
ON A THEOREM OF HAYMAN CONCERNING 
QUASI-BOUNDED FUNCTIONS 

P. B. K E N N E D Y 

1. If /(z) is regular in \z\ < 1, the expression 

m(r,f) = ± J j o g + \f(re(°) \dd (0 < r < 1) 

is called the characteristic of f(z). This is the notation of Nevanlinna (4) for the 
special case of regular functions; in this note it will not be necessary to discuss 
meromorphic functions. If m(r,f) is bounded for 0 < r < 1, then/(z) is called 
quasi-bounded in \z\ < 1. In particular, every bounded function is quasi-
bounded. The class Q of quasi-bounded functions is important because, for 
instance, a "Fatou theorem" holds for such functions (4, p. 134). It is known 
t h a t / Ç Q does not imply/' Ç Q in general ; the simplest counterexample seems 
to be that given in (1), §8. Hayman (1, Theorem IV) found extra hypotheses 
under which / Ç Q implies / ' £ Q. The purpose of this note is to construct 
examples which shed some light on the "goodness" of these hypotheses. The 
method is similar to one used in (2); it is essentially a combination of a con­
struction due to Littlewood (3, §8.5) with a theorem of Specht (5) on con-
formal mapping. 

2. Let D be a domain containing a sequence of open arcs 

(2.1) z = eid, 0n<d<dn + 8n, n= 1 , 2 , 3 , . . . . 

Let d(6) denote the distance from eid to the boundary of D, and suppose that 
there are positive numbers A and B, independent of 6 and n, such that 

d{6) > A{(e -en)(dn + ôn -e)}B (en <e <en + ôn, n = 1 ,2 ,3 , . . . ) . 

Then, following Hayman (1), we say that D properly contains the sequence of 
arcs (2.1). Hayman has shown that, if D contains \z\ < 1 and properly contains 
a sequence of non-overlap ping arcs (2.1) such that 

(2.2) fia*- 2TT, 
i 

(2.3) fi Uogf < °°> 
i àn 
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and if f{z) is regular and bounded in D, then f(z) is quasi-bounded in \z\ < 1. 
This is a very special case of Theorem IV of (1), but it is sufficient for our pur­
pose in this note. 

We prove the following theorem, which sets a limit to the extent to which 
it may be possible to relax the condition (2.3). 

THEOREM. Let {8n} be a non-increasing sequence satisfying (2.2) and 

(2.4) lim sup ( É « J log - = œ, 
w->co \ n / "n 

and let {Bn) be such that no two of the arcs (2.1) overlap. Then there exist a domain 
D containing \z\ < 1 and properly containing the sequence of arcs (2.1), and a 
function f{z) regular and bounded in D such that rn(r,f) -+ °° as r —> 1. 

(2.4) does not follow from 
OO "I 

(2.5) £ U o g - = »; 
i on 

for example, if 

a 1 

n[\og n) 
for all large enough n, then (2.4) is false although (2.5) is true. Thus there 
remains a gap between the positive information given by Hayman's theorem 
and the negative information which comes from the result proved in this 
note. I have not found a method of closing this gap. However, our result 
shows that (2.3) cannot in general be replaced by 

oo / j \ « 

< oo 

for any a < 1, or even by certain rather stronger conditions than this. 
In the theorem, the sequence of arcs (2.1) may be obtained by putting 

0i = 0, 6n+i = 6n + 8n, in which case (2.1) is a sequence of arcs whose end-
points have no limit-point except z = 1, and whose complement is the se­
quence {ei6n\. But it should be noted that a more complicated situation may 
also occur, in which the arcs (2.1) form the complement of an uncountable 
set. 

Some remarks on the other hypotheses of Hayman's theorem are made in 
§6. 

3. In this section and the next we assume only that (2.1) is a sequence of 
non-overlapping arcs; the other hypotheses of the theorem are not needed at 
this stage. However, we suppose, as we may without loss of generality, that 
0i < 0n < 0i + 2x for every n. Let c > 0 be a constant, and for n = 1, 2, 3, . . . 
put 

Me) = c(0 - eny(6n + ôn - ey (en < e < en + ôn). 
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Moreover put \p(6) = 0 for all other values of 0 in 0X < 0 < 0i + 27r, and de­
fine \//(d) outside this interval by requiring it to have period 2w. Then we have 

LEMMA 1. There is an absolute constant K with the following properties: 
(i) for all 0 and n, 

yfriff) < Kc\e - 0n|
3, 

(ii) yp{6) is twice continuously differ entiable, and for all 0, 

|^(0) | <Kc, | ^ ( 0 ) | <Kc. 

