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LOCALLY COMPACT HUGHES PLANES 

MARKUS STROPPEL 

ABSTRACT. Among the eight-dimensional stable planes, the compact connected 
generalized Hughes planes and the geometries induced on the outer points are char­
acterized by the property that these planes admit an effective action of the group SL3 C. 

1. Introduction. In [15], H. Salzmann describes the compact connected (general­
ized) Hughes planes (cf [2]), and characterizes these planes among the eight-dimensional 
compact projective planes: These are the only planes of this type that admit a semi-simple 
(Lie) group A of automorphisms with dim A > 16. This semi-simple group is isomor­
phic with the almost simple group SL3 C, except in the desarguesian case (i.e., the plane 
over Hamilton's quaternions H. This plane admits—in addition to SL3 C—the thirty-five-
dimensional simple group PSL3 HI, the twenty-one-dimensional simple groups PSU3 IH(O) 
and PSU3 IM(1), and the semi-simple group Aut(H) x SL2 H of dimension 18, cf. [17]). 

If P^ is a non-desarguesian compact connected Hughes plane then there is an invariant 
Baer subplane which is desarguesian (i.e., isomorphic with the projective plane over C). 
The points and lines of this subplane are called inner, while all other elements of P^ are 
termed outer. The geometry induced on the set of outer points forms an eight-dimensional 
stable plane M^ (in the sense of R. Lôwen [12]), on which SL3 C acts point-transitively 
with two line orbits (namely, inner and outer lines, respectively). The planes Pr~ and ML 
will be defined precisely in the following chapter. 

The present paper is devoted to the proof of the following result: Each eight-
dimensional stable plane M = (M, fW) that admits SL3 C as a group of automorphisms 
is isomorphic with P^ or M^ for some (p. This result contributes to a determination of 
the "most homogeneous" eight-dimensional stable planes, as begun in [17]. 

Of particular importance for our proof is the fact that, in contrast to the situation of 
the (finite) planes originally described by D. R. Hughes, the planes P^ and fVfl̂  admit 
the group SL3 C rather than the simple group PSL3 C: the set of fixed lines of the center 
Z = {el I e3 = 1} shall give us a frame for the reconstruction of the geometry. 

2. The planes. Let P = (P, (P) be a compact connected generalized Hughes plane. 
According to [2] there is a ternary operation T defined on some affine line K of P such 
that the operations x + y = T(\,x,y) and x o y = T(x,y,0) make (K,+,o) a nearfield. 
Note, however, that T is linear if, and only if, the plane P is desarguesian. Since T can be 
described by geometric operations, the nearfield (K, +, o) is a locally compact connected 
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LOCALLY COMPACT HUGHES PLANES 113 

nearfield. These have been classified by F. Kalscheuer ([8], cf. [22]); those that are not 
(skew) fields can be obtained as modifications of Hamilton's quaternions M: 

RESULT 2.1. Let <p: R> —» T be a continuous homomorphism, where Ry is the mul­
tiplicative group of positive real numbers, and T is the multiplicative group of complex 
numbers of norm 1. For x G W write x^ := \x\*. Then H^ = (IM,+, o) is a locally 
compact connected (left1) nearfield, where 

xoy . = [xjfiyx* i f x ^ 0 
y' 10 if JC = 0 * 

Except for the fields R and C, each locally compact connected left nearfield is isomorphic 
with one of these2. Moreover, the nearfields H^ and H^ are isomorphic if, and only if, 
if = ifj or (f — \j). 

REMARKS 2.2. a) Note that the constant mapping Lp = 1 gives H\ — M. 
b) The following useful formulae are verified easily (recall that y denotes a quaternion 

with j = -jj2 = - 1 and M = C +jC): 

s o y = sy for s, y G HI, ss — 1 

x o c — xc for each c G C 

jc = cj for each c G C 

xojoc = xcx^jx^ for each c G C 

flo(i + _y) = «ox + (20}; but, in general, (x + j) o a ^ l o a + j / o a 

c)CoA + C = C + /ioC = H for each heU\C(cf. [2: p. 678]). 
We shall now describe the compact connected Hughes planes. The set of points is 

/% = [H, o (x,y,z) | (x,y,z) G H\ \ {(0,0,0)}} 

on which a compact connected topology is induced by the canonical mapping 

H\ \ {(0,0,0)} - /%: (x,y,z) ^ Hy o (x, j ,z) . 

