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Integrable Systems and Torelli Theorems for
the Moduli Spaces of Parabolic Bundles
and Parabolic Higgs Bundles

Indranil Biswas, Tomás L. Gómez, andMarina Logares

Abstract. We prove a Torelli theorem for the moduli space of semistable parabolic Higgs bundles
over a smooth complex projective algebraic curve under the assumption that the parabolic weight
system is generic. When the genus is at least two, using this resultwe also prove aTorelli theorem for
themoduli space of semistable parabolic bundles of rank at least twowith generic parabolicweights.
_e key input in the proofs is amethod of J.C. Hurtubise.

1 Introduction

_e classical theorem by R. Torelli [CRS] says that a smooth complex algebraic curve
is determined by the isomorphism class of its polarized Jacobian up to isomorphism.
Similar theorems in many contexts have been worked out, e.g., for moduli spaces of
stable vector bundles [Tj,NR,MN] andmoduli spaces of stable Higgs bundles [BG].
As far as moduli spaces of parabolic or parabolic Higgs bundles with ûxed determi-
nant (see deûnition below) are concerned, a number of Torelli theorems were proved
[BBB,BHK,Seb,GL]. Here we deal with the non-ûxed determinant situation.

Hurtubise [Hu] investigated algebraically completely integrable systems satisfying
certain conditions. His main result is to extract an algebraic surface out of an in-
tegrable system. We observe that a moduli space of parabolic Higgs bundles is an
example of themodel of completely integrable systems studied in [Hu].

_e above mentioned assumption that the determinant is not ûxed stems from
the fact that in the set-up of [Hu] the Lagrangians in the ûbers are required to be
Jacobians, while ûxing the determinant amounts to making the ûbers Prym varieties.
To consider themoduli spaceswith ûxed determinantwith our techniques,wewould
need an analogue of ourmain tool, namely_eorem 1.11 of [Hu], but for an integrable
system inwhich the ûbers are Prym varieties instead of Jacobians. _is is planned for
future work.
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_e Néron–Severi group NS(Y) of a smooth variety Y is the image of the homo-
morphism Pic(Y) → H2(Y ,Z)/Torsion that sends a line bundle to its ûrst Chern
class. _e image of a line bundle L by this map is called the Néron–Severi class of L.

We will prove the following theorems.

_eorem 1.1 (Main_eorem) Let X and X′ be smooth projective curveswith genus g
and parabolic pointsD and D′, respectively. LetMX(d , r, α) (resp.,MX′(d , r, α)) be the
moduli space of stable parabolicHiggs bundles over X (resp., X′) endowedwith the usual
C∗ action (cf. (2.2)) and the determinant line bundleL (resp.,L′) (cf. (3.4)). If there is
a C∗-equivariant isomorphism between MX(d , r, α) andMX′(d , r, α), preserving the
holomorphic symplectic form, such that the pullback of the Néron-Severi class NS(L′)
is NS(L), then there exists an isomorphism between X and X′ inducing a bijection
between the parabolic points D and D′ whenever the following conditions on the genus
and the rank are satisûed:

(i) r2(g − 1) + 1 + nr(r − 1)/2 ≥ 3,

(ii) r(2g − 2) + (r − 1)n ≥ 2g + 1.

Since themoduli space of stable parabolic bundles sits inside themoduli space of
stable parabolicHiggs bundles, in all caseswhere its codimension is greater than two,
we get the following extension of the Torelli theorem for the moduli space of stable
parabolic bundles given in [BBB].

_eorem 1.2 Let X and X′ be smooth projective curves with genus g and parabolic
points D and D′ respectively. Let MX(d , r, α) be the moduli space of stable parabolic
bundles over X (resp.,MX′(d , r, α)), and letL (resp.,L′) be the determinant line bundle
(cf. (3.4)). If there is an isomorphism between MX(d , r, α) andMX′(d , r, α) such that
the pullback of NS(L′) is NS(L), then there exists an isomorphism between X and
X′ inducing a bijection between the parabolic points D and D′, whenever the following
conditions on the genus and the rank are satisûed.

(i) If g = 2, then r ≥ 5.
(ii) If g = 3, then r ≥ 3.

(iii) If g ≥ 4, then r ≥ 2.

2 Preliminaries

Let X be an irreducible smooth projective algebraic curve over C. _e holomorphic
cotangent bundle of X will be denoted by K. Let {p1 , . . . , pn} be a set of distinct para-
bolic points in X and letD = p1+⋅ ⋅ ⋅+pn be the corresponding reduced eòective divisor.
A parabolic bundle on X with parabolic structure over D consists of a holomorphic
vector bundle E equipped with a weighted �ag over each parabolic point p ∈ D that
is a ûltration of subspaces E∣p = Ep,1 ⊃ ⋅ ⋅ ⋅ ⊃ Ep,r(p) ⊃ Ep,r(p)+1 = 0 together with a
system of parabolic weights 0 ≤ α1(p) < ⋅ ⋅ ⋅ < αr(p)(p) < 1. _e parabolic degree and
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parabolic slope of E are deûned by

pardeg(E) ∶= deg(E) + ∑
p∈D

r(p)

∑
i=1
α i(p) ⋅m i(p), parµ(E) ∶= pardeg(E)

rk(E) ,

where m i(p) ∶= dim(Ep, i/Ep, i+1) is the multiplicity of the parabolic weight α i(p).
_e parabolic bundle is called stable (resp., semistable) if for all subbundles 0 /= V ⊊ E,
(2.1) parµ(V) < parµ(E) (resp., parµ(V) ≤ parµ(E))
where V has the induced parabolic structure. Given rank and degree, the system of
parabolic weights is called generic if every semistable parabolic bundle is stable. We
note that the semistability condition describes hyperplanes (or walls) in the space of
weights. Hence the genericity condition means that the parabolic weights lie in the
interior of the chambers deûned by the walls.

