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S O M E R E M A R K S O N T R A N S L A T I V E C O V E R I N G S O F 
C O N V E X D O M A I N S B Y STRIPS 

BY 

H. G R O E M E R ( 1 ) 

ABSTRACT. In the euclidean plane let K be a compact convex set 
and Sl9 S2,... strips of respective widths wl5 w 2 , . . . . Some condi
tions on X wt are given that imply that K can be covered by 
translates of the strips St. These conditions involve the perimeter, 
the diameter, or the minimal width of K and yield improvements of 
previously known results. 

Let K be a compact convex subset of the euclidean plane E2. The perimeter 
of K will be denoted by p, the diameter by D, and the thickness (minimal 
width) by A. A strip of width w is defined as a closed subset of E2 consisting of 
all points between two parallel lines of mutual distance w. If (St) is a (finite or 
infinite) sequence of strips we say that (St) permits a translative covering of K 
if there are translations rt so that K <= |J T^. Let wt denote the width of St. We 
concern ourselves with the problem of finding sufficient conditions on £ wt in 
order that (St) permits a translative covering of K. It has been shown in [4] that 
£ wt > 6 D is a condition of this kind, and Makai and Pach [5] have proved that 
already the weaker inequality X W; > p, and consequently also £ we > TTD, 
serves the same purpose. We establish here an improvement of the theorem of 
Makai-Pach and show some related results. Further properties of translative 
coverings by strips in E2 or slabs in En satisfying more restrictive assumptions 
are discussed in [2] and [3]. 

THEOREM 1. Let K denote a compact convex domain in E2 of perimeter p, 
diameter D, and thickness A. Furthermore, let (St) be a sequence of strips in E2 

of respective widths wt. Then, each of the conditions 

(1) I w i > - p , 
IT 

(2) 2 > S > 2 > / 2 D , 

(3) £ > i ^ £ > + 2A 

implies that (St) permits a translative covering of K. 

We add two remarks. 
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REMARK 1. The constants 3/TT, 2\l2, 2, appearing in (1), (2), (3) are almost 
certainly not the best possible ones. From the example of a unit square and two 
mutually orthogonal strips that are parallel to the sides of the square it follows 
that the greatest lower bounds of the three sets of possible constants must lie in 
the intervals [1/2, 3/7r], [V2, 2\/2], [2 —V2, 2], respectively. The right hand side 
of (3) cannot be replaced by any expression of the form a D + j3A with a < l . 
This can be seen by taking for K a line segment and for St strips orthogonal to 
K 

REMARK 2. The conditions (1), (2), (3) are independent in the sense that for 
any one of them it is possible to find a K and a sequence (St) so that it is 
satisfied, but the other two are not. This follows from the fact that for a circular 
disc 2\/2D<min{3/7r)p, D + 2À}, for a circular disc with four added "caps" of 
angle 120° (3/7r)p<min{2V2D, D + 2A}, and for a line segment D + 2A< 
min{(3/7r)p, 2V2D}. 

Instead of looking for conditions of the type (1) one may also try, provided 
that (St) is finite, to find better conditions of the kind Xwi>c(n)p where n 
denotes the number of strips and c(n) is allowed to depend on n. The following 
theorem exemplifies this possibility. 

THEOREM 2. Let K be a compact convex domain in E2 of perimeter p, and let 
(St) be a sequence of n strips of respective widths wt. Then, the condition 

(4) 2>^P 

implies that (St) permits a translative covering of K. 

Condition (4) is best possible in the trivial case when n = 1, K is a line 
segment and Sx a strip orthogonal to K. If n < 2 1 condition (4) is weaker than 
(1), but for n > 2 1 Theorem 1 implies Theorem 2. 

The following lemma forms the basis for the proofs of our theorems. 

LEMMA. Let M be a compact convex subset of E2 and L a supporting line of 
M. The perimeter of M will be denoted by pM and the length of M Pi L by rM. 
Furthermore, let (St) be a finite or infinite sequence of strips of respective widths 
wt. Then, (St) permits a covering of M if 

(5) Z w i > P M - ^ M -

Proof. If (5) is satisfied with an infinite series on the left hand side it is also 
satisfied for a sufficiently large partial sum. Thus, it suffices to consider only the 
case when (St) is finite. It may also be assumed that a cartesian (x, y)-
coordinate system has been selected so that L is the y-axis and M is in the half 
plane defined by xrsO. Let at be the angle between a boundary line of St and 
the x-axis, measured so that -7 r /2<a t <7i/2 where at is positive or negative 
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depending on whether the slope is positive or negative. Without any loss of 
generality we may suppose that the given sequence Sl9 S2,..., Sn is ordered so 
that 

(6) a1<a2^- '^an. 

Moreover, we may suppose that a1<a2 and a1 = —Tr/2. If necessary, this can 
be achieved, without disturbing condition (5), by combining all strips with angle 
ax into one strip, and by adding a strip with angle — 7r/2 and of width 0. (If after 
these changes only one strip remains, the situation is completely trivial and can 
be excluded from further consideration.) 

