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Abstract

Amyloid plaques, one of the main hallmarks of Alzheimer’s disease (AD), are classified into diffuse (associated with cognitive impairment)
and dense-core types (a common finding in brains of people without Alzheimer’s disease (non-AD) and without impaired cognitive func-
tion) based on their morphology. We tried to determine the usability of gray-level co-occurrence matrix (GLCM) texture parameters of
homogeneity and heterogeneity for the differentiation of amyloid plaque images obtained from AD and non-AD individuals. Images of
amyloid-β (Aβ) immunostained brain tissue samples were obtained from the Aging, Dementia and Traumatic Brain Injury Project.
A total of 1,039 plaques were isolated from different brain regions of 69 AD and non-AD individuals and used for further GLCM analysis.
Images of Aβ stained plaques show higher values of heterogeneity parameters and lower values of homogeneity parameters in AD patients,
and vice versa in non-AD patients. Additionally, GLCM analysis shows differences in Aβ plaque texture between different brain regions
in non-AD patients and correlates with variables that characterize patient’s dementia status. The present study shows that GLCM texture
analysis is an efficient method to discriminate between different types of amyloid plaques based on their morphology and thus can prove as
a valuable tool in the neuropathological investigation of dementia.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
order characterized by the presence of neurofibrillary tangles
and amyloid plaques, which represent the histopathological hall-
mark of the disease (Perl, 2010). The accumulation of amyloid
plaques in the extracellular space has long been considered as a
major cause of nervous tissue damage that occurs in AD (Dong
et al., 2012). However, failures in developing effective drugs that
target the amyloid-β (Aβ) pathway have, in recent years, shifted
the research focus from the amyloid to the tau hypothesis
(Kametani & Hasegawa, 2018). The two main findings that are
inconsistent with the amyloid hypothesis are (1) the existence
of amyloid plaques in brains of people without cognitive impair-
ment and (2) the small amyloid plaque burden in a number of
diagnosed AD patients (Edison et al., 2007). These plaques can
be morphologically classified into diffuse and dense-core types
based on their morphology and staining with Thioflavin-S or

Congo Red (Bussière et al., 2004; Serrano-Pozo et al., 2011).
Dense-core plaques cause neuron damage and subsequent
microglia activation and are associated with cognitive impairment
in AD patients. On the other hand, diffuse plaques are a common
finding in brains of people who do not have impaired cognitive
function. Thus, there is a need to properly distinguish
between these two types of morphologically different plaques
(Serrano-Pozo et al., 2011).

Gray-level co-occurrence matrix (GLCM) texture analysis is a
method that has proved to be useful in analyzing and quantifying
the texture of different image objects, primarily cancer pathology
(Pratiwi et al., 2015; Vujasinovic et al., 2015; Meyer et al., 2017).
Several papers have explored the efficacy of GLCM in the analysis
of stained brain tissue samples (Pantic et al., 2014, 2020; Tesic
et al., 2017; Dragic et al., 2019). Taking into account the ability
of GLCM analysis to detect subtle changes in the image texture
of differently stained biological and pathological structures,
including those in nervous cells and tissue, we hypothesize that
this method is able to distinguish plaques isolated from patients
with clinical and pathological diagnosis of AD dementia from pla-
ques isolated from non-demented individuals.

Here, we demonstrate for the first time that GLCM texture
analysis is a useful method in discriminating between images of
amyloid plaques isolated from AD patients and non-AD individuals.
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Additionally, we show how different parameters of GLCM texture
analysis correlate with different patient variables that describe
their dementia status.

