LIMITS OF PURE STATES

by R. J. ARCHBOLD

(Received 25th November 1987)

1. Introduction

In [7, Section 5], Glimm showed that if ϕ and ψ are inequivalent pure states of a liminal C^* -algebra A such that the Gelfand-Naimark-Segal (GNS) representations π_{ϕ} and π_{ψ} cannot be separated by disjoint open subsets of the spectrum \widehat{A} then $\frac{1}{2}(\phi + \psi)$ is a weak*-limit of pure states. We extend this to arbitrary C^* -algebras (and more general convex combinations) by means of what we hope will be regarded as a transparent proof based on the notion of transition probabilities. As an application, we show that if J is a proper primal ideal of a separable C^* -algebra A then there exists a state ϕ in $\widehat{P(A)}$ (the pure state space) such that $J = \ker \pi_{\phi}$ (Theorem 3). The significance of this is discussed below after the introduction of further notation and terminology.

The state space S(A) is defined by

$$S(A) = \{ \phi \in A^* : \phi \ge 0, ||\phi|| = 1 \}.$$

The set P(A) of pure states consists of the extreme points of S(A) and the set F(A) of factorial states consists of those $\phi \in S(A)$ such that the von Neumann algebra generated by $\pi_{\phi}(A)$ is a factor. Unless stated otherwise, A^* should be regarded as being endowed with the weak*-topology. The closures $\overline{P(A)}$ and $\overline{F(A)}$ are known respectively as the pure and factorial state spaces of A.

Following [2, Definition 3.1], we say that a (closed two-sided) ideal J of A is primal if whenever $n \ge 2$ and J_1, J_2, \ldots, J_n are ideals of A such that $J_1 J_2 \ldots J_n = \{0\}$ then $J_i \subseteq J$ for at least one value of i. It is shown in [2, Theorem 3.5] that if $\phi \in S(A)$ then $\phi \in \overline{F(A)}$ if and only if $\ker \pi_{\phi}$ is primal. Thus there is a mapping θ from $\overline{F(A)} \cap S(A)$ into the set of proper primal ideals of A given by $\theta(\phi) = \ker \pi_{\phi}$ The mapping θ is continuous and open relative to its image [1, Theorem 3.6], and is surjective if A is separable (see [2, p. 62]). Theorem 3 tells us that, if A is separable, the restriction of θ to $\overline{P(A)} \cap S(A)$ is still surjective.

We note here two related questions to which we have been able to find affirmative answers only in certain special cases.

Question 1. Does
$$\theta(\overline{F(A)} \cap S(A)) = \theta(\overline{P(A)} \cap S(A))$$
 for all C^* -algebras A ?

Question 2. Is the restriction of θ to $\overline{P(A)} \cap S(A)$ an open mapping relative to its image?

It is a pleasure to acknowledge that part of this work was carried out at the 1986/7 Warwick Symposium on Operator Algebras and Applications, organized by David Evans and supported by S.E.R.C. I am also grateful to Charles Batty for several stimulating discussions in this area.

2. The generalization of Glimm's result

Let A be a C^* -algebra and suppose that pure states ϕ and ψ have support projections p and q in A^{**} . As in [4, 12], we define the transition probability $\langle \phi, \psi \rangle$ between ϕ and ψ by

$$\langle \phi, \psi \rangle = \phi(q) = \psi(p)$$
.

If ϕ and ψ are inequivalent then $\langle \phi, \psi \rangle = 0$. On the other hand, if ϕ and ψ are equivalent there exists an irreducible representation π of A and unit vectors ξ and η in the Hilbert space for π such that

$$\phi(a) = \langle \pi(a)\xi, \xi \rangle$$
 and $\psi(a) = \langle \pi(a)\eta, \eta \rangle$

for all $a \in A$. In this case $\langle \phi, \psi \rangle = |\langle \xi, \eta \rangle|^2$.

The following result is noted in [4, Remark 2] as a simple consequence of the equality

$$\|\phi - \psi\| = 2(1 - \langle \phi, \psi \rangle)^{1/2}$$

(see [8, Corollary 9], [9, p. 146] and [11, Lemma 2.4]).