In fact, the resulting space is an eight-dimensional compact connected manifold. Via 
right multiplication, the group GL3 C of non-singular 3 x 3-matrices with entries in C 
acts on H\. This induces an action on P^, cf. Remarks 2.2. The kernel of this action is 
the one-parameter group {cl \ c G Cc*(/^)}, where Cc*(H^) denotes the centralizer of 
H y in the multiplicative group C*. In particular, we infer that A = SL3 C acts effectively 
(faithfully). 

The set ^ of lines consists of the sets 

{H^p o (x,y,z) | (xa + yb + zc) + (xd + ye + zf)os = 0} 

i.e.,ao(x + y) = a o JC + a o y. 
2 

of course, each right nearfield is anti-isomorphic with a left nearfield. 
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114 MARKUS STROPPEL 

where a, b, c, d, ej G C and s G HI such that the described set is non-empty and not equal 

to Pc. In this way, we obtain a projective plane Pr~ — (P^,(Pr~), see [2]. Endowing T-

with the topology induced from the Hausdorff metric derived from any metric on Pr that 

induces the topology of P.,, one obtains that P f is a compact connected projective plane 

([15]; applying [9], this result might also be derived by proving that the ternary operation 

ixs + t if s G C 
U , t V ' j \(x + k)os + k' i fs ^ C a n d f = k o s + k' with*,* ' GC 

is continuous). 

RESULT 2.3. According to [2: 1.1], each line may be described by an equation of the 

form3 

I) v — za — (x — zb) o m n) y — xa — z o s 
iii) x = z,o s iv) z = 0 

where m G Hr, \ C; a, beC and s G //r~. 

Both GL3 C and SL3 C act with two orbits on Pf and (P~, respectively: 

LEMMA 2.4. Under the action of A = SL3 C, the orbit decompositions of the point 

and line space are 

Pr- = pAÙqA, 2~ = 7AÙ/A 

where p — Rç o (/', 1,0),^/ = f/r? o (0,0, 1 ), J is the outer line defined by y = —x o /, and 

I is the inner line defined by z = 0. 

PROOF. We distinguish the cases as in Result 2.3. The line / is the only one of type 

iv), while J is of type i) with a = 0 = b and m = —j. It is easy to see that, via matrices 
f 0 1 0 Â ( 0 1 0 A 

of the form \ ba 1 , 1 « 0 ç SL3 C, the lines of type i) and ii) can be moved to lines 
V 1 0 0 J v ° ° - ' J 

of type iii). If s G C then these lines can obviously be moved to /. \f s = a +jb <£ C (i.e., 

if b ^ 0) then equation iii) is equivalent to 

0 = z o s — x — zzf(a +jb)zf — x = za — x + (z °j)b. 

1 1 ( a {) l \ 

This line is also described by 0 = z,ab — xb + z o / . Now -/> 0 0 G A moves this 
V ° -h ' ° J 

line to 7, and we have shown that îP~ = JAG I A. 
The inner elements form a Baer subplane. For each point w there is therefore an inner 

line Iè G /A such that w G 18. Consequently, the point u><5_1 is of the form w — Hç o 
(x, v, 0). If y = 0, we may choose x G C and obtain that vv is an inner point. Since A 

acts in the usual, transitive way on the set of inner points, we obtain that in this case 