We denote by MX(d , r, α) the moduli space of stable parabolic bundles over X
with degree d, rank r, and genericweights α. _ismoduli space is a smooth projective
variety with

dimMX(d , r, α) = r2(g − 1) + 1 + 1
2
∑
p∈D

r(p)

∑
i=1

( r2 −m i(p)2) .

For notational convenience we assume that the �ag is full, that is, m i(p) = 1 for all
p and i, so r(p) = r for all p, but all the results generalize to non the full �ags case.
Henceforth, we will only consider full �ags. _erefore,

dimMX(d , r, α) = r2(g − 1) + 1 + 1
2
nr(r − 1).

An endomorphism of a parabolic bundle E is called non-strongly parabolic if for
all p ∈ D and i, ϕ(Ep, i) ⊂ Ex , i and it is called strongly parabolic if ϕ(Ep, i) ⊂ Ep, i+1.
_e sheaves of non-strongly and strongly parabolic endomorphisms are denoted by
ParEnd(E) and SParEnd(E), respectively.
A parabolic Higgs bundle is a pair (E ,Φ) where E is a parabolic bundle and

Φ∶ E → E ⊗ K(D) = E ⊗ K ⊗OX(D)
is a strongly parabolic homomorphism, i.e., Φ(Ex , i) ⊂ Ex , i+1 ⊗ K(D)x for each point
x ∈ D and all i. A parabolic Higgs bundle is stable (resp., semistable) if the inequality
(2.1) is satisûed for those V with Φ(V) ⊂ V ⊗ K(D).

Let MX(d , r, α) denote the moduli space of stable parabolic Higgs bundles with
degree d, rank r, and generic weights α. It is a smooth quasiprojective variety that
satisûes dimMX(d , r, α) = 2r2(g − 1)+2+nr(r− 1) = 2 ⋅dimMX(d , r, α) (recall that
the quasiparabolic �ags are full).
For any E ∈ MX(r, d , α), the tangent space at E is

TEMX(r, d , α) = H1(ParEnd(E)).
Also, the parabolic version of Serre duality gives an isomorphism

H1(ParEnd(E))∗ ≅ H0(SParEnd(E)⊗ K(D)).
_erefore, the total space of the cotangent bundle T∗MX(r, d , α) is a Zariski open
subset ofMX(r, d , α).
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_emoduli space of parabolicHiggs bundles is endowed with a C∗ action, where
t ∈ C∗ acts as scalar multiplication on theHiggs ûeld

(2.2) (E ,Φ)z→ (E , t ⋅Φ).
_e total space of the cotangent bundle T∗MX(r, d , α) also has a canonical C∗ ac-
tion given by scalar multiplication on the ûbers. Both actions are compatible in the
sense that the inclusion of the cotangent in themoduli space of Higgs bundles is C∗

equivariant.

3 The Hitchin System

LetK(D)denote the total space of the line bundleK(D) over X, and let γ∶K(D)→ X
be the natural projection. Let x̃ ∈ H0(K(D), γ∗K(D)) be the tautological section
whose evaluation at any point z is z itself. _e characteristic polynomial of a Higgs
ûeld Φ is

(3.1) det(x̃ ⋅ Id−γ∗Φ) = x̃ r + s̃1 x̃ r−1 + s̃2 x̃ r−2 + ⋅ ⋅ ⋅ + s̃r .

_e sections s̃ i , descend to X, meaning there are sections s i ∈ H0(X ,K i(iD)) such
that s̃ i = γ∗s i . Since Φ is strongly parabolic, its residue at each parabolic point is
nilpotent, and hence s i ∈ H0(X ,K i((i−1)D)). _erefore, there is amorphism, called
the Hitchin map,

(3.2) H∶MX(d , r, α)→ U ∶=
r
⊕
i=1

H0(X ,K i((i − 1)D)).

_is morphism is surjective and proper, and it induces an isomorphism on globally
deûned algebraic functions [Hi]; i.e., the lower arrow in the following commutative
diagram is an isomorphism:

(3.3) MX(d , r, α)

a
��

H // U

Spec Γ(MX(d , r, α)) ≅ // Spec Γ(U)

_e varietyMX(d , r, α) has a natural holomorphic symplectic structure, and theHit-
chin map deûnes an algebraically complete integrable system, in particular, the ûbers
of H are Lagrangians (these are explained in [GL]).

When the parabolic set is empty (n = 0), Hausel proved that the nilpotent cone
H−1(0) coincides with the downwards Morse �ow onMX(d , r, α) giving a deforma-
tion retraction ofMX(d , r, α) to H−1(0) [Hau,_eorem 5.2]. _e proof in [Hau] can
be translated into the parabolic situation word by word.

_e ûber of H over a point u ∈ U is canonically isomorphic to the Jacobian of a
curve called the spectral curve; we now recall its construction.