Lemma 1. Let A be a C^* -algebra, let $T: P(A) \times P(A) \rightarrow [0,1]$ be defined by

$$T(\phi, \psi) = \langle \phi, \psi \rangle \quad ((\phi, \psi) \in P(A) \times P(A)),$$

and let $P(A) \times P(A)$ be endowed with the product weak*-topology. Then T is continuous at (ϕ, ψ) whenever $\langle \phi, \psi \rangle = 0$.

The next lemma is the key to the generalization of Glimm's result.

Lemma 2. Let ϕ and ψ be inequivalent pure states of a C*-algebra A. Suppose that there exists a net (π_{α}) of irreducible representations of A and, for each α , unit vectors ξ_{α} and η_{α} such that

$$\langle \pi_{\alpha}(\cdot)\xi_{\alpha}, \xi_{\alpha}\rangle \rightarrow \phi \text{ and } \langle \pi_{\alpha}(\cdot)\eta_{\alpha}, \eta_{\alpha}\rangle \rightarrow \psi.$$

Then $\langle \xi_{\alpha}, \eta_{\alpha} \rangle \rightarrow 0$ and $\langle \pi_{\alpha}(a)\xi_{\alpha}, \eta_{\alpha} \rangle \rightarrow 0$ for all $a \in A$.

Proof. Let \tilde{A} be the C^* -algebra generated by A and 1 in A^{**} and let $\tilde{\pi}_{\alpha}$ be the canonical extension of π_{α} to \tilde{A} . Let u be a unitary element of \tilde{A} . By linearity, it suffices to show that $\langle \tilde{\pi}_{\alpha}(u)\xi_{\alpha}, \eta_{\alpha} \rangle \to 0$.

Writing $v_a = \tilde{\pi}_a(u)$, we have

$$\langle \pi_a(a)v_a\xi_a, v_a\xi_a\rangle \rightarrow \phi(u^*au)$$

for all $a \in A$. Since ψ and $\phi(u^* \cdot u)$ are inequivalent we have $\langle \phi(u^* \cdot u), \psi \rangle = 0$ and hence by Lemma 1

$$|\langle v_{\alpha}\xi_{\alpha}, \eta_{\alpha}\rangle|^2 \rightarrow 0.$$

Glimm's proof of the above lemma in the liminal case uses functional calculus to convert a compact operator into one of finite rank. This leads to an element of A which exhibits the difference between $\ker \pi_{\phi}$ and $\ker \pi_{\psi}$. In general, however, these kernels might coincide. Nevertheless, it is in fact possible to modify Glimm's argument as follows (although, for conceptual reasons, we prefer the proof given above). Let ξ and η be the GNS vectors for ϕ and ψ respectively. Given $b \in A$ there exists, by Kadison's transitivity theorem, $a = a^* \in A$ such that $\pi_{\psi}(a)\pi_{\psi}(b)\eta = 0$ and $\pi_{\phi}(a)\xi = \xi$. By functional calculus we may assume $0 \le a \le 1$. Then we may use Glimm's calculations in [7, pp. 603–604] to show that $\langle \pi_{\alpha}(b)\eta_{\alpha}, \xi_{\alpha} \rangle \to 0$ and $\langle \xi_{\alpha}, \eta_{\alpha} \rangle \to 0$.

Theorem 1. Let A be a C*-algebra and let $\phi_1, \phi_2, \ldots, \phi_n$ be pure states of A which are pairwise inequivalent. The following conditions are equivalent.

(i) There exist positive real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ with unit sum such that

$$\sum_{i=1}^n \lambda_i \phi_i \in \overline{P(A)}.$$

- (ii) There exists a net (π_{α}) in \hat{A} such that $\pi_{\alpha} \to \pi_{\phi_i}$ for each i $(1 \le i \le n)$.
- (iii) Whenever μ_1, \ldots, μ_n are non-negative real numbers with unit sum,

$$\sum_{i=1}^n \mu_i \phi_i \in \overline{P(A)}.$$

Proof. (i)=(ii). Let $\phi = \sum_{i=1}^{n} \lambda_i \phi_i$ and let (ϕ_α) be a net in P(A) such that $\phi_\alpha \to \phi$. Fix $i \in \{1, 2, ..., n\}$ and let J be an ideal of A such that $\pi_{\phi_i}(J) \neq \{0\}$. Then $\phi_i(J) \neq \{0\}$ [6, 2.4.9] and hence $\phi(J \neq \{0\})$. Thus there exists α_0 such that $\phi_\alpha(J) \neq \{0\}$ for all $\alpha \geq \alpha_0$. Hence $\pi_{\phi_\alpha}(J) \neq \{0\}$ for all $\alpha \geq \alpha_0$. This shows that $\pi_{\phi_\alpha} \to \pi_{\phi_i}$ (see [6, Section 3]).