H' = Hr o (1,0,0) G qA. If w is not an inner point, we may assume that v = 1 and 

f h ' °°\ x — a +jb with o, b G C, b / 0. Now vv i> '« 1 0 = H o (/, 1,0) = /;, and the assertion 
V 0 o / ? ; 

is proved. • 

' Since we prefer vectors to be rows, with matrices acting from the right, we have to use left instead of right 

nearhelds, and each of the formulae in |2j is reversed. 
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LEMMA 2.5. Assume that A = SL3 C acts on P.̂  in the way described above. Then 
the stabilizers ofq,p, /, /, respectively, are 

Aq = O : = 
A v{ 

1 
det/l 

A„ = A, 
Arr^ 

v 

A, = 0 ' 

A GGL2C,vG<C 

rGR>,A G SU2C,vGC2} < Ol 

A G GL2 C, v G C 
det/4 

Ay = A\ Arr^ v{ 

r G UP, A G SU2 C, v G C2 < O 

PROOF, i) We leave the computation of Â  and A/ to the reader, since this is well 
known. 

ii) lfèeAp then (/', 1,0)<5 = (h o 7, A, 0) for some /z G IH*. Writing è 

W 
with 

D G GL2 C, v G C2 and x,y, z G C we obtain that yjt + >' = 0. Since y and 1 form a basis 
of 1H over C, we conclude that x = y — 0 and 6 G Ol. It remains to show that D is of the 
form Arr^ with A G SU2 C and r > 0. 

iii) We may writeD= (a
c
h

d)rr^ with r > 0 and bb + dd = 1. Then 

(/, 1 )D = (/'« + c J& + rf)rr G # f o (/, 1 ) 

if, and only if, 

which is equivalent to 

(ja + c)rr^ = (jb + d)rrp oj 

(ja + c)rp = (Jb + d)r^rrjr^. 

The right hand side equals (jb+d)jn', and using Remarks 2.2 we obtain that c = 7/7/ = — /? 

and J = -jaj = â. Thus ( clh\ ) G SU2 C, and Ap = A^. 

iv) Similar calculations yield that Ay = A1,. • 

3. Some lemmas on actions of SL3 C. Before we turn to the study of actions of 
SL3 C on eight-dimensional stable planes, we collect some general information. 

LEMMA 3.1. The centralizer of PSOn C in PSL„ C is trivial. 

PROOF. For each non-isotropic vector v G C", there is a subgroup E of SO,7 C such 
that Cv is exactly the subspace of fixed elements of E. Therefore the centralizer of PSO„ C 
acts trivially on the set of one-dimensional non-isotropic subspaces of C'7. This set con­
tains a frame for the n — 1 -dimensional projective space over C, and the assertion follows. 
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LEMMA 3.2. Assume that A = SL3 C acts almost4 effectively on a connected locally 
compact space X of dimension d < 4. Then X is homeomorphic with the complex projec­
tive plane, and the given action is equivalent to the usual one or its dual. In particular, 
the space X is compact, the group A acts transitively with kernel Z = Z(A), and each 
stabilizer is a conjugate ofQ> or Ol, respectively. 

PROOF, i) According to [13], each orbit xE under the maximal compact subgroup 
E = SU3 C of A is either trivial or has full dimension. In the second case xE is open and 
compact in X, and xE = X since X is connected. We infer that E (and, a fortiori, A) acts 
transitively on X, and X is compact. According to [13], the only possibility is that X is 
homeomorphic with P2C, and the action of E is equivalent to the usual one, i.e., each 

A 
det/V A GU2C stabilizer EA is a conjugate of 0 = ( / 

ii) It remains to determine the action of A, i.e., to compare the stabilizer Av with O. 
In its usual action, the group A is 2-transitive, hence primitive on P2C Therefore O is 
a maximal subgroup of A. Since O is connected, it suffices to show that the connected 
component F of Ax is a conjugate of O. From the assumption that dim X = 4 we infer 
that dim T = 12 (= dimO). 

iii) If r acts irreducibly on C3 (the vector space underlying the complex projective 
plane), we obtain a decomposition F = ^FH, where *F is the commutator subgroup and 
E is the identity component of the center of V (see [3: §6, number 4, Proposition 5]). 
According to Schur's lemma, the centralizer of T in GL3 C is C*. We infer that E < 
Z(GLi C) Pi SL3 C. Connectedness implies that S = 1, and F is semi-simple. 