Given a point u = (s1 , . . . , sr) ∈ U, consider the curve Xu ⊂ K(D) deûned by the
equation x̃ r + s1 x̃ r−1 + s2 x̃ r−2 + ⋅ ⋅ ⋅ + sr = 0 (compare it with (3.1)). Note that when Xu
is reduced, the projection ρ ∶= γ∣Xu ∶Xu → X is a ramiûed covering of X of degree r
which is completely ramiûed over the parabolic points. Indeed, from the deûnition of
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U it follows immediately that ρ is completely ramiûed over the divisor D. Denote by
Ru the ramiûcation divisor on Xu . Denote by S the family of spectral curves over U.

Proposition 3.1 For any u ∈ U such that the corresponding spectral curve Xu is
smooth, the ûber H−1(u) is identiûed with Picd+r(r−1)(2g−2+n)/2(Xu).

Proof It follows from the proof of Proposition 3.6. in [BNR].

In general, there is no universal bundle on X×MX(d , r, α). HoweverMX(d , r, α)
can be covered by ûnitely many Zariski open subsets {Vi}bi=1 and each Vi has a ûnite
étale Galois covering δ i ∶ Ṽi → Vi such that there is a universal bundle on X × Ṽi . Let
Ei be a universal bundle on X × Ṽi and let q i ∶X × Ṽi → Ṽi . Fix a point x ∈ X of the
curve. Let χ = χ(E) (sincewe have ûxed the rank and degree, this does not depend on
the particular E chosen and can be calculated by the Riemann–Roch formula). _ere
is a line bundle Lx

i → Ṽi deûned as follows (see [KM]):

Lx
i = det(Rq i∗Ei)−r ⊗ (

r
⋀E∣x×M)χ ;

the presence of the second factor is anormalization guaranteeing that thisLx
i doesnot

depend on the choice of universal bundle Ei . _e action of the Galois group Gal(δ i)
on Ṽi li�s to an action of Gal(δ i) on the line bundle Lx

i . _erefore, Lx
i descends to a

line bundle on Vi ; this descended line bundle on Vi will be denoted by L̂x
i . Two such

line bundles L̂x
i and L̂x

i have a natural identiûcation over Vi ∩ Vj . _erefore, these
line bundles {L̂x

i }bi=1 patch together compatibly to produce a line bundle

(3.4) Lx Ð→MX(d , r, α).

Note that this determinant line bundle can also be deûned for themoduli space

MX(d , r, α)

without Higgs bundle.
We remark that this line bundle Lx is invariant under the standard C∗ action in

(2.2) and we can choose a li� of this C∗ action to Lx .
_e ûber of this line bundle over a point corresponding to a Higgs bundle (E ,Φ)

is canonically isomorphic to

[(
top
⋀ H0(X , E))∗ ⊗ (

top
⋀ H1(X , E))]⊗r ⊗ (⋀Ex)χ .

Since the curve X is connected, the Néron-Severi class NS(Lx) of the line bundle
does not depend on the choice of the point x ∈ X.

Lemma 3.2 If u ∈ U is a point in theHitchin space corresponding to a smooth curve,
then the restriction of the line bundle Lx to the ûber

H−1(u) = Picd+r(r−1)(2g−2+n)/2(Xu)

is amultiple of the principal polarization of the Jacobian J(Xu) of the spectral curve Xu .
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Proof Let (E ,Φ) be a point in themoduli spaceM. If it is in the ûber H−1(u), then
there is a line bundle η on the spectral curve π∶Xu → X such that E = π∗η. _en the
ûber of Lx over this point is canonically isomorphic to

[(
top
⋀ H0(X , π∗η))

∗ ⊗ (
top
⋀ H1(X , π∗η))]

⊗r ⊗ (⋀(π∗η)x)χ

= [(
top
⋀ H0(Xs , η))

∗ ⊗ (
top
⋀ H1(Xs , η))]

⊗r⊗(⋀ηπ−1(x))χ .
_is is the ûber of a line bundle deûning amultiple of a principal polarization of the
Jacobian. _e last factor is just a normalization and theNéron-Severi class of the line
bundle does not depend on the choice of the point.

Hurtubise [Hu] considered (local) integrable systems H∶J → U, where U is an
open subset of Cm and J is a 2m-dimensional symplectic variety with holomorphic
symplectic form Ω, such that the ûbers of H are Lagrangian. Furthermore, suppose
there is a family of curves H′∶S → U such that for each u ∈ U, the ûber Ju = H−1(u)
is isomorphic to the Jacobian of Su = H′−1(u). For a point u ∈ U, if we ûx a point
s ∈ Su = (H′)−1(u), then we have the Abel map

Su Ð→ J(Su) = Pic0(Su), y z→ OSu(y − s).
_erefore, to deûne the Abel map I∶S→ J we need a section ofH′. Such sections can
be constructed locally on U. Under the assumption that

I∗Ω ∧ I∗Ω = 0,

Hurtubise proved that for the embedding I the variety S is co-isotropic, and the quo-
tienting of S by the null foliation results in a complex algebraic surface Q. _e form
I∗Ω descends to Q, and the descended form on Q, which we will denote by ω, is a
holomorphic symplectic form [Hu,_eorem 1.11]. He also proved that choosing a dif-
ferent Abel map I′ with I′∗Ω ∧ I′∗Ω = 0, we have I∗Ω = I′∗Ω when m ≥ 3, so that
the surface Q depends only on S and it is independent of the Abel map.