A full proof of Lemma 1 involves some lengthy repetition, and so we leave 
some details to the reader. Let the subset 5 of (0i, 0i + 2ir) be defined by 

S= U (0»,0* + ô„)> 
i 

and let T denote the complement of 5 with respect to the closed interval 
(0i, 0i + 2ir). We first prove that, for 0 Ç T and all 0, 

(3.1) *(0) < KlC\d - 0|3, 

where K\ is an absolute constant. If 0 Ç 5, then 0, < 0 < 0̂  + 5j for some j , 
and therefore, since <j> Ç T> 

|0 - 4>\ > min (0 - 0jf 0, + 5, - 0). 
Since 
(3.2) 6 - 6j < 2TT, dj + ÔJ - d < 2TT, 

it follows that 

I * - 4>\>^-(e-ej)(dj + oj-e). 

From this and the definition of yp{B) we get (3.1), with a suitable Ku for all 
0 Ç 5; and (3.1) is obvious if 0 £ 7\ Further, a simple argument from the 
periodicity of \[/(d) shows that (3.1) must then be true for all 0. In particular, 
putting <t> = 0n, we get (i) with K = K\. 

From (3.1) it follows that <//(<£) = 0 for all 0 Ç T. For 0n < 0 < 0n + ô„ 
we have 

*'(d) = 3c(0 - 0j2(0n + «n - 0)2(20n + ôn - 20). 

We can now carry out an argument similar to that used above, with *A'(0) 
instead of ^(0), to find that 

|^(0) | <K2c\d -<t>\2 (* 6 T, all0), 

where K2 is an absolute constant. It follows easily that ^'(0) is everywhere con­
tinuous and satisfies |^'(0)| < 4:ir2K2c. Thus the part of (ii) which refers to 
^'(0) is proved with K = 4TT2X2. 

The required properties of ^"(0) are proved similarly. Lemma 1 then follows, 
for some sufficiently large absolute constant K. 
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Let the domain D be the interior of the simple closed contour r = exp \p(d) 
in the z — rei0-plane. Then we have the following lemma. 

LEMMA 2. D contains \z\ < 1 and properly contains the sequence of arcs 
(2.1). 

It is obvious that D contains \z\ < 1. Let d (0, h) denote the distance bet­
ween eid and exp{^(0 + h) + i(6 + h)}. To complete the proof of Lemma 2 
it is plainly enough to show that there is a number A > 0, independent of 0, 
h, and n, such that 

(3.3) d(e,h)>A(o- ony{on + bn - ey 

for all 6 and h satisfying 

(3.4) Bn < d < Bn + ôn, dn<d + h <6n + 8n. 

By periodicity we may suppose 

(3.5) \h\ < 7T. 

When (3.4) is true, we have 

{did, h)}2 = {expyp{6 + h) - l } 2 + 4 s i n 2 ^ exp f(0 + h). 

Thus by (3.5), 
d(6, h) > 2|sin \h\ > 2TT-1 |^|, 

and if 

(3.6) \h\ > (4TT)-1(0 ~ 0n) (0H + ôn-0), 

then (3.3) follows from this with a suitable absolute constant Ay say A = AQ. 
On the other hand, if (3.6) is false, then by (3.2) 

|*| < *(* -0n), \h\ < UOn + dn ~ 0). 

Therefore 

d(0, A) > exp if(0 + A) - 1 > f(0 + h) 

> c(o -on- \h\y(on + dn - o - \h\y 
>2-«c(0 -0n)K0n + *n ~ 0)\ 

and this is (3.3) with A = 2~6c. Thus in any case (3.3) is true with A = min 
(A0, 2~~6c), and this proves Lemma 2. 

4. We continue in the notation of §3. We now suppose that the constant c, 
occurring in the definition of ^(0), is chosen so small that 

C I 

(4.1) 1 < exp W) < go -

(4.2) |f(«)l<^, 
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<4-3' hi 
(4.4) exp f(0) < 2 - r for |0 - 0n| < 1 - r (» = 1, 2, 3, . . . ), 

the integral in (4.3) being uniformly convergent with respect to 0o for 0 < 0o 
< 2TT. The possibility of such a choice of c is easily seen from Lemma 1. 

Let w = w(z) map D one-one and conformally onto \w\ < 1, with w(0) = 0 
and w'(0) > 0. We then have the following lemma, due to Specht (5, Theorem 

m). 
LEMMA 3. (4.1), (4,2), and (4.3) together imply that w'(z) exists* for all z 

in the closure of D and satisfies 

(4.5) \w\z) - 1| < | . 

Lemma 3 follows at once from Specht's result if, in that result, we inter­
change the z- and ^-planes, write exp \p(6) instead of p(0), and put e = 8 = 1/80. 
It should be noted that Specht actually gives a bound for \zf(w) — 1|, where 
z(w) is the inverse function of w(z); but from this one may readily derive 
(4.5), which is more suitable for our purpose. 

From Lemma 3 and (4.4) we now deduce 

LEMMA 4. For |0 — 6n\ < 1 — r we have 

| ( 1 - r) < 1 - \w(reie)\ < 3(1 - r). 

First let z(w) be the inverse function of w(z), as above. If reid = z(pei<p), 
then 

1 - r < \z(e^)\ - \z(pe^)\ < \z(ei(p) - z(pe^)[. 