iv) There is no almost simple group of dimension 12. Since F is a linear semi-simple 
group, each almost simple factor of F contains a torus subgroup (i.e., a subgroup that is 
isomorphic with T = SO2 R). Since A has rank 2, there are exactly two almost simple 
factors of F. Each maximal compact subgroup of F is a conjugate of 0 (cf. i)). We infer 
that one of the almost simple factors of F has a one-dimensional compact subgroup. This 
implies that the factors have dimension 3 and 9, respectively. This is impossible since 
there are no almost simple groups of dimension 9. 

v) There remains the case where there exists a non trivial T-invariant subspace U of 
C3. Then dimc U = 1 or 2, and T is a conjugate of a subgroup of O or Ol, respectively. 
The assertion follows from the fact that dim O = dim F. m 

LEMMA 3.3. Let 

A e GL2 C and 

° = " j ? v G C 

Then Ol = Y Q, and an involution (3 G O1 belongs to the conjugacy class aQ if and only 
if CA(a) < Ol. 

i.e., the kernel is totally disconnected (in fact, finite). 
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PROOF. In A, the involutions form a single conjugacy class. Each involution (5 G À 

induces a reflection on P2C, and its centralizer CA(/3) fixes center and axis, but no other 

point nor line. If CA(J5) < O* then CA(f3) fixes the axis of a. Therefore a and (3 have the 

same axis. Each reflection on the complex plane is determined by its center and axis, and 

O* acts transitively on the possible centers. Hence all reflections with the same axis as a 

are conjugates under O1. From the fact that O l = CA(a)Q we infer that a^ ~ an. m 

4. Actions of SL3 C on eight-dimensional stable planes. A stable plane is a linear 

space M = (M, M), where the point space M and the line space 9A. are endowed with 

locally compact Hausdorff topologies such that 

- the geometric operations (joining points, intersecting lines) are continuous, 

- the set of pairs of intersecting lines is open in f7l̂  x fTVf (axiom of stability). 

Quite often, it is assumed in addition that the point space M has positive and finite cov­

ering dimension. See [10] and [11] for general information. 

Endowed with the compact-open topology derived from the action on the point space, 

the group Aut(MI) of all automorphisms (i.e., continuous collineations) of a stable plane 

Ml is a locally compact, separable transformation group. An action of a topological group 

r on a stable plane M is a continuous homomorphism of F to Aut(M). If the action is 

effective, we call F a group of automorphisms ofM. 

In the sequel, let Ml = (M, M) be an eight-dimensional stable plane, and assume 

that A = SL3 C is a group of automorphisms of Ml. We use exponential notation for this 

given action. In this chapter, we shall assume that M is connected, and that the center 

Z of A acts (fixed-point-)freely on M. The last chapter extends our result to arbitrary 

eight-dimensional stable planes (and arbitrary actions of A). 

LEMMA 4.1. Each involution in A has an axis, but no center. 

PROOF. According to [21: 2.10 a)], the eight-dimensional maximal compact sub­

group E = SU3 C of A does not act transitively on Ml. Hence dimE r > 1 for each point 

x G M, and Ex contains an involution. The involutions in A form a single conjugacy 

class, therefore each of them fixes at least one point. If an involution a G A has cen­

ter c, then c is fixed by Z. This contradicts our general assumption. If the set of fixed 

points of a carries a Baer subplane F, then the centralizer Y of a in A induces on F a 

group *F of dimension 7 at least. The group ¥ is the product of its commutator group 

H" = PSL2 C = PSO3 C and its center, which has dimension > 1. According to [12], the 

four-dimensional plane F contains the complex oval plane, on which 4 " acts in the usual 

way, and H* embeds into PSL3 C. By Lemma 3.1, this is impossible. There remains the 

case that each involution has an axis, but no center. • 

COROLLARY 4.2. The center Z of A acts quasi-perspectively (i.e., for each point 

x G M there is some line Lx such that x1 Ç Lx). 