_eorem 3.3 ([Hu,_eorem 1.11 (i) and (ii)]) For an integrable system

H∶J→ U ⊂ Cm ,

with mapsH′∶S→ U, and I∶S→ J, as described above, there is an invariant surface Q
which only depends on S and not on the Abel map I whenever m ≥ 3.

Hurtubise [Hu, Example 4.3] showed that all these conditions are satisûed for the
usual moduli space of Higgs bundles, i.e., no parabolic points, but restricted to the
open subset U of theHitchin space U corresponding to smooth spectral curves

H∶MX ∣U → U .

Let q be the projection q∶S → K sending each point on a spectral curve to the total
space of the cotangent bundle and let ω be the natural symplectic form on the cotan-
gent. Hurtubise showed that I∗Ω = q∗ω. It follows that the surface Q is K.

_e conditions of the theorem also hold for themoduli space of strongly parabolic
Higgs bundles equipped with the Hitchin map, and in this case the surface Q is the
image of S → K(D). Note that all spectral curves go through zero on the ûbers over
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the parabolic points, because the eigenvalues of the residues are zero. _erefore, we
obtain the following corollary,whichwill be ourmain tool in the proof of_eorem1.1.

Note that the integer m in the statement of_eorem 3.3 is the genus of the spectral
curve,which is equal to dimMX(d , r, α) and hence, under the assumptions on genus
and rank of _eorems 1.1 and 1.2 we always have m ≥ 3 and hence can apply the
_eorem ofHurtubise.

Corollary 3.4 Let H∶MX(d , r, α)∣U → U . be the restriction of the Hitchin map
on the moduli space of parabolic Higgs bundles with generic weights α to the open set
U corresponding to nonsingular curves (cf. Lemma (4.1)). _en this integrable system
satisûes the conditions of the_eorem ofHurtubise and the surface Q is the image ofK
in K(D) under the injectivemorphism of sheaves K → K(D).

4 Proof of the Theorems

Let h∶T∗MX(d , r, α) → U = ⊕r
i=1 H

0(X ,K i((i − 1)D)) be the restriction to the
cotangent bundle of themoduli space of stable bundles of theHitchin integrable sys-
tem in (3.2). To each point u ∈ U we have the associated spectral curve Xu ⊂ S.

Lemma 4.1 If g ≥ 2 or r(2g − 2) + (r − 1)n ≥ 2g + 1, then the Zariski open subset U
of the variety U that parametrizes the smooth spectral curves is non-empty.

Proof If K r((r − 1)D) has a section without multiple zeros, then the above open
subset U is nonempty (cf. [BNR, Remark 3.5]). A holomorphic line bundle on X
of degree at least 2g + 1 is very ample (cf. [Har, IV Corollary 3.2]), and hence U is
non-empty whenever r(2g − 2) + (r − 1)n ≥ 2g + 1 and this holds when g ≥ 2.

Deûne J ∶= H−1(U), where H is theHitchin map for themoduli ofHiggs bundles
(3.2) and U is the open subset in Lemma 4.1. Let HJ∶J → U be the restriction of H.
Let HS∶S → U be the total space for the family of spectral curve over U , so that the
ûber of HS over any u ∈ U is the spectral curve Xu .
Aswe have seen in Corollary 3.4, the surface Q given by the theorem ofHurtubise

in this setting is the image of K in K(D) under the injective morphism of sheaves
K → K(D). In particular, Q is singular.

_emoduli space ofparabolicHiggs bundles is known to be aKählermanifoldpro-
videdwith aC∗ actionwhose restriction to an S1 action preserves theKähler structure

τ∶C∗ ×MX(r, d , α)→MX(r, d , α)
( t, (E ,Φ)) ↦ (E , t ⋅Φ).

(4.1)

_is C∗ action is compatible with scalar multiplication in the ûbers of the cotangent
bundle T∗MX(r, d , α) under the inclusion of this cotangent bundle in themoduli of
parabolicHiggs bundles. It induces a C∗ action on S:

C∗ × S→ S

(t, x ∈ Xu)↦ (tx ∈ Xt⋅u),
(4.2)
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where t ⋅ (s1 , . . . , sr) = (ts1 , t2s2 , . . . , trsr) (see (3.1)) and themultiplication tx is de-
ûned using the embedding of the spectral curve Xu in the total space of K(D). _is
action of C∗ on S evidently produces an action of C∗ on the quotient surface Q. Let
QC∗ ⊂ Q be the ûxed point locus for the above C∗ action on Q.

Lemma 4.2 _e subset QC∗ is the zero section of the ûbration K(D)→ X.

Proof Since the natural inclusion K ↪ K(D) of OX-modules commutes with the
multiplicative action of C∗, the surface Q, which is the image of the total space of K
in K(D), is preserved by the action of C∗ on K(D). _erefore, the action of C∗ on
K(D) produces an action of C∗ on Q. _is action of C∗ on Q coincides with the
action on Q induced by (4.2). _e lemma follows from this.

Corollary 4.3 _e curve X coincides with QC∗ .

Proposition 4.4 _e set of parabolic points coincides with the subset of QC∗ through
which every spectral cover passes.