This is less than 2(1 — p) by the first mean-value theorem, since |s'(w)| < 2 
by (4.5). Thus for all 0, 

1 - \w(reid)\ = 1 - p > J ( l ~r). 

On the other hand, we have 

1 - \w(rei$)\ = |w[exp{iK0) + iB}]\ - \w(rei6)\ 

< |ze;[exp{^(0) + ^0}] - w(reiB)\ 

< | { e x p ^ ( 0 ) - r } , 

by the first mean-value theorem, since |«/(s)| < 3/2 by (4.5). Hence by 
(4.4), for |0 - 9n\ < 1 - r , 

*If z is on the boundary of D, then by w'(z) we mean lim {w(t) — w{z))/(t — z) as t —> 2 
with / in the closure of P . 

sin *(fl - 0O) 
dd < 

80 
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1 - \w(reie)\ < | (2 - r - r) « 3(1 - r). 

This proves Lemma 4. 

5. In this section we make use of all the hypotheses of the theorem. Let 
D be as in §3, so that, in view of Lemma 2, the proof of the theorem will be 
complete when we have shown that a function f(z) with the required proper­
ties exists. 

Choose a sequence of integers {mk} such that, as k —> » , 

(5.i) r 5 * — • ° ° . 
°mjc+i 

(5.2) (fi «Jlogjp-». 

Such a choice is possible by (2.4). Put 

<5-3) - - iil 
where the square brackets denote the integer part, and let 

(5.4) /(«) = É j - ' M s ) } " ' , 

where w(s) is as in §4. Since w(z) is regular in D and |w(z)| < 1 there, it follows 
that / (z) is regular and bounded in D. 

Let 
(5.5) rk = 1 — ôOTJb, 

and denote by Ek the union of the set of arcs 

z = r*«"f |0 - 0n| < 8mk 

When z Ç Ek we have, by Lemma 4 and (5.5), 

è<5mA < 1 - \w(z)\ < Sômk. 

Hence by (5.4), when z 6 Ek, 

(» = 1 , 2 , 3 , . . . ) . 

wf(z) E AlwWl" 
^ - 1 

> jrVx*)!"* - E r2«>(z)r - E .r^W*)! 
*+l 

> r*nt(l - 3 5ffltr ~ E J~\ - E j_«.(l - * *»*)"*. 

that is, 

(5.6) 

say. 

www 
w'(z) 

> *"*«»(! " 3 5mkr - E i - E* -
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By (5.3), 

(5.7) ( l - 3 5 „ r ^ e - 3 ( * - • » ) . 

Moreover, by (5.1) and (5.3), 

(5.8) E i = 0(1)(k - 1 ) - V , = o(k~2nk). 

Further, the simple inequality 

(1 - x)n < (nx)~\ 

which holds for 0 < x < 1 and n > 0, gives 

(1 - i àmk)
ni < 4:ti~2ô~2

k = 0(ri]2nl), 

by (5.3). Hence by (5.1) and (5.3), 

2 Jc+1 

= o(*"2»ï»r+i)i 
and so 

(5.9) £ 2 = o(k~2nk). 

Combining (5.6), (5.7), (5.8), and (5.9), we get 

,, . > lt\k nk} 

I w (z) I 

for all large enough k, where 77 > 0 is a constant. But by (4.5) and the fact 
that \w(z)\ < 1 we have \w'(z)/w(z)\ > J, and so 

(5.10) |/ '(s) | > Vk~2nk (z e Ek) 

for all large enough k. 
By the monotonicity of {ôn} and the definition of Ek, the union of the 

sequence of non-overlapping arcs 

z = rké\ dn < B < 0n + Ôn, n = mk, mk + 1, mk + 2, . . . , 

is contained in Ek. Hence the angular measure of Ek is at least 
00 

mk 

But 

tn(rk,f') > ± J l o g + | . . .\f(rke
ie)\ dO, 

the integral being taken over the set of 0 in ( - i r , ir) such that rke
ie € Ek. 

Hence by (5.10), 
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m(rk,f) > 7T ( Z 8 J log (r}k \ ) , 
L-ÏÏ \j=mk / 

for all large enough k. It is easy to deduce from this, with (5.1), (5.2), and 
(5.3), that m(rk,f) —> œ as k —» °°. Since m(r,f) is an increasing function of 
r (4, p. 8), it follows that m(r,f) —> oo as r —» 1. This proves the theorem. 

6. It is easy to see from Theorem III of (2) that the condition (2.2) is 
essential for the truth of Hayman's theorem, and that some "order-of-contact 
condition," of the kind occurring in the definition of "properly contains," is 
also necessary. It is possible to construct examples giving more complete in­
formation about these hypotheses, but this does not seem worthwhile. 

Professor Hayman has sent me the following remark. "As Professor A. A. 
Goldberg has kindly pointed out to me, Theorem III of (1) is in fact contained 
in a more general result of R. Nevanlinna (Acta Soc. Sci. Fennicae, 50, no. 12 
(1925)), and this paper is also in other ways related to (1)." 
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