Material and Methods

Specimen Acquisition

Images of amyloid plaques for GLCM texture analysis were
obtained from brain tissue samples deposited in the Aging,
Dementia and Traumatic Brain Injury (TBI) Project from Adult
Changes Through (ACT) study started in 1994 (freely available
at https://aging.brain-map.org) (Miller et al., 2017). This database
contains neuropathological, molecular, and transcriptomic data of
brain samples from 107 aged control and AD patients with and
without the history of TBI, as well as their demographic and clin-
ical information. The deposited data have been generated from
three brain regions (hippocampus, parietal, and temporal corti-
ces). The initial inclusion criteria for the ACT study included vol-
unteers aged ≥65 and free of dementia. During their follow-up,
different neurophysiological battery tests were used to assess
their mental and dementia status, while gathering additional
information about TBI exposure. The diagnosis of dementia
and AD was made by using the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) and the National
Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria. Additional information about the
ACT study design can be found on Aging, Dementia and
Traumatic Brain Injury Project website (https://aging.brain-map.
org). Our attention was focused on formalin-fixed paraffin-
embedded (FFPE) tissue samples that had immunohistochemical

staining for Aβ plaques. By using application programming inter-
face (API) access through the Python programing language
(JupyterLab v2.2.6, free download from: https://jupyter.org/
install), we were able to filter the patient database and select a
total of 69 patients to include in the present study (26 AD patients
and 43 control non-AD patients) and download images of Aβ pla-
ques from three brain regions. The inclusion criteria were (1)
diagnosis of dementia (AD) or no diagnosis of dementia for the
control, that is, non-AD patients, (2) available immunohisto-
chemical images of Aβ staining in any of the three brain regions,
and (3) a minimum of six plaques in any brain region per patient
that could be isolated and quantified. By using the selected crite-
ria, we were able to isolate 426 plaques from AD patients (132
from the hippocampus, 168 from the parietal cortex, and 126
from the temporal cortex) and 613 plaques from non-AD patients
(249 from the hippocampus, 189 from the parietal cortex, and 175
from the temporal cortex), making a total of 1,039 plaques that
were used for further GLCM texture analysis. For each patient,
we gathered available data about the history of TBI, number of
TBIs, apolipoprotein E (ApoE)-ϵ4 genotype, as well as both
neurofibrillary tangles (Braak) and neuritic plaques (CERAD)
stage and the National Institute on Aging (NIA)-Reagen diagno-
sis, which were used for correlation with GLCM texture analysis
parameters.

Aβ Plaque Isolation and Graphical Processing

Plaque isolation, graphic processing, and GCLM texture analysis
were done using GIMP software (v.2.10, free download from:
https://www.gimp.org/downloads) and ImageJ software (v1.53a,
NIH, Bethesda, MD, USA; free download from http://rsbweb.
nih.gov/ij). The Aβ-stained plaques were isolated from images

Fig. 1. Graphic processing of representative Aβ-stained plaques. Rows represent the three brain regions from which the plaques were isolated, while columns rep-
resent the patient group, that is, the dementia status of patients involved in the present study. (a) Aβ-stained plaques from non-AD patients; (b) gray-scale images
of plaques from non-AD patients used for texture analysis; (c) Aβ-stained plaques from AD patients; (d) grayscale images of plaques from AD patients used for
texture analysis. AD, Alzheimer’s disease; non-AD, non-Alzheimer’s disease.
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of each of the three brain regions, which were downloaded
through API access as high-quality images (format: jpg; compres-
sion level: 0). The images were scanned at 10× full resolution
(approximately 1 μm per pixel) and white balanced for consis-
tency (tissue processing section of Aging, Dementia and
Traumatic Brain Injury Project, http://help.brain-map.org/dis-
play/aging/Documentation). Due to the fact that these images
represent scanned images of different brain regions, they were
not uniformly sized (file size ranged from approximately 32 to
229 MB, with corresponding image dimensions of 16,880 ×
11,808 pixels and 20,081 × 45,682 pixels), which is why a semi-
automated method of Aβ plaque isolation to separate canvases
had to be applied. Aβ plaque isolation was done by the supervi-
sion of two histologists using a scissor selection tool in the
GIMP software, which enabled us to specifically isolate the Aβ
plaques due to their staining differences in contrast to surround-
ing brain tissue. Each isolated plaque was then transferred to a

predefined canvas (dimension: 150 × 150 pixels, resolution:
300 dpi, bit depth: 24), thus making standardized images of Aβ
plaques. These images were subsequently loaded into ImageJ
and converted to grayscale 8-bit images using its default image-
type converter (Fig. 1).