Proof Since the residue ofΦ on the parabolic points is nilpotent, all spectral curves
Xu totally ramify over the parabolic points and they intersect the ûber over the para-
bolic points at zero.
Conversely, let x ∈ X be a point which is not parabolic. _ere exists a section

sr ∈ H0(K r((r − 1)D)) which does not vanish at x since this linear system is base
point free (cf. Lemma 4.1). Furthermore, this section still has no zero on x when
considered as a section ofH0(K r(rD)) because x is not a parabolic point. _erefore,
the spectral curve x̃ r + sr = 0 onK(D) intersects the ûber over x away from zero and
the spectral curve x̃ r = 0 intersects it only at zero, so there is no point over the ûber
of x through which every spectral cover passes.

4.1 Proof of Theorem 1.1

We are given themoduli spaceM as an abstract algebraic variety with a holomorphic
symplectic form, a line bundleL and a algebraicC∗ action onM with a linearization
onL. Looking at global functions onM, α∶M→ Spec Γ(M),we obtain amorphism α
which is isomorphic to theHitchin ûbration (cf. (3.3)) and the ûbers are Lagrangians
with respect to the given holomorphic symplectic form. _e subsetU ⊂ Spec Γ(M) of
points corresponding to smooth spectral curves can be recovered as the pointswhose
ûbers are abelian varieties. Let β be the restriction of α to U :

J
� � //

β
��

M

α
��

U �
� // Spec ΓM.

_e line bundleL restricts to (amultiple of) a principal polarization on these abelian
varieties, and then the classicalTorelli theoremgives us a family of curvesS→ U , such
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that the ûber Ju over u ∈ U is the Jacobian of Su . Locally onU there is anAbel–Jacobi
map I∶S→ J.

_e C∗ action on M restricts to a C∗ action on the family of Jacobians J. _is
family of Jacobians has a family of principal polarizations given by the line bundle
L. _e C∗ action has a li� to L; hence we have an action on the family of principal
polarized Jacobians.
By the proof given by Weil of the Torelli theorem [We, Hauptsatz, p. 35], an iso-

morphism ψ∶ (Ju , θu) → (Ju′ , θu′) of principal polarized Jacobians induces an iso-
morphism f ∶Su → S′u of the corresponding curves, and this provides an action ofC∗

on the family of curves S.
Nowwe apply Corollary 3.4 to obtain a surface Q as a quotient of S. _e action on

S that we have just clearly deûned coincides with the action given in (4.2). _erefore
by Corollary 4.3we recover X and by Proposition 4.4we recover the parabolic points
D, thus proving our main theorem.

4.2 Proof of Theorem 1.2

We are given the moduli space as a smooth algebraic variety M with a line bundle
L. We consider the total space of the cotangent bundle T∗M. _is has a canoni-
cal holomorphic symplectic structure and a C∗ given by scalar multiplication on the
ûbers. _e pullback of the line bundle to T∗M is trivial along the ûbers, so there is a
canonical li� of the C∗ action to the pullback of the line bundle L to T∗M.

We claim that the generic ûber of themorphism given by global sections

h∶T∗M → Spec(Γ(T∗M))
is an open subset of an abelian variety. Indeed, we know that M is the moduli space
for some algebraic curve X (whichwewant to ûnd), sowe know that T∗M is an open
subset of amoduli space of parabolicHiggs bundlesM and byCorollary 5.11we know
that the codimension of the complement of this open set is at least two. _erefore,
global sections on T∗M extend uniquely to global sections on M and themorphism
h is the restriction of themorphism of global sections of somemoduli space ofHiggs
bundles M:

T∗M h //� _

��

Spec Γ(T∗M)

M
H // Spec Γ(M).

_e compactiûcation of the ûber over u to an abelian variety is unique because bi-
rational abelian varieties are isomorphic. _erefore, the isomorphism class of J ∶=
H−1(U) is uniquely deûned by the isomorphism class of M and does not depend on
the choice ofM.

Since the codimension of the complement of the inclusion T∗M∣U ⊂ J is at least
two, all the structure thatwe have on T∗M extends uniquely to J, namely the determi-
nant line bundle L, the C∗ action with the li� to L, and the holomorphic symplectic
form. _erefore we can now use the same arguments as in the proof of themain the-
orem to recover the curve X and the parabolic points.
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5 Codimension Computation

In this section we compute the codimension of the complement of T∗M(d , r, α) in-
sideM(d , r, α) ûber-wise following the arguments in [BGL, Section 5]. _is comple-
ment is

V = {(E ,Φ) ∈M(d , r, α) ∣ E is unstable} .

Recall from (4.1) that the moduli space of parabolic Higgs bundles is known to
be a Kähler manifold provided with a C∗-action, whose restriction to an S1-action
preserves the Kähler structure.

_is action provides us with two stratiûcations of the moduli space. _e ûrst one
is the Białynicki–Birula stratiûcation consisting of subsets ofM(d , r, α) such that

U+
λ ∶= {p ∈MX(d , r, α); lim

t→0
tp ∈ Fλ}

and

U−
λ ∶= {p ∈MX(d , r, α); lim

t→∞
tp ∈ Fλ},

where Fλ are the disjoint connected components of the ûxed pointed set F for the
C∗-action on M(d , r, α).

