{\sigma(i)} d(u)$ since $x_{\sigma(i)} u=0$. So (*) implies that:

$$
u \sum_{\sigma} \alpha_{\sigma} x_{\sigma(1)} d(u) x_{\sigma(2)} d(u) \ldots x_{\sigma(n)} d(u)=0 \quad \text { for } x_{1}, \ldots, x_{n} \in L .
$$

In conclusion, for $y_{1}, \ldots, y_{n} \in L d(u)$ we have

$$
0=u\left(\sum_{\sigma} \alpha_{\sigma} y_{\sigma(1)} y_{\sigma(2)} \ldots y_{\sigma(n)}\right)
$$

By lemma 1 of [3] the left ideal $L d(u) \neq 0$ of $R^{\prime}$ satisfies a polynomial identity over $Z$. By a result of Martindale [6, Th. 1.3.2], $R^{\prime}$ has a minimal left ideal $R^{\prime} e$. Since $R^{\prime}$ is simple with 1 and has a minimal left ideal we get that $R^{\prime}$ is Artinian and $R^{\prime} \approx \bar{Z}_{q}$ for some $q$.

Since $R^{\prime}=R \otimes_{Z} \bar{Z} \approx \bar{Z}_{q}$ is finite dimensional over $\bar{Z}, R$ is finite dimensional over $Z$.

Finally for $a \in Z$ and $x \in R$ with $d(x) \neq 0$ we have $d(a x)=\operatorname{ad}(x)$ and $d(x)^{-1}$ commutes with $d(a x)$; hence $a=d(a x) d(x)^{-1}$ is algebraic over $F$ of bounded degree.

Lemma 3. If $R$ has idempotent elements $\neq 0,1$, then $R$ has a one sided ideal which is algebraic over $F$ of bounded degree.

Proof. Let $a \in R$ and let $T(a)=\{y \in R: a y=0\}$ be the right annihilator of $a$ in $R$. If $x \in T(a)$, let $p_{x a}(t)=\sum_{0}^{n} \alpha_{i} t^{i} \in F[t]$ be such that $p_{x a}(d(x a))=0$; hence $\sum_{0}^{n} \alpha_{i} d(x a)^{i}=0$ and we have:

$$
0=\left(\sum_{0}^{n} \alpha_{i} d(x a)^{i}\right) x=\sum_{0}^{n} \alpha_{i} d(x a)^{i} x .
$$

But

$$
\left.d(x a)^{i} x=d(x a)^{i-1}(d(x) a+x d(a)) x=d(x a)^{i-1} x d(a) x=\ldots=x(d(a)) x\right)^{i}
$$

hence

$$
0=\sum_{0}^{n} \alpha_{i} d(x a)^{i} x=\sum_{0}^{n} \alpha_{i} x(d(a) x)^{i}=\sum_{0}^{n} \alpha_{i} d(a) x(d(a) x)^{i}=\sum_{0}^{n} \alpha_{i}(d(a) x)^{i+1} .
$$

Therefore all the elements of $d(a) T(a)$ are algebraic over $F$ of bounded degree. If $R$ has no algebraic right ideals of bounded degree then $d(a) T(a)=0$. Since for $x \in T(a) 0=d(a x)=d(a) x+a d(x)=a d(x)$ then $d(T(a)) \subset T(a)$.

An analogous argument shows that if $L(a)=\{y \in R: y a=0\}$ is the left annihilator of $a$ in $R$, then $d(L(a)) \subset L(a)$.

If $r \in R$ and $e$ is an idempotent then $e(r-e r)=0$. Hence $d(e)(r-e r)=0$, and so $(d(e)-d(e) e) R=0$. But $R$ is a prime ring forcing $d(e)=d(e) e$.

Similarly we obtain $d(e)=e d(e)$ and it follows that $d(e)=d\left(e^{2}\right)=d(e) e+$ $e d(e)=d(e)+d(e)$. Consequently $d(e)=0$ for every idempotent in $R$; this says that $d(E)=0$ where $E$ is the subring generated by all the idempotents. Since $E$ is invariant with respect to all the automorphisms of $R$, by the result of [5], either $R$ is the ring of $2 \times 2$ matrices over $G F(2)$ or $E$ contains a two-sided ideal $I \neq 0$ of $R$.