GLCM Texture Analysis

GLCM texture analysis is a mathematical method that aims to
identify texture features of an image object by analyzing the inten-
sity differences of neighboring pixels. The analysis was done using
a specific ImageJ plugin “Texture Analyzer” (version 0.4, http://
rsb.info.nih.gov/ij/plugins/texture.html; developed by Julio
E. Cabrera). After the grayscale images were obtained, the size
of the step (in pixels) was set to 1 and the direction of the step
was set to 0°. The following five parameters were computed
based on the following formulas: angular second moment

Fig. 2. Example of GLCM texture analysis on a gray-scale image of Aβ-stained amyloid plaque. The figure illustrates texture classification by using the GLCM analysis
on a gray-scale image of Aβ-stained amyloid plaque obtained from the temporal cortex of patient with AD. This exemplary calculation is represented on four
regions from the plaque center and four regions from the plaque periphery for two GLCM parameters: correlation and entropy. GLCM, gray-level co-occurrence
matrix.
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(ASM) [equation (1)], inverse difference moment (IDM) [equa-
tion (2)], correlation (COR) [equation (3)], contrast (CON)
[equation (4)], and entropy (ENT) [equation (5)]:

ASM =
∑
i

∑
j

{ p(i, j)}
2
, (1)

IDM =
∑
i

∑
j

1

1+ (i− j)2
p(i, j), (2)
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∑
i,j

(i− mx)( j− my)��������
(sxsy)

√ p(i, j), (3)
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∑Ng
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{ }
, |i− j| = n, (4)

ENT = −
∑
i

∑
j

p(i, j)log( p(i, j)). (5)

The term p(i,j) is the ith and jth entry in a normalized gray-
tone spatial-dependence matrix (i.e., the co-occurrence matrix),
and Ng is the number of distinct gray levels in the quantized
image. The above formulae were originally described by
Haralick et al. (1973) and subsequently modified by Walker
et al. (1995). These five parameters represent measures of an

image/object homogeneity and heterogeneity; thus, the more
homogeneous the pixel intensity in the image object is, the higher
the values of ASM, IDM, and COR, while heterogeneous objects
will have higher values of CON and ENT (Haralick et al., 1973;
Mohanaiah et al., 2013; Stankovic et al., 2016) (Fig. 2). High
ASM and IDM values can be seen in images with pixels of similar
gray-level values, suggesting that the texture is uniformly repeti-
tive. On the other hand, CON and ENT as measures of heteroge-
neity point to higher gray-level pixel variation and are seen in
heavy and chaotic texture images (Gebejes & Huertas, 2013).
COR is a measure of linear dependency between neighboring pix-
els, where a higher COR suggests pixel similarity (Stankovic et al.,
2016). In a previous paper, we showed for the first time that these
parameters can also be applied to immunohistochemically stained
brain specimens, which can help us to quantify the expression of
certain proteins and to which the readers are referred for addi-
tional information (Tesic et al., 2017).

Data Processing and Statistical Analysis

For each patient, six plaques per available brain region were iso-
lated. For each of the isolated plaques, five values of the GLCM
texture parameters were generated, after which the mean values
for each of the five parameters were calculated for each patient.
These values represented final data used for statistical analysis
and further graphing. The data normality was tested using
Kolmogorov–Smirnov and Shapiro–Wilk tests. To assess the dif-
ferences in the value of GLCM parameters between different
groups of patients according to their dementia status, we used
Student’s independent t-test. Three-way analysis of variance
(ANOVA) was used to explore the interactions between patient
group–TBI–ApoE4 status relative to GLCM parameters, while
two-way ANOVA was used to explore the differences in GLCM
parameters between brain regions and patient’s dementia status.
Correlation testing between GLCM parameters and patient’s
dementia status was done using Spearman’s rank correlation coef-
ficient. A p-value less than≤0.05 was considered statistically
significant.