_e second one is known as theMorse stratiûcation and comes from the restriction
of theC∗-action to an S1-action. _e last also preserves theKähler form, hence it gives
us a circleHamiltonian action on M(d , r, α) with associatedmoment map

µ∶MX(r, d , α)→ R

(E ,Φ)↦ ∥Φ∥2

which is proper, bounded below, and has a ûnite number of critical submanifolds. So
this map is aMorse–Bott map.
For any component Fλ , we recall the deûnition of the upwards Morse strata, Ũ+

λ ,
and the downwards Morse strata, Ũ−

λ , that is,

Ũ+
λ ∶= {p ∈MX(d , r, α); lim

t→−∞
ψt(p) ∈ Fλ}

and

Ũ−
λ ∶= {p ∈MX(d , r, α); lim

t→+∞
ψt(p) ∈ Fλ},

where ψt is the gradient �ow for µ.
Recall that these stratiûcations were proved to be equal U+ = Ũ+ and U− = Ũ− by

Kirwan [Ki,_eorem 6.18]. We remark that Kirwan stated and proved the theorems
for compact manifolds, but as she pointed (cf. [Ki, Chapter 9]), these results remain
valid if every path of steepest descent for the function µ is contained in some compact
subset. In our case this holds, because theHitchin map is proper.

_e union N = ⋃λ Ũ−
λ is known as downwards Morse �ow.

_e inverse over the 0 point of theHitchin map H−1(0) is called the nilpotent cone
and it coincides with the downwards Morse �ow, i.e., N = H−1(0) [GGM, _eorem
3.13]. _e following proposition takes the same steps as Proposition 5.1 [BGL].
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Proposition 5.1 Let V be the complement of the cotangent bundle of MX(d , r, α)
in MX(d , r, α) and let V′ be the Białynicki–Birula �ow which does not converge to
MX(d , r, α).

V = {(E ,Φ) ∈MX(d , r, α) ∶ E is unstable},
V′ = {(E ,Φ) ∣ lim

t→0
(E , t ⋅Φ) ∉ MX(d , r, α)}.

_en V′ = V.

Proof If (E ,Φ) ∉ V, then E is semistable, and in fact stable, since we are assuming
that the weights α are generic. _en limt→0(E , t ⋅Φ) = (E , 0) ∈ MX(d , r, α), so this
proves that V′ ⊂ V.

To prove the converse, take (E ,Φ) where E is unstable. _e standard action ofC∗

produces amorphism γ

γ∶C∗ →M(d , r, α)
t ↦ (E , t ⋅Φ)

_e composition with the Hitchin map is such that limt→0 h(E , t ⋅ Φ) = 0, and this
implies, by properness of theHitchin map that γ extends to amorphism γ̃ on C.

If the moduli space admits a universal parabolic Higgs bundle, the morphism γ̃
induces a family of stable parabolic Higgs bundles parametrized by the aõne line C.
In general, there is an open neighborhood of the limiting point γ̃(0)which has a uni-
versal bundle, and this produces a family of stable parabolic Higgs bundles (Et ,Φt)
parametrized by an open neighborhoodU of the origin ofC. If t ≠ 0, then the under-
lying parabolic bundle Et is E, hence unstable. Semistability is an open condition ([Ni,
Proposition 1.7]), therefore E0 is also unstable. Note that limt→0(E , t ⋅Φ) = (E0 ,Φ0),
hence this limiting point is not in MX(d , r, α) which means that (E ,Φ) ∈ V′.

_e following facts are recovered from the literature on parabolic Higgs bundles.
Let (E ,Φ) be a ûxed point for the circle action. We have an isomorphism (E ,Φ) ≅
(E , e iθΦ) for θ ∈ [0, 2π) yielding the following commutative diagram.

E Φ //

ψθ

��

E ⊗ K(D)

ψθ⊗1K(D)
��

E e iθΦ // E ⊗ K(D).

Proposition 5.2 ([Si,_eorem 8]) If (E ,Φ) belongs to a critical subvariety Fλ for the
circle action on MX(d , r, α), then E splits E =⊕m

l=0 E l and

Φ ∈ H0(SParHom(E l , E l+1)⊗ K(D)).

_e parabolicHiggs bundle in this case (E ,Φ) is calledHodge bundle.
_e deformation theory of the moduli space of parabolic Higgs bundles was

worked out in [Yo]. It is given by the following complex of bundles,

C●(E)∶ParEnd(E) Φ∶=[ ⋅ ,Φ]Ð→ SParEnd(E)⊗ K(D).
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_e tangent space of the moduli space MX(d , r, α) at a stable point (E ,Φ) is then
the ûrst hypercohomology groupH1(C●(E)) of this complex. Hence for a ûxed point
(E ,Φ) of the C∗-action, the decomposition in Proposition 5.2 induces a decomposi-
tion of the deformation complex and of the tangent space at the ûxed point. _at is,
we deûne

Ck ∶= ⊕
j−i=k

ParHom(E i , E j) and Ĉk+1 ∶= ⊕
j−i=k

SParHom(E i , E j)

so then

C●(E)k ∶Ck
ΦkÐ→ Ĉk+1 ⊗ K(D) and C●(E) =

k=m
⊕

k=−m−1
C●(E)k .

For this deformation complex, there is a long exact sequence

0Ð→ H0(C●(E)k)Ð→ H0( ⊕
j−i=k

ParHom(E i , E j))

Ð→ H0( ⊕
j−i=k

SParHom(E i , E j)⊗ K(D))Ð→ H1(C●(E)k)

Ð→ H1( ⊕
j−i=k

ParHom(E i , E j))Ð→ H1( ⊕
j−i=k

SParHom(E i , E j)⊗ K(D))

Ð→ H2(C●(E)k)Ð→ 0.