Let us now define translates S- of St according to the following rules: 
First, we set Si = {(x, y ) : - W ! < x < 0 } . Because of a1 = -7r/2 the strip Si is 

indeed a translate of S±. Then we continue inductively. If for some k<n the 
strips Si, S'2,..., S'k have already been determined we let Dk denote the 
residual set Dk = M\ (Si U S2 U • • • U S'k). In the case Dk = 0 we simply define 
Sk+i = Sk+1. If D k ^ 0 we let S'k+1 be that translate of Sk+1 which has one 
boundary line, say G, as supporting line of the closure of Dk so that both S'k+1 

and Dk are below G (with respect to the given coordinate system; note that 
—7rl2<ak+1<7r/2 and that each Dk is convex). 

We now show that MczSiUS^U- • • US'n. If this were not the case then 
Dn ^ 0 . But under this assumption it would follow from (6) and our construc
tion of Sfc that each Sk contains a subarc, say Ck, of the convex curve bdrM 
such that any two of these arcs are disjoint (with the possible exception of 
endpoints) and that each Ck has length at least wk. Moreover, bdrM would not 
be completely covered by Si U S'2 U • • • U S'n since the convex set Dn has clearly 
the property that it contains with each point p the point on bdrM vertically 
below it. Noting that Ck has length at least wk if 1 < fc < n, and at least rM + w t 

if fc = 1, we could infer that rM + wx + w2+* • • + wn <p M , which obviously 
contradicts (5). Thus, Dn = 0 and the lemma is proved. 

The principle idea of this proof, namely the ordering of the strips so that (6) 
holds, is due to Erdôs and Straus (unpublished). See Groemer [4] and Makai-
Pach [5] for earlier applications of this idea. Our proof follows quite closely 
that of Makai and Pach. 

Proof of Theorem 1. To avoid trivialities we assume that K has interior 
points. pM and rM are defined as in the lemma. 

First we concern ourselves with condition (1). It can be shown (see Firey-
Groemer [1]) that there is a rectangle R that contains K and has side lengths, 
a, b such that a < b and (a + b) = (2/TT)P. The four vertices of R cannot all be 
contained in K, since this would imply a + b=\p<(2/7r)p. Thus, one can 
remove from R a small triangle by cutting off one vertex with a line through R 
so that the resulting pentagon does still contain K and has one side of length b. 
Let now M be this pentagon and L the line that contains the side of M of 
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length b. Then, pM - rM < 2a + b < | ( a + b) = (3/?r)p. Together with (l) it follows 
that S wi — 0/ir)p >pM~rM and the lemma implies that (St) permits a covering 
of M and therefore also of K. 

If (3) holds the corresponding proof is very similar. There exists obviously a 
rectangle R with KaR and side lengths A and D. Again, the set K cannot 
contain all four vertices of R (otherwise the diameter of K would be greater 
than D. Using for M a pentagon of the same kind as before we see that 
PM ~~ I'M < 2A 4- D. Thus we have £ wf > 2A + D > pM - rM, and the desired result 
is again an immediate consequence of the above lemma. 

The proof regarding (2) is slightly more complicated. We use an isosceles 
triangle T with the following properties: K^T, the two sides of T, say s1? s2, of 
equal length enclose an angle 2sin_ 1(l/3), and the inradius of T is \D. The 
existence of such a triangle, actually one of inradius (l/2ir)p (which is less than 
or equal to | D ) , follows again from a theorem in [1]. Let now c denote the side 
of T which is different from sx and s2, and let Q be the quadrangle with one 
side equal to c, two sides in su s2 and a fourth side, say e, parallel to c and at 
distance D from c. The perimeter of Q is easily calculated to be À + 2V2 D, 
where À denotes the length of c. It cannot happen that K contains both of 
those vertices of Q that are in e since at least one of the distances from these 
vertices to a point in KOc is greater than D. Hence, one may again cut off 
from Q a little triangle so that one obtains a convex pentagon that contains K, 
has perimeter less than À+2V2D, and has c as one of its sides. If we define 
now M to be this pentagon and L the line containing c the proof can be 
completed by an application of the lemma; note that p M <À + 2\ /2D, À = rM 

and therefore X Wi — 2V2 D>pM- rM. 

Proof of Theorem 2. We proceed similarly as in the proof of the lemma, but 
as Si we select a strip of maximum width and choose the coordinate system so 
that Si is orthogonal to the x-axis. Then 

(7) w t > wt (i = 2, 3 , . . . , n) 

and one may also assume that -TT/2 = a1<a2^' - • < a n <IT/2. If the translates 
S- of the strips St are defined as in the proof of the lemma, and if we note that 
Si covers an arc of bdrK of length at least 2w l5 we can deduce that K will be 
covered by the strips S[ if 

2w t + w2 + • • • + wn > p. 

But this inequality is a consequence of (4) and (7) since w1 + (w1 + - • - + w n )> 
l/n(w1 + • • • + wn) 4- (wx + • • • + wM) = in + l)/n(w! + • • • + wn). 
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