PROOF. Assume that there is an orbit x1 that is not contained in a line. Then each 

involution in Ax has a non-collinear set of fixed points (namely, x2), a contradiction. • 
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REMARK 4.3. Since we assume that Z acts freely, this line Lx is determined uniquely 

by x. The set Lz = {Lx \ x G M} consists of fixed lines of Z, and it is locally homeo-

morphic with a line (cf. [20: 1]). 

COROLLARY 4.4. Up to transposition, the following holds: For each point p G M, 

the stabilizer Ap is a conjugate of a subgroup o /O l . 

PROOF. According to Lemma 3.2, the four-dimensional connected set Lz is home-

omorphic with P2C, and A acts, up to transposition, in the usual way. The stabilizer Ap 

fixes the line Lp, and the stabilizer ALp is a conjugate of O1. • 

LEMMA 4.5. Assume that ALp equals O l. Then the group (a)Q acts trivially on Lp. 

PROOF. There is an involution (3 G A;, that has some axis A. Since Z leaves A invari­

ant and moves p, we conclude that A = Lp, and CA/3 < O l . Thus 3 G a12 by Lemma 3.3. 

The kernel of the action of O l on Lp contains the conjugacy class a " , hence all ele­

ments of the form <x"a, where LU G Q. Now the assertion follows from the fact that 

Q = {a^'a I tu G Q} . • 

According to Lemma 4.5, each involution in A;, has axis Lp. From [20: Theorem 9a)] 

we infer: 

COROLLARY 4.6. There are no commuting involutions in Ap. In particular the group 

Ap does not contain a subgroup that is isomorphic with I 2 or SO3 R. 

f f a 0 0 
LEMMA 4.7. Define T = | o« 0̂  

0 0 a 
a G C,aa = 1 < O l = ALp. For each point 

q outside Lp the orbits p[ and q[ generate a subplane of dimension 4 at least. 

PROOF. The group T contains Z, hence T moves each point, and each orbit is com­

pact and one-dimensional. For each point q outside L/;, the set p1 UqT generates therefore 

a subplane E. If the lines of E are one-dimensional, then p1 is a compact line of E and 

meets each other line of E [10: 1.15]. In particular, the line/;1 meets each other fixed line 

of Z in E in a point that is fixed by Z—a contradiction. • 

We shall need the following generalization of the compactness criterion [19: 6.3]: 

LEMMA 4.8. Let M = (M, fW) be an eight-dimensional stable plane. Assume that 

there is a locally compact group A and a continuous monomorphism u: A —> Aut(Ml), 

i.e., an effective action of A on M. If with respect to this action a connected subgroup 0 

of A acts trivially on a Baer subplane B of M (i.e., 0 | p = 1) then the closure 0 of S in 

Aut(MI) is a connected compact abelian group, anddimQ = d i m 0 < 1. Consequently, 

the factor groups N A ( 0 ) / C A ( 0 ) «^ /N A u l ( M ) (0 ) /C A u t ( M ) (0 ) are discrete. 

PROOF. The closure of a connected set is connected again [6: V. 1.6], and of course 

0 acts trivially on B. From [ 19: 6.3] we infer that 0 is compact abelian, and dim 0 < 1. 

The action by conjugation is a continuous homomorphism K : N A U 1 ( M ) ( 0 ) — -> Aut(0), 

where the latter is endowed with the g-topology [1]. Since Aut(0) is topologically iso­

morphic with the automorphism group of the discrete dual of 0 , we infer that Aut(0) 

and N A u t ( M ) (0) /C A u t ( M ) (0) are discrete. Now the assertion follows from the fact that jj 

induces a continuous monomorphism d): N A ( 0 ) / C A ( 0 ) —-> N A u t ( ^ ) (0 ) /C A u t ( y ) (0 ) . • 
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COROLLARY 4.9. If a connected subgroup E ofYp acts trivially on a subset 11 ofLz 
that accumulates at Lp, then dim S < 1, and NA(E)/C&(E) is discrete. 

