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1. Introduction

In [7, Section 5], Glimm showed that if 4> and i// are inequivalent pure states of a
liminal C*-algebra A such that the Gelfand-Naimark-Segal (GNS) representations n^
and n$ cannot be separated by disjoint open subsets of the spectrum A then $(<t> + il/) is
a weak*-limit of pure states. We extend this to arbitrary C*-algebras (and more general
convex combinations) by means of what we hope will be regarded as a transparent
proof based on the notion of transition probabilities. As an application, we show that if
J is a proper primal ideal of a separable C*-algebra A then there exists a state 4> in
P(A) (the pure state space) such that J = ker7i^ (Theorem 3). The significance of this is
discussed below after the introduction of further notation and terminology.

The state space S(A) is defined by

The set P(A) of pure states consists of the extreme points of S(A) and the set F(A) of
factorial states consists of those (peS(A) such that the von Neumann algebra generated
by n,p(A) is a factor. Unless stated otherwise, A* should be regarded as being endowed
with the weak*-topology. The closures P(A) and F(A) are known respectively as the
pure and factorial state spaces of A.

Following [2, Definition 3.1], we say that a (closed two-sided) ideal J of A is primal if
whenever n ^ 2 and JuJ2,...,Jn are ideals of A such that JlJ2...Jtt = {0} then J,cj for
at least one value of i. It is shown in [2, Theorem 3.5] that if <j>eS{A) then ct>eF(A) if
and only if ker n^ is primal. Thus there is a mapping 6 from F(A) n S(A) into the set of
proper primal ideals of A given by #(</>) = ker TÎ , The mapping 6 is continuous and open
relative to its image [1, Theorem 3.6], and is surjective if A is separable (see [2, p. 62]).
Theorem 3 tells us that, if A is separable, the restriction of 8 to P(A) n S{A) is still
surjective.

We note here two related questions to which we have been able to find affirmative
answers only in certain special cases.

Question 1. Does 6(F{A) n S(A)) = 8(P(A) n S(A)) for all C*-algebras Al
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Question 2. Is the restriction of 9 to P(A) n S(A) an open mapping relative to its
image?

It is a pleasure to acknowledge that part of this work was carried out at the 1986/7
Warwick Symposium on Operator Algebras and Applications, organized by David
Evans and supported by S.E.R.C. I am also grateful to Charles Batty for several
stimulating discussions in this area.

2. The generalization of Glimm's result

Let A be a C*-algebra and suppose that pure states <j> and ip have support projections
p and q in A**. As in [4,12], we define the transition probability <0, ip} between 0 and
"A by

If <p and ip are inequivalent then <</>, \p} = 0. On the other hand, if <f> and \p are
equivalent there exists an irreducible representation n of A and unit vectors £, and n in
the Hilbert space for n such that

4>(a) = (n(aK,O and <P(a) = (n{a)n, r,}

for all aeA. In this case ((/>,i^> = |<4?7>|2.
The following result is noted in [4, Remark 2] as a simple consequence of the

equality

(see [8, Corollary 9], [9, p. 146] and [11, Lemma 2.4]).

Lemma 1. Let A be a C*-algebra, let T:P(A) x P(/l)->[0,1] be defined by

r(</>,^) = <^.A> ((<t>, 4>) eP(A)xP(A)),

and let P(A) x P(A) be endowed with the product weak*-topology. Then T is continuous at
(cp, {//) whenever <0, i/̂ > = 0.

The next lemma is the key to the generalization of Glimm's result.

Lemma 2. Let <p and \p be inequivalent pure states of a C*-algebra A. Suppose that
there exists a net (nj of irreducible representations of A and, for each a, unit vectors £x

and na such that

<na(-Ka,Z*>-+4> and in^n^n^^.
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Then < £ , , O - » 0 and <«^«){«.»?«>-»0 for all aeA.

Proof. Let A be the C*-algebra generated by A and 1 in A** and let na be the
canonical extension of nx to A. Let u be a unitary element of A. By linearity, it suffices
to show that <7 i»£ a ,^>-»0 .

Writing va = n3{u), we have

for all a 6/4. Since i// and <f>(u*-u) are inequivalent we have <#(u*-u), t/f> = 0 and hence
by Lemma 1

Glimm's proof of the above lemma in the liminal case uses functional calculus to
convert a compact operator into one of finite rank. This leads to an element of A which
exhibits the difference between kerrc^ and kerrc^. In general, however, these kernels
might coincide. Nevertheless, it is in fact possible to modify Glimm's argument as
follows (although, for conceptual reasons, we prefer the proof given above). Let £ and n
be the GNS vectors for 4> and \p respectively. Given be A there exists, by Kadison's
transitivity theorem, a — a*sA such that n^(a)n^(b)n = 0 and n^{a)£, = £,. By functional
calculus we may assume O ^ a ^ 1. Then we may use Glimm's calculations in [7, pp. 603-
604] to show that <JtB(6)^>^>-»0 and <<*,,»j«>-»0.