(ii)⇒(iii). Having Lemma 2 at our disposal, we can proceed with a generalization of

Glimm's method as follows. Let n be a base of weak*-open neighbourhoods of zero in A^* . Let $N \in n$. The canonical image of $(\phi_i + N) \cap P(A)$ in \widehat{A} is an open neighbourhood V_i of π_{ϕ_i} $(1 \le i \le n)$ [6, 3.4.11]. By (ii), there exists an irreducible representation π_N of A such that $\pi_N \in V_i$ for all i $(1 \le i \le n)$. Hence there exist unit vectors $\xi_1^{(N)}, \xi_2^{(N)}, \ldots, \xi_n^{(N)}$ in the Hilbert space for π_N such that

$$\phi_i^{(N)} \in \phi_i + N \ (1 \le i \le n),$$

where

$$\phi_i^{(N)}(a) = \langle \pi_N(a)\xi_i^{(N)}, \xi_i^{(N)} \rangle \ (a \in A).$$

For each i, the net $(\phi_i^{(N)})$, indexed by n in the obvious way, is convergent to ϕ_i . It follows from Lemma 2 that if $i \neq j$ and $a \in A$ then

$$\langle \xi_i^{(N)}, \xi_i^{(N)} \rangle \to 0 \text{ and } \langle \pi_N(a)\xi_i^{(N)}, \xi_i^{(N)} \rangle \to 0.$$
 (1)

Let $\xi^{(N)} = \sum_{i=1}^{n} \mu_i^{1/2} \xi_i^{(N)}$. By (1), $\|\xi^{(N)}\| \to 1$. Eventually $\|\xi^{(N)}\| \neq 0$ and then we may form $\eta^{(N)} = \|\xi^{(N)}\|^{-1} \xi^{(N)}$. We define $\psi_N \in P(A)$ by

$$\psi_N(a) = \langle \pi_N(a) \eta^{(N)}, \eta^{(N)} \rangle \ (a \in A).$$

Using (1) again, it is routine to check that

$$\psi_N \rightarrow \sum_{i=1}^n \mu_i \phi_i$$

(iii)⇒(i). This is immediate.

The continuity of the canonical map from P(A) to \hat{A} ensures that the above net (π_N) converges to π_{ϕ_i} for each i. However, (π_N) might not be a subnet of (π_{α}) . If in other circumstances a subnet is required, one may index with pairs (N, α) , choosing $\pi_{N,\alpha}$ to be some π_{β} where $\beta \ge \alpha$ and $\pi_{\beta} \in V_i$ for all i.

The fact that (i) implies (ii) in Theorem 1 is also valid without the assumption that the ϕ_i 's are pairwise inequivalent.

Corollary. Let ϕ and ψ be inequivalent pure states of a C*-algebra A. The following conditions are equivalent.

- (i) $\frac{1}{2}(\phi + \psi) \in \overline{P(A)}$.
- (ii) π_{ϕ} and π_{ψ} cannot be separated by disjoint open subsets of \hat{A} .

We note that the above Corollary closes gaps in the proofs of [3, Theorem 2.8, $(4)\Rightarrow(5)$] and [5, Theorem 3.5, $(iii)\Rightarrow(i)$] which arose from overlooking the role of liminality in the construction in [7].

The next result is a version of Theorem 1 for infinite convex combinations.

Theorem 2. Let A be a C*-algebra and let $(\phi_i)_{i\geq 1}$ be a sequence of pairwise inequivalent pure states of A. The following conditions are equivalent.