PROOF. The involution a fixes exactly two lines through /?, namely the axis Lp and 
some Cp. Since E < Y = CA(a), both lines are fixed by E. Choosing L G 11 near Lp, we 
obtain that L meets Cp in some point q, and E fixes q. Since T centralizes Y, we conclude 
that E acts trivially on the orbits pT and q1\ and the assertion follows from Lemma 4.7. 

LEMMA 4.10. a) The stabilizer Yp has a subgroup E that is isomorphic with SU2 C. 
b) The stabilizer Yp has no solvable subgroup of dimension 4. 
c) The stabilizer Yp has no subgroup that is locally isomorphic with SL2 R. 

PROOF, i) Assume that E < Yp is solvable, and that dim S > 4. Via conjugation, 
the group E acts C-linearly on Q = C2. Since E is solvable, there is some UJ G Q \ 1 
such that or is contained in the C-subspace spanned by UJ (Lie's Theorem). We conclude 
that dimCn(^) > 2. Now C^(UJ) = C^(^) acts trivially on the set Zl consisting of the 
axes of the elements cr , where UJ' runs over the C-subspace spanned by UJ. Thus we have 
obtained a contradiction to Corollary 4.9, proving b). 

ii) Assume that *F < Y7, is locally isomorphic with SL2 R. Since the C-linear action of 
Y on Q (via conjugation) is almost effective, there is no proper ^-invariant C-subspace 
of Q. Up to equivalence, the universal covering of SL2 R has only one irreducible com­
plex representation of degree 2. We conclude that, in Y, the group *F is a conjugate of 

[ ( A j ) \A e SL2 R \ . Hence we may assume that T = 0 1 0 

in VF. But T fixes a connected set of lines in Lz that contains Lp. Again, we obtain a 
contradiction to Corollary 4.9, and c) is proved. 

iii) We have that dim Yp > dim Y —4 = 4. According to b), the identity component 
of Yp is not solvable. Therefore it contains an almost simple subgroup of dimension 3. 
Each such group is locally isomorphic with SU2 C or SL2 R. Now assertion a) follows 
from Corollary 4.6 and c). • 

b G R \ is contained 

LEMMA 4.11. The group Q acts regularly on 9vlp \ {Lp}. 

PROOF, i) Let L ^ Lp be a line through/?, and let ( G l l L . Since Y acts transitively 

on the set of one-dimensional subspaces of Q = Cz, we may assume that £ = 0 1 0 

for some x G C. Then C Y (0 = ( ^°2o j a G €*,b G C . Because *F = C Y (0 

is solvable and four-dimensional, the point/? is moved by lF, see Lemma 4.10b. The 
element £ acts trivially on the line orbit L4^, and there are 1/; G *¥ and w G Q such that 
the lines L and LVu} meet outside Lp. The intersection point is fixed by £ but moved by 
Q, hence £ fixes more than one point outside Lp. Since Lp is the axis of £, we conclude 
that £ = 1. Hence Q acts semi-regularly on 9rfp \ {Lp}. 

https://doi.org/10.4153/CMB-1994-017-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-017-x


120 MARKUS STROPPEL 

ii) For each line L G ^ \ { L / 7 } , the orbitLQ has dimension 4. According to [12: 11 c)], 

the orbit is open. Connectedness of 0Kp \ {Lp} (cf. [10: 1.14, 1.19], [12: 11 a)]) implies 

that LQ = Mp \ {Lp}, and Q. acts regularly. • 

COROLLARY 4.12. The reconstruction method of [18] applies to A and ML. 

PROOF. The group A acts transitively on Mç and has two orbits on fW\. From 

Lemma 4.11 we infer that the stabilizer Ap has two orbits in 9v[p (namely, the trivial 

orbit {Lp} and its complement). • 

LEMMA 4.13. Assume that AL) = O l. Then there is a homomorphism f. Ry —> C* 

such that Ap is a conjugate of A^. 

