ON GROUPS WITH ALL COMPOSITION FACTORS ISOMORPHIC

R. Bercov

(received January 13, 1966)

By the celebrated theorem of Jordan [3] and Hölder [2], there is associated with each finite group G a family of distinct simple groups H_i such that every composition series of G has n_i factor groups isomorphic to H_i and no others. We denote the collection of pairs (H_i, n_i) by CF(G). Conversely, given k pairs (H_i, n_i) , we may construct by an easy direct product procedure a group G with CF(G) = $\{(H_i, n_i) | i = 1, ..., k\}$. The composition factors, of course, do not in general determine the group. The purpose of this note is to give a necessary and sufficient condition in the case k = 1 where $H = H_1$ is nonabelian that there should be only one isomorphism class of groups

G with $CF(G) = \{(H, n)\}$. We require a very weak form of the well known conjecture of Schreier [4] that the outer automorphism group of a finite simple group is solvable.

THEOREM. Let H be a non-abelian finite simple group such that no subgroup of the outer automorphism group of H is isomorphic to H. Let m be the smallest degree of a faithful permutation representation of H. Let H^n be the direct product of n copies of H. Then there exists G not isomorphic to H^n with $CF(G) = CF(H^n)$ if and only if n > m.

<u>Proof.</u> If n > m holds, H has a faithful permutation representation \overline{H} on n-1 letters (not necessarily moving all letters). It is easily seen that the wreath product G of \overline{H} with itself [1, p. 81] satisfies $CF(G) = CF(H^n)$ and is of larger exponent than H^n .

Canad. Math. Bull. vol. 9, no. 4, 1966

413

We now choose n smallest such that G not isomorphic to H^{n} exists with $CF(G) = CF(H^{n})$. Let M be a maximal normal subgroup of G. By the minimality of n, we have $M = M_{1} \times \ldots \times M_{n-1}$, where M_{i} is isomorphic to H for $i = 1, \ldots, n-1$. For $y \in G$, we denote by a(y) the automorphism of M which maps $z \in M$ to $y^{-1} z y$. Since an automorphism of a direct product of finitely many non-abelian simple groups permutes the factors [1, p. 135], a(y) induces a permutation on the M_{i} which we denote by \overline{y} . Let $\overline{G} = {\overline{y} | y \in G}$.

We claim that no M_i is fixed by all $\overline{y} \in \overline{G}$. Suppose the contrary. Let $L = M_i$ be fixed by \overline{G} and let C be the product of the M_i , $j \neq i$. Then L is normal in G and for $y \in G$ there is an automorphism y^* of L which maps $z \in L$ to $y^{-1} z y$. Let K, the centralizer of L in G, be the kernel of the map $y \rightarrow y^*$. Since $M = L \times C$ we have C contained in K. Since L is isomorphic to H, it has trivial center; thus $K \cap L = 1$. If K were larger than C, KL would be larger than the maximal normal subgroup M. We would then have $G = K \times L$, K isomorphic to M by the minimality of n, and G isomorphic to H^n contrary to hypothesis. Thus K = C, and $G^* = \{y^* \mid y \in G\}$ has normal subgroup $L^* = \{y^* \mid y \in L\}$ with factor group isomorphic to H. Since L^* is the inner automorphism group of L, the outer automorphism group of L, hence of H, has a subgroup isomorphic to H, contrary to hypothesis.

 \overline{G} is therefore non-trivial of degree n-1. Since the M_j are normal in M, the kernel of the map from G to \overline{G} contains M. Since \overline{G} is non-trivial, it follows from the maximality of M that \overline{G} is isomorphic to G/M; hence to H. Thus H has a faithful permutation representation of degree n - 1. We conclude that n - 1 \geq m and n > m.

We now illustrate our result by applying the theorem in its simplest case.

COROLLARY. There exists a group G with n composition factors, each isomorphic to A_{μ} , the alternating group on

414

<u>Proof</u>. The Schreier conjecture is valid for A_k [5, p. 314]. A_k has a natural faithful representation of degree k but none of smaller degree since the symmetric group on k - 1 letters has fewer elements than the alternating group on k letters.

REFERENCES

- Marshall Hall, Jr., The Theory of Groups. MacMillan, (1959).
- O. Hölder, Zuruckfuhrung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen. Math. Ann. 34, (1889), pages 26-56.
- C. Jordan, Commentaire sur Galois. Math. Ann. 1, (1869), pages 141-160.
- O. Schreier and B. L. van der Waerden, Die automorphismen der projektiven Gruppen. Abh. Math. Sem. Hamburg 6, (1928), pages 303-322.
- 5. W.R. Scott, Group Theory. Prentice-Hall, (1964).

University of Alberta, Edmonton