Graphical Representation

Since the ASM, IDM, COR, CON, and ENT have different ranges
of generated values, we did z-score standardization in order to
gain a standard score. The standardized mean values for each
group were plotted in a form of radar chart, where each spoke
radiating from the center of the graph represents one of five
GLCM texture parameters. By connecting the mean values of
GLCM parameters, which are represented as specific points on
spokes, a geometrical shape in the form of a pentagon is created.
One pentagon represents one group of patients in relation to their
dementia status or brain region. Groups with similar values of
GLCM parameters will have pentagons of similar shape and posi-
tion in the radar chart graph.

Results

The first step in our analysis is to compare the average values of
GLCM parameters between AD and non-AD patient groups.
Analysis on our sample of 26 AD and 43 non-AD patients
shows a statistically significant difference in all of the five ana-
lyzed parameters. The homogeneity parameters have higher val-
ues in non-AD patients (ASM: t = 3.084, p < 0.01; IDM: t =

Fig. 3. Values of gray-level co-occurrence parameters of Aβ-stained plaques isolated
from Alzheimer’s disease patients and non-Alzheimer’s disease patients. The homo-
geneity parameters (ASM, IDM, and COR) show higher values in patients from non-AD
group. Patients from AD group have higher values of heterogeneity parameters (CON
and ENT) and lower values of mentioned homogeneity parameters. Results are rep-
resented as mean ± standard deviation. AD, Alzheimer’s disease; non-AD,
non-Alzheimer’s disease; ASM, angular second moment; IDM, inverse difference
moment; COR, correlation; CON, contrast; ENT, entropy. *p < 0.05; **p < 0.01.
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3.061, p < 0.01; COR: t = 2.605, p < 0.05), while heterogeneity
parameters (CON: t = 3.259, p < 0.01; ENT: t = 3.078, p < 0.01)
are higher in AD patients, suggesting a higher pixel variation in
plaques isolated from demented patients (Fig. 3).

Since the plaque formation and structure can potentially be
influenced by the presence of TBI and ApoE-ϵ4, we aimed to
explore the influence of these two well-known AD risk factors
in our sample group. The presence of TBI is reported in 13
(50%) patients with AD and 19 (44.2%) non-AD patients (χ2 =
0.22, p > 0.05). ApoE-ϵ4 genotype is present in eight (36.4%)
AD patients and five (11.9%) non-AD patients, showing a border-
line statistical significance in frequency distribution ( p < 0.05).
Data exploration with three-way ANOVA shows no significant
differences for ASM (F = 0.534, p > 0.05), IDM (F = 0.351, p >
0.05), COR (F = 1.307, p > 0.05), CON (F = 0.574, p > 0.05), and
ENT (F = 0.399, p > 0.05), which indicates a lack of patient
group–TBI–ApoE-ϵ4 status interaction.

To assess whether the Aβ-stained plaques differ between brain
regions, we compared the three brain regions from which the pla-
ques were isolated, taking into account the dementia status. A
statistically significant brain region–dementia status interaction
is present for ASM (F = 3.171, p < 0.05), COR (F = 6.117, p <
0.01), CON (F = 5.599, p < 0.01), and ENT (F = 3.116, p < 0.05),
but only IDM does not show significant interaction (F = 2.980,
p > 0.05). Post hoc analysis reveals a significant difference in
GLCM parameter values among brain regions only in non-AD
patients. Also, this difference is present between the hippocampus
and cortical regions, but not between the parietal and temporal
cortices (Fig. 4). The highest statistical significance between
brain regions is detected for COR, which differs between the hip-
pocampus and both cortical regions ( p < 0.0001). ASM and COR
are higher, and CON and ENT are lower in Aβ-stained plaques
when compared to plaques isolated from the temporal and

parietal cortices, indicating that plaque texture is more homoge-
nous in the hippocampal samples isolated from non-AD patients.