Theorem 1. Let A be a C*-algebra and let 4>l,4>2,•••,<(>„ be pure states of A which are
pairwise inequivalent. The following conditions are equivalent.

(i) There exist positive real numbers A1,/l2, .-. ,An with unit sum such that

(ii) There exists a net (nx) in A such that na—*n^t for each i (1 ^ i ^ n

(iii) Whenever nl,...,fia are non-negative real numbers with unit sum,

i = 1

Proof. (i)=>(ii). Let 4> = YlUi^-i<l>i and let (</>J be a net in P(A) such that 0a->$. Fix
ie{\,2,...,n} and let J be an ideal of A such that T ^ , ( . / ) # { 0 } . Then <£,{./)#{0}[6, 2.4.9]
and hence tf>(J#{0}. Thus there exists <xo such that </>„(./)# {0} for all a ^ a o . Hence
n^J./) # {0} for all a ^ a 0 . This shows that n^-ntf, (see [6, Section 3]).

(ii)=>(iii). Having Lemma 2 at our disposal, we can proceed with a generalization of
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Glimm's method as follows. Let n be a base of weak*-open neighbourhoods of zero in
A*. Let Nsn. The canonical image of ($, + N)n P(A) in A is an open neighbourhood Vj
of 7î . (1 ^i^w) [6, 3.4.11]. By (ii), there exists an irreducible representation nN of A such
that 'nNeV, for all i ( 1 ^ / ^ M ) . Hence there exist unit vectors ft"',^\...,&N) in the
Hilbert space for nN such that

where

For each i, the net ((j)\N)), indexed by n in the obvious way, is convergent to </>,. It
follows from Lemma 2 that if i # _/ and a E A then

Let <?*" = £"= i/*//2£lW)- By (1), ||£(Ar)||->l. Eventually ||£(JV)||*0 and then we may form
) = | | ^ ) | | - i ^ ) W e d e f m e l/,NeP{A) by

Using (1) again, it is routine to check that

(iii)=>(i). This is immediate.

The continuity of the canonical map from P(A) to A ensures that the above net (nN)
converges to n^. for each i. However, (nN) might not be a subnet of (rcj. If in other
circumstances a subnet is required, one may index with pairs {N,ct), choosing nN_„ to be
some np where /?^a and rc^e VJ for all i.

The fact that (i) implies (ii) in Theorem 1 is also valid without the assumption that
the 0,'s are pairwise inequivalent.

Corollary. Let 4> and ij/ be inequivalent pure states of a C-algebra A. The following
conditions are equivalent.

(i)
(ii) 71$ and n^ cannot be separated by disjoint open subsets of A.

We note that the above Corollary closes gaps in the proofs of [3, Theorem 2.8,
(4)=>(5)] and [5, Theorem 3.5, (iii)=>(i)] which arose from overlooking the role of
liminality in the construction in [7].

The next result is a version of Theorem 1 for infinite convex combinations.
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Theorem 2. Let A be a C*-algebra and let (<£,),§! be a sequence of pairwise
inequivalent pure states of A. The following conditions are equivalent.

(i) There exists a sequence (A,),^ of positive real numbers such that Yj°=i^=^ and

the norm-convergent sum Yj?= 1 h<Pi lies in P(A).

(ii) There exists a net (KJ in A such that n^n^. for all i.

(iii) Whenever (//,),•> i is a sequence of non-negative real numbers such that £( i iH,-=l ,

Proof. (i)=>(iii). This is proved as in Theorem 1. (ii)=>(iii). By truncating and scaling,
we see that Y,f= i ^ A is t n e norm-limit of a sequence of finite convex combinations of
the 0,'s, each of which lies in P(A) by Theorem 1. Since P(A) is norm-closed, it contains
YJF=iHi<t>i- (iiO^O)- This is immediate.

3. An application

Theorem 3. Let J be a proper primal ideal of a separable C*-algebra A. Then there
exists 4> £ P(A) n S(A) such that J = ker n^,.

Proof. Since A/J is separable, its primitive ideal space is separable [10, 4.3.4]. Thus
there is a countable set S of distinct primitive ideals of A with intersection equal to J.
Since J is primal, it follows from [2, Proposition 3.2] that there exists a net (Pa) of
primitive ideals of A such that PX-*P for all PeS.

Suppose that S is infinite, say S = {P1,P2.•••.}• Let 4>{ be a pure state of A such that
P, = ker7r ,̂. for each i. Since P^Pj, 4>t and <pj are inequivalent for i^j. Let nx be an
irreducible representation of A such that Pa = ker7ia for each a. Then na-*n^t for each i
and so

by Theorem 2. Moreover,

On the other hand, suppose that S is finite, say S = {Qi,Q2,..,Qn} for some n ^ l .
Taking 4> = (^ln)Yj=i ^» w n e r e lAie^>('4) a n d ker7i^( = Q,, we have that ker7^ = ./ and
ij/eP(A) by Theorem 1.
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