In the first case $R$ is a finite ring, so $R$ is algebraic over $F$ of bounded degree and we are done.

In the second case $d(I) \subset d(E)=0$ implying $d=0$, a contradiction.
We now prove the main result of this note.

Theorem 2. Let $R$ be a prime algebra over a field $F$ and let $d$ be a non-zero derivation in $R$ such that, for every $x \in R, d(x)$ is algebraic over $F$ of bounded degree. Then $R$ is an algebra with minimal right ideal eR and eRe is a division ring finite dimensional over its center. Moreover if $d(Z(R)) \neq 0$ then $R$ is a finite dimensional central simple algebra.

Proof. If $R$ has no idempotent elements $\neq 0$, 1 then by lemma 1 and theorem $1 R$ is a division ring finite dimensional over its center.

Hence, without loss of generality, we may assume that $R$ has nontrivial idempotents; by lemma $3 R$ contains a right ideal $\rho \neq 0$ which is algebraic over $F$ of bounded degree. If $\rho=R$, by remark $2 R$ satisfies a proper polynomial identity. By Posner's theorem ([6]) $Z(R)$, the center of $R$, is different from zero and $R$ is a order in $A=\left\{x z^{-1}\right.$ : $x \in R, z \in Z(R)\}$ which is also a P. I. algebra. Since $Z(R)$ is a domain and all of its elements are algebraic over the field $F$ we have that $Z(R)$ is a field; and so $R=A$ is a finite dimensional central simple algebra.

Suppose now $\rho \neq R$; by remark 1 if $\rho$ has not non-trivial idempotents then all of its elements are nilpotent of bounded index. By a theorem of Levitzki ([6]) then $R$ contains a nilpotent right ideal $\rho^{\prime} \neq 0$; but $R$ is a prime ring and so $\rho$ must have an idempotent $e_{0} \neq 0,1$.

Of course $S=e_{0} R e_{0} \subset \rho$ is a prime algebra whose elements are algebraic over $F$ of bounded degree, and the above argument shows that $S$ is a central simple algebra finite dimensional over its center.

Then $S$ has a minimal right ideal $e S, e^{2}=e \in S$ and $e S e$ is a division ring. Since $e_{0}$ is the unit element of $S, e S e=e e_{0} R e_{0} e=e R e$ is a division ring and so $e R$ is a minimal right ideal of $R$.

Therefore $R$ is a primitive algebra, $e R$ is a minimal right ideal and $e R e$ is a division ring finite dimensional over its center.

Moreover if $d(Z(R)) \neq 0$ then the restriction of $d$ to $Z(R)$ is a derivation $d \neq 0$ such that for every $z \in Z(R), d(z)$ is algebraic over $F$ of bounded degree.

By using the same argument of theorem 1 , (case 1), we obtain that $R$ satisfies a proper polynomial identity, so that $R$ is a finite dimensional central simple algebra.

## References

1. J. Bergen, Ph.D. dissertation, U. of Chicago (1981).
2. J. Bergen, Lie ideals with regular and nilpotent elements and a result on derivations, Rend. Circ. Mat. Palermo (2), 33 (1984), pp. 99-108.
3. I. N. Herstein, Derivations of prime rings having power central values, Algebraists' Homage, Contemporary Math. Vol. 13, AMS (1982), pp. 163-171.
4. I. N. Herstein, A note on derivations II, Can. Math. Bull., 22 (1979), pp. 509-511.
5. I. N. Herstein, A theorem on invariant subrings, J. Algebra, 83 (1983), pp. 26-32.
6. I. N. Herstein, Rings with involution, U. of Chicago Press (1976).

Istituto di Matematica
Università di Palermo
Via Archirafi 34
90123 Palermo, Italy


[^0]:    Received by the editors November 8, 1984, and, in revised form, July 19, 1985.
    AMS Subject Classification (1980): 16A72.
    (C) Canadian Mathematical Society 1985.