PROOF, i) Let S be a subgroup of Yp that is isomorphic with SU2 C (cf. 

Lemma 4.10a). Being almost simple, this subgroup is contained in the commutator sub­

group of Y , which is isomorphic with SL2 C. Each subgroup of SL2 C that is isomorphic 

with SU2 C is a maximal compact subgroup, hence these subgroups form a single con-

jugacy class of maximal subgroups. In order to determine Y7„ we study the projection K 

of Y to Y /Z(Y ): The image Y ; equals ZK, and Y/7 = KZ, where K = YpnZ(Y ) is the 

kernel of the restriction of K to Yp. 

ii) According to Corollary 4.6, there is no torus subgroup in K, hence dim K < 1 and 

dim Yp < 4. This implies that dim/?Y = 4, and pY is open in Lp. Since K commutes 

with Y , we obtain that K acts trivially on pY . 

iii) From Richardson's characterization [14] of the actions of compact groups on the 

four-sphere we infer that each element of Z fixes exactly two lines through p\ namely, 

the axis Lp of a and the line Cp (cf. [20: 7]). The group K has the semi-axis5 Lp 2> P^ , 

therefore each element of prime power order in K has axis Lp and fixes exactly one line 

L in Mp \ {Lp}. Since K commutes with a, we infer that L — Cp. 

iv) If K HT is not contained in Z, then there is a non-cyclic finite abelian subgroup of 

KZ. Consequently, the group KZ contains a non-cyclic elementary abelian subgroup A. 

According to iii), this group fixes Lp and Cp and acts semi-regularly on !Mp \ {Lp, Cp}. 

By a theorem of P. Smith [16] this implies that the cohomology of A is cyclic, which 

means that A is cyclic [4: Chapter XII, §11, Theorem 11.6]—a contradiction. 

v) We have shown that K H T = K H Z = (a). Therefore K is the direct product 

of its compact-free identity component and (a). This means there is a homomorphism 

(f. IFP —> Z(Y) = C* such that R* equals the identity component of K. Now Ap = 

YpQ — AÇy and the assertion is proved. • 

COROLLARY 4.14. The stabilizer APiCp equals Yp. 

PROOF. We have that Yp fixes Cp because a commutes with Y . On the other hand 

Ap — Yp£l and Qc, = 1 by Lemma 4.11. • 

A semi-axis of K is a line that contains an open set of fixed points of K. 
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LEMMA 4.15. Let p be a point such that Ap - A„P. Then ACp = A\,. 

PROOF. From the fact that dim ACp /&p,cp < 4 we infer that dim ACp = 8. Moreover, 

we know that ACp contains Ap^Cp = Yp = R x SU2 C. 

i) Each semi-simple group of dimension 8 is locally isomorphic with SU3 C, SU3 C( 1 ), 

or SL3 R. The only group of this type that contains a closed subgroup that is isomorphic 

with Y^ is the universal covering of SU3 C(l), which is not a linear group. Therefore ACp 

is not semi-simple. 

ii) Via the adjoint representation, the reductive group Y^ acts completely reducibly 

on the Lie algebra I of Ac . Effective linear actions of the commutator subgroup X = 

( A j ) I A G SU2 C 1 are at least four-dimensional. Since dimCA r (Z) < dimCA(X) = 

2, we infer that ( decomposes into a direct sum ( = u©t) , where u is the Lie algebra of 

Yp and 0 is a four-dimensional vector space on which X acts effectively and irreducibly. 