- (i) There exists a sequence $(\lambda_i)_{i\geq 1}$ of positive real numbers such that $\sum_{i=1}^{\infty} \lambda_i = 1$ and the norm-convergent sum $\sum_{i=1}^{\infty} \lambda_i \phi_i$ lies in $\overline{P(A)}$.
- (ii) There exists a net (π_a) in \hat{A} such that $\pi_a \to \pi_{\phi_a}$ for all i.
- (iii) Whenever $(\mu_i)_{i\geq 1}$ is a sequence of non-negative real numbers such that $\sum_{i=1}^{\infty} \mu_i \neq 1$, $\sum_{i=1}^{\infty} \mu_i \phi_i \in \overline{P(A)}$.

Proof. (i) \Rightarrow (iii). This is proved as in Theorem 1. (ii) \Rightarrow (iii). By truncating and scaling, we see that $\sum_{i=1}^{\infty} \mu_i \phi_i$ is the norm-limit of a sequence of finite convex combinations of the ϕ_i 's, each of which lies in $\overline{P(A)}$ by Theorem 1. Since $\overline{P(A)}$ is norm-closed, it contains $\sum_{i=1}^{\infty} \mu_i \phi_i$. (iii) \Rightarrow (i). This is immediate.

3. An application

Theorem 3. Let J be a proper primal ideal of a separable C^* -algebra A. Then there exists $\phi \in \overline{P(A)} \cap S(A)$ such that $J = \ker \pi_{\phi}$.

Proof. Since A/J is separable, its primitive ideal space is separable [10, 4.3.4]. Thus there is a countable set S of distinct primitive ideals of A with intersection equal to J. Since J is primal, it follows from [2, Proposition 3.2] that there exists a net (P_a) of primitive ideals of A such that $P_a \rightarrow P$ for all $P \in S$.

Suppose that S is infinite, say $S = \{P_1, P_2, \ldots,\}$. Let ϕ_i be a pure state of A such that $P_i = \ker \pi_{\phi_i}$ for each i. Since $P_i \neq P_j$, ϕ_i and ϕ_j are inequivalent for $i \neq j$. Let π_{α} be an irreducible representation of A such that $P_{\alpha} = \ker \pi_{\alpha}$ for each α . Then $\pi_{\alpha} \to \pi_{\phi_i}$ for each i and so

$$\phi = \sum_{i=1}^{\infty} 2^{-i} \phi_i \in \overline{P(A)}$$

by Theorem 2. Moreover,

$$\ker \pi_{\phi} = \bigcap_{i=1}^{\infty} P_i = J.$$

On the other hand, suppose that S is finite, say $S = \{Q_1, Q_2, \dots, Q_n\}$ for some $n \ge 1$. Taking $\psi = (1/n) \sum_{i=1}^n \psi_i$, where $\psi_i \in P(A)$ and $\ker \pi_{\psi_i} = Q_i$, we have that $\ker \pi_{\psi} = J$ and $\psi \in \overline{P(A)}$ by Theorem 1.

REFERENCES

1. R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542.

- 2. R. J. Archbold and C. J. K. Batty, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53-81.
- 3. R. J. Archbold and C. J. K. Batty, Homogeneous states of C*-algebras, Quart. J. Math. Oxford (2) 38 (1987), 259-275.
- **4.** R. J. Archbold and F. W. Shultz, Characterization of C*-algebras with continuous trace by properties of their pure states, *Pacific J. Math.*, to appear.
- 5. C. J. K. Batty and R. J. Archbold, On factorial states of operator algebras, II, J. Operator Theory 13 (1985), 131-142.
- 6. J. DIXMIER, Les C*-algèbres et leurs représentations, 2nd edition (Gauthier-Villars, Paris, 1969).
 - 7. J. GLIMM, Type I C*-algebras, Ann. of Math. 73 (1961), 572-612.
- 8. J. GLIMM and R. V. KADISON, Unitary operators in C*-algebras, Pacific J. Math. 10 (1960), 547-556.
 - 9. R. V. Kadison, Limits of states, Comm. Math. Phys. 85 (1982), 143-154.
- 10. G. K. Pedersen, C*-algebras and their automorphism groups (Academic Press, London, 1979).
- 11. R. T. Powers and E. Størmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1-33.
- 12° F. W. Shultz, Pure states as a dual object for C*-algebras, Comm. Math. Phys. 82 (1982), 497-509.

DEPARTMENT OF MATHEMATICS
THE EDWARD WRIGHT BUILDING
DUNBAR STREET
ABERDEEN AB9 2TY