_erefore, the tangent space T(E ,Φ)MX(r, d , α) decomposes as follows.

_eorem 5.3 ([GGM, _eorem 3.8]) _e function µ∶MX(r, d , α) → R deûned by
µ(E ,Φ) = ∥Φ∥2 is a perfectMorse–Bott function. A parabolicHiggs bundle represents a
critical point of µ if and only if it is a parabolic complex variation ofHodge structure, i.e.,
E =⊕m

k=0 Ek withΦk = Φ∣Ek ∶ Ek → Ek+1⊗K(D) strongly parabolic (whereΦ = 0 if and
only if m = 0). _e tangent space to MX(r, d , α) at a critical point (E ,Φ) decomposes
as T(E ,Φ)MX(r, d , α) = ⊕m+1

k=−m T(E ,Φ)MX(r, d , α)k , where the eigenvalue k subspace
of the Hessian of µ is T(E ,Φ)MX(r, d , α)k ≅ H1(C●(E)−k).

Proposition 5.4 ([GGM, Proposition 3.9])
(i) _ere is a natural isomorphism

H1(C●(E)k) ≃ H1(C●(E)−k−1)∗

and hence a natural isomorphism

T(E ,Φ)MX(r, d , α)k ≃ (T(E ,Φ)MX(r, d , α)1−k)∗

(ii) If (E ,Φ) is stable, then we have

H0(C●(E)k) =
⎧⎪⎪⎨⎪⎪⎩

C if k = 0,
0 otherwise,

and

H2(C●(E)k) =
⎧⎪⎪⎨⎪⎪⎩

C if k = −1,
0 otherwise.
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Lemma 5.5

dimH1(C●(E)k) =
⎧⎪⎪⎨⎪⎪⎩

1 − χ(C●(E)k) if k = 0,−1,
−χ(C●(E)k) otherwise.

For a critical point (E ,Φ) of µ we denote by T(E ,Φ)MX(r, d , α)<0 the subspace
of the tangent space on which the Hessian of µ has negative eigenvalues. _e real
dimension of this subspace is called theMorse index at the point (E ,Φ).

Proposition 5.6 _e codimension of the complement of T∗MX(d , r, α) in
MX(d , r, α) is equal to half of the minima of theMorse indexes at points (E ,Φ) ∈ Fλ
for λ ≠ 0.

Proof _e complement of T∗MX(d , r, α) is equal to V which is also equal to V′

from Proposition 5.1. Morse–Bott theory gives us that V′ = ⋃λ≠0 U+
λ , so we conclude

that codim(V) = minλ≠0 codimU+
λ . From Morse–Bott theory we also know that the

dimension of the upwards Morse �ow is such that

dimU+
λ + dimT(E ,Φ)MX(d , r, α)<0 = dimMX(d , r, α),

where TEMX(d , r, α)<0 is the negative eigenspace for the Hessian of the perfect
Morse–Bott function µ for some E ∈ U+

λ . Since the Morse index µλ is equal to
2dimTEMX(d , r, α)<0,

codimU+
λ = 1

2
µλ .

Our statement is then

codim(V) = min
λ≠0

1
2
µλ ,

that is, codim(V) = minλ≠0 dimTEMX(d , r, α)<0 .

Lemma 5.7
T(E ,Φ)MX(d , r, α)<0 = ∑

k>0
−χ(C●(E)k .

So we need to bound the Euler characteristic for any k.

Proposition 5.8 _e following inequality holds:

−χ(C●(E)k) ≥ (g − 1)( rk(Ck) − rk(Ĉk+1)) .

Proof Recall that

χ(C●(E)k) = dimH0(Ck) − dimH1(Ck) − dimH0(Ĉk+1 ⊗ K(D))
+ dimH1(Ĉk+1 ⊗ K(D))

= deg(Ck) − deg(Ĉk+1) − rk(Ĉk+1)deg(K(D)) + (rk(Ck)
− rk(Ĉk+1))(1 − g).
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We ûrst bound deg(Ck)−deg(Ĉk+1). Consider the following short exact sequences
of bundles,

0Ð→ ker(Φk)Ð→ Ck Ð→ im(Φk)Ð→ 0

0Ð→ im(Φk)Ð→ Ĉk+1 ⊗ K(D)Ð→ coker(Φk)Ð→ 0.

_en

deg(Ck) − deg(Ĉk+1) = deg(ker(Φk)) + deg(K(D)) rk(Ĉk+1) − deg(coker(Φk)).

_e ker(Φk) ⊂ ParEnd(E) is a subbundle of the bundle of parabolic endomor-
phisms of E, which we claim is semistable whenever E is stable (see Lemma 5.9).
Hence pardeg(ker(Φk)) ≤ 0 and this implies deg(ker(Φk)) ≤ 0.

Hence deg(Ck) − deg(Ĉk+1) ≤ deg(K(D)) rk(Ĉk+1) − deg(coker(Φk)). We also
get that

(5.1) −deg(coker(Φk)) ≤ (2 − 2g)(rk(Ĉk+1) − rk(Φk)),

so that

(5.2) deg(Ck) − deg(Ĉk+1) ≤ n rk(Ĉk+1) + (2g − 2) rk(Φk)

in the following way.
Note that for any two parabolic bundles E and F,

ParHom(E , F)∗ = SParHom(F , E)⊗O(D).