This implies that X is a Levi complement in the identity component T of ACp (recall that 

there are no semi-simple groups of dimension 7). Consequently, the radical P of F is a 

five-dimensional characteristic subgroup of Ac . In its natural action on C3, the solvable 

group P leaves invariant a flag 0 < U < V < C3. 

iii) We consider the vector space W that is generated by the ACp -images of U in 

C3. If W = C3, then the five-dimensional group P is a conjugate of a subgroup of 
«0 0 A ! ) 

ob 0 \ a,b G C*>, which is four-dimensional. This is impossible. Therefore 
0 0(ab)-] J I J 

W is a proper subspace of C3. Since Z leaves W invariant, we conclude that W represents 

axis or center of a (in the action on P2C). In the first case Aq, < & = ALp, and we 

conclude that Ac = A^c,,» a contradiction. There remains the case where Ac/; < O. 

iv) Consider the canonical mapping «: O —> Y = O/Q 1 . The kernel Q[ D ACp of 

the restriction of K to Ac is an Y -invariant subgroup of Q\ hence it is trivial or equals 

Q}. In the first case, we infer from the equation dimAC/, = 8 = dim Y that Ac is 

isomorphic with Y, in contradiction to ii). Hence Q} < Ac,, and we conclude that the 

identity component of Ac/7 equals YpQ}. For each 6 G AC/7, there are UJ G Q l and v G Y 

such that 6 = UJV (recall that AC/, < O = ^ Y ) . Now v = uj~xè G YC/, = Y/?, and the 

assertion follows. • 
Combining Corollary 4.12, Lemma 4.13, and Lemma 4.15 we obtain 

PROPOSITION 4.16. If A = SL3 C acts on a connected eight-dimensional stable plane 

M such that the center Z of A acts freely, then there is some homomorphism Lp: Ry —> C* 

such that M is isomorphic with M^. Such an action is always obtained from an arbitrary 

effective action of A on an eight-dimensional stable plane if one restricts the action of A 

to the subplane induced on an orbit pA, where p is a point that is not fixed by Z. 

5. The general case. The following is the key to the extension of Proposition 4.16 

to arbitrary eight-dimensional stable planes: 

LEMMA 5.1. Let M = (M, 0\f ) be a stable plane, and let E be an open subset ofM. 

Denote by *£ the set of lines that meet E in more than one point. For each point x £ £ 
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and each line L G Î that does not pass through x, write \\E
Lxfor the set of lines through 

x that do not meet LP\ E. IfE is a proper subset of M then there is a point x G E and a 
line L G *£ such that 

a) the set ||f K is non-empty. In particular, the geometry (£, £) is not a projective 
plane. 

b) If the complement M\E has non-empty interior then the set ||f x has non-empty 
interior. 

PROOF. Choose points a £ E and b G M\E. Then there is a point i Ç £ \ ab, and 
xb G ||f x. If there is a neighbourhood U of b in M that does not meet E, then the set 
{xu | u G UHab} forms a neighbourhood in ||f x. m 

THEOREM 5.2. If A = SL3 C acts effectively on an eight-dimensional stable plane 
M = (M, 9d), then there is a homomorphism (f. Ry —> C* such that M is isomorphic 
with P^ or M^ (depending on whether or not there exist fixed points ofZ), and the action 
of A is equivalent to the usual one or its dual. 

PROOF. According to Proposition 4.16, there is an open point orbit pA such that the 
subplane induced on pA is isomorphic with ML for some if. Now Lemma 5.1b shows 
that the complement of pA has empty interior. Therefore each point in M \pA is fixed by 
Z (cf. Proposition 4.16). Applying [21: 2.10 c)] to E = SU3 C, we obtain that the set F 
of fixed points of Z is not contained in a line. Therefore Z acts trivially on the subplane 
F = (F, ff) that is induced on F. From [21:2.10 a)] we infer that F is isomorphic with the 
projective plane over C, and the action of E is equivalent to the usual one. In particular, 
A acts transitively on F. For z G F the set zM = {zm \ m G pA} is open in 9viz. Therefore 
zM PI CA is not empty. For each point x G pA \ Cp the set \\p

c x consists just of one line. 
Hence Cp, as a line of Ml, is projective (i.e., it meets any other line in ïM). On the other 
hand, any two inner lines intersect in the projective plane F. Thus each pair of lines has 
a common point in M, and M is projective. Since F = M \ pA has empty interior, the 
subplane that is induced on pA is dense and determines M = Pr~. • 
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