The relationship of the GLCM texture parameters to patient’s
dementia status shows a low positive correlation between hetero-
geneity parameters (CON and ENT) and patient group, ApoE-ϵ4
status and Braak stage and a moderate positive correlation with
CERAD stage and NIA-Reagen diagnosis. Concurrently, homoge-
neity parameters (ASM, IDM, and COR) are negatively correlated
with ApoE-ϵ4 status, Braak and CERAD stage, and NIA-Reagen
diagnosis, whereas COR shows a strong correlation coefficient
with CERAD stage (rs =−0.64) and NIA-Reagen diagnosis (rs =
−0.6) (Fig. 5).

Discussion

In the present study, we show that GLCM texture analysis param-
eters differentiate between Aβ-stained plaques isolated from AD
and non-AD FFPE brain tissue samples. Previous attempts on
classifying amyloid plaques between AD patients and non-AD
individuals have been made by using other mathematical meth-
ods, such as fractal analysis (Pirici et al., 2011). However, this is
the first time that the GLCM texture analysis method has been
applied in differentiating these two types of plaques. Our results
show that plaques isolated from AD patients have higher values
of heterogeneity parameters and lower values of homogeneity
parameters than plaques from non-AD patients. This difference
in plaque image texture indicates the existence of structural vari-
ations between plaques that produce variations in the intensity of
their staining. Namely, it has been shown that the plaque struc-
ture and formation differ between brains of AD and non-AD
aged individuals (Cras et al., 1991; Wang & Munoz, 1995), and
that AD dense-core plaques are up to 30% larger in size than pla-
ques from non-AD individuals (Serrano-Pozo et al., 2012). Recent

Fig. 4. Values of gray-level co-occurrence parameters of Aβ-stained plaques isolated from Alzheimer’s disease patients and non-Alzheimer’s disease patients in
relation to brain region from which they were isolated. Significant differences are present in non-AD patients in which homogeneity parameters have higher values
in plaques isolated from hippocampus, while heterogeneity parameters are higher in plaques isolated from parietal and temporal cortices. No differences are pre-
sent in AD patient group. Results are represented as mean ± standard deviation. Asterisk denote statistical significance between hippocampus and cortical regions.
AD, Alzheimer’s disease; non-AD, non-Alzheimer’s disease; ASM, angular second moment; IDM, inverse difference moment; COR, correlation; CON, contrast; ENT,
entropy. *p < 0.05; **p < 0.01; ****p < 0.0001.
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proteomic data have supported the differences in plaque compo-
sition between these individuals (Zolochevska et al., 2018), but
also between different forms of AD (Drummond et al., 2017).
Nanoscale analysis has shown higher levels of non-fibrillary Aβ
in the autosomal dominant form of AD, suggesting that changes
at a molecular level influence the microscopic appearance of the
plaque, but also may have an impact on the disease course itself
(Querol-Vilaseca et al., 2019). These variations in the spatial orga-
nization of amyloid plaques are also affected by differences in the
chemical composition of the plaques themselves. Beside Aβ, the
plaques contain a number of different proteins including inflam-
matory molecules, metal ions, proteases, and amyloidogenic mol-
ecules such as clusterin, ubiquitin, α-synuclein, and ApoE
(Atwood et al., 2002; Drummond et al., 2017). The influence of
different ApoE genotypes on amyloid plaque pathology was
studied in several papers, which yielded different results. ApoE-
deficient mice show reduced fibrillar plaque deposition and less

shape compaction (Ulrich et al., 2018), which confirms the influ-
ence of ApoE-ϵ4 on plaque formation through possible glial-
mediated inflammatory response (Rodriguez et al., 2014; Ulrich
et al., 2018). The lack of influence of ApoE-ϵ4 allele on amyloid
plaques was previously reported by Serrano-Pozo et al. (2012),
which showed that ApoE4 genotype has no influence on the
final plaque size, but is associated with higher plaque burden
and early onset of symptoms (Schmechel et al., 1993;
McNamara et al., 1998; Serrano-Pozo et al., 2012). In our study,
when taking into account patients’ dementia status, as well as
the TBI history, there is no statistically significant interaction in
relation to the texture of amyloid plaques.