So then

C∗k = ( ⊕
j−i=k

ParHom(E i , E j))
∗ = ⊕

j−i=k
SParHom(E j , E i)⊗O(D) = Ĉk ⊗O(D).

Consider the adjoint map Φt
k ∶ ( Ĉk+1 ⊗ K(D))∗ → (Ck)∗. _en

ker(Φt
k)↪ ( Ĉk+1 ⊗ K(D))∗ ≅ C−1−k ⊗ K−1 .

Dualizing again, we get a surjective homomorphism, Ĉk+1 ⊗ K(D)→ (ker(Φt
k))

∗
.

Deûne the homomorphism f ∶ coker(Φk)→ ker(Φt
k)∗ whichmakes the following

diagram commutative

0 // im(Φk) // Ĉk+1 ⊗ K(D) // coker(Φk) //

f
��

0

0 // (im(Φt
k))∗ // Ĉk+1 ⊗ K(D) // (ker(Φt

k))∗ // 0.

Note that f is surjective and ker( f ) is a torsion subsheaf. Hence,

0Ð→ ker( f )Ð→ coker(Φk)Ð→ (ker(Φt
k))∗ Ð→ 0,

and deg(coker(Φk)) ≥ deg(ker(Φt
k)∗). As ker(Φt

k) is a sub bundle of Ck+1 ⊗ K,

(5.3) −deg(coker(Φk)) ≤ deg(ker(Φt
k))
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Note that there are isomorphisms making the following diagram commutative

(Ĉk+1 ⊗ K(D))∗

≅

��

Φt
k // (Ck)∗

≅

��
C−1−k ⊗ K−1

Φ−1−k⊗1K−1

// Ĉ−k ⊗O(D),

therefore Φt
k ≅ Φ−1−k ⊗ 1K−1 so ker(Φt

k) = ker(Φ−1−k)⊗ K−1 and

deg(ker(Φt
k)) = deg(ker(Φ−1−k)) + (2 − 2g) rk(ker(Φ−1−k))

Notice that rk(Φ−1−k) = rk(Φt
k) = rk(Φk) and rk(Ĉk+1) = rk((Ĉk+1)∗) =

rk(C−1−k). _en rk(ker(Φ−1−k)) = rk(Ĉk+1) − rk(Φk), so that equation (5.3) be-
comes

−deg(cokerΦk) ≤ deg(ker(Φ−1−k)) + (2 − 2g)( rk(Ĉk+1) − rk(Φk))
and ûnally, by stability (see Lemma 5.9),

−deg(cokerΦk) ≤ (2 − 2g)(rk(Ĉk+1) − rk(Φk)).
_is provides equation (5.1).

Putting together equations (5.1) and (5.2) we get

χ(C●(E)k) ≤ (1 − g)(rk(Ck) − rk(Ĉk+1)),
hence, −χ(C●(E)k) ≥ (g − 1)(rk(Ck) − rk( Ĉk+1)) , as we wanted.

Lemma 5.9 If (E ,Φ) is a stable parabolic Higgs bundle, then (ParEnd(E), ad(Φ))
is semistable.

Proof _e proof follows the arguments in [GLM, Proposition 6.7] adapted to the
parabolic situation. _at is, the vector bundle ParEnd(E) has a natural parabolic
structure induced by the parabolic structure of E. In fact ParEnd(E) as a parabolic
bundle is the parabolic tensor product of the parabolic bundle E and the parabolic
dual of E (see [Yo]), and hence its parabolic degree is 0. With respect to this parabolic
structure (ParEnd(E), ad(Φ)), where ad(Φ)∶ParEnd(E)→ SParEnd(E)⊗K(D) is,
again, a parabolicHiggs bundle. Now, the stability of (E ,Φ) implies the polystability
of (ParEnd(E), ad(Φ)).

Proposition 5.10 codim(V) ≥ 1
2 (r − 1)(g − 1).

Proof Propositions 5.6 and 5.8 give

codim(V) = min
Fλ

{∑
k>0

−χ(C●(E)k)}

≥ min
Fλ

{∑
k>0

(g − 1)(rk(Ck − rk(Ĉk+1))} = rk(C1)(g − 1),

where rk(C1) = rk(⊕ j−i=1 ParHom(E i , E j). So if we denote r i = rk(E i), the rank of
each piece is rk(ParHom(E i , E j) = 1

2 r ir j , then rk(C1) = 1
2 (r1r2 +⋅ ⋅ ⋅+ rm−1rm)which

is deûnitely rk(C1) ≥ 1
2 (r − 1).
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Corollary 5.11 For g = 2 and r ≥ 5 or g = 3 and r ≥ 3 g ≥ 5 and r ≥ 2, and u a generic
point in U, the codimension of the complement of the ûber h−1(u) in H−1(u) is greater
than or equal to 2.

Remark 5.12. _e codimension does not depend on the number ofmarked points, as
in [BGL] it did not depend on the degree of the line bundle L, which was twisting the
Higgs bundle and in this case is K(D).

We also obtain the following.

Corollary 5.13 For g = 2 and r ≥ 5 or g = 3 and r ≥ 3 g ≥ 5 and r ≥ 2, the moduli
space of parabolic bundles has the same number of irreducible components as themoduli
space of parabolic Higgs bundles.
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