We have also detected brain region differences in amyloid pla-
que structure, where plaques isolated from the hippocampus are
more homogeneous than plaques isolated from the parietal and
temporal cortices. Interestingly, this is only present in non-AD
individuals, while no variation in plaque texture is shown for

Fig. 5. Heatmap of correlation between gray-level co-occurrence parameters of Aβ-stained plaques and patient’s dementia status. Colors in the heatmap corre-
spond to the strength and direction of correlation, where red color denotes a positive correlation, blue color denotes negative correlation, and white color denotes
a correlation coefficient of 0. Values in the heatmap boxes represent the Spearman’s correlation coefficient.
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AD patients. Topographically, the deposition of amyloid plaques
begins at the level of the isocortex, after which deeper subcortical
structures, such as the hippocampus, are involved, although in
lesser extent (Serrano-Pozo et al., 2011). Plaque density across dif-
ferent brain region has been investigated in a smaller number of
experimental studies, which showed region-specific differences
in plaque density and distribution, as it is the case between the
isocortex and hippocampus (Liebmann et al., 2016; Whitesell
et al., 2019). Additionally, not only plaque density but also mor-
phology and plaque type have been shown to have region-specific
variances (DeTure & Dickson, 2019), where so-called diffuse,
cored, and cored neuritic plaques can be found in layers III and
V of the neocortex and hippocampal regions (Thal et al., 2006).
The presence of these plaques in both iso- and allocortical regions
may account for the lack of texture differences in plaques isolated
from our AD patient sample.

Recent data have shown that different aspects of Aβ pathology,
including cognitive status, correlate with one another and can be
used as a good way of predicting dementia-related factors (Thal
et al., 2019). Here, we report that GLCM parameters also show
correlation with specific variables that characterize patient’s
dementia status. Heterogeneity parameters show positive correla-
tion with CERAD and Braak stage and NIA-Reagen diagnosis,
which indicate that heterogenous plaques are more likely to be
present in patients with the higher probability of having AD diag-
nosis. In accordance with this, homogeneity parameters show
negative correlation, with COR being a parameter with the highest
correlation coefficient with CERAD and NIA-Reagen variables.
The usefulness of COR in GLCM texture analysis was previously
shown in several papers (Pantic et al., 2015; Stankovic et al.,
2016), in which low COR value was correlated with irregular
image structure, which corresponds to a heterogeneous character-
istic of amyloid plaques from our AD patient sample. When dis-
criminating between different brain regions based on the plaque
texture, COR is also one of the parameters with the highest stat-
istical significance, suggesting that COR maybe one of the most
useful parameters for quantifying amyloid plaque texture.

The present study demonstrates the usefulness of GLCM
parameters in differentiating between AD and non-AD individu-
als based on the texture analysis of their amyloid plaques. Since
many different kinds of plaques have been discovered and
reported, both in AD patients and animal models of AD, as
well as non-AD cognitively healthy individuals (Thal et al.,
2006; D’Andrea & Nagele, 2010; Pirici et al., 2011), a problem
of quantifying and differentiating these plaques emerges. As a
simple, time, and cost-efficient method, GLCM texture analysis
can be a valuable technique for studying the texture of amyloid
plaques, as well as to differentiate and classify between different
types of plaques. Given the fact that GLCM parameters also
show a certain degree of correlation with variables that character-
ize patient’s dementia status, its application can be used to test
and predict values of certain dementia scores and stages.
Although this is currently the only study that has used GLCM
parameters in analyzing amyloid plaque texture and, therefore,
requires additional studies, it represents a good starting point
for further research into amyloid plaque structure and its mor-
phometric classification.
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