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Properties of the solution set of a

generalized differential equation

J.L. Davy

We prove that the solution set of a generalized differential

equation is connected and that points on the boundary of the

solution funnel are peripherally attainable. This is done

without the additional assumption of continuity in the state

variable required in previous results. The result on upper

semicontinuity of the solution set with respect to initial

conditions is extended to include variations of initial time.

1. Introduction

In this paper we study the generalized differential equation

x'(t) i P[t, x{t)) almost everywhere t f I ,

x{to) = x0 .

F(t, x) is a convex compact set valued function which is upper

semicontinuous in x and bounded by an integrable function on the compact

interval I . We assume that for a given x there exists a measurable

selector fAt) contained in F(t, x) . The solution set of the equation,

denoted by fl(*0> £_) > is a nonempty compact subset of C(l) , ([/7],

1)01, [31, [7]).

#(*n> a;.) is upper semicontinuous in xQ , ([3], [S]). We prove that

fl(t0, a;.) is upper semicontinuous in (*0>
 XQ) • If F is also
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380 J.L. Davy

continuous in xQ , ti{tQ, xQ) is a connected subset of C(l) , every

point on the boundary of the solution funnel is peripherally attainable and

the generalized differential equation has the bang-bang property ([S], [9],

[/2]). We show that connectedness and peripheral attainability follow

without the additional assumption of continuity. We give an example to

show that the bang-bang property does not hold without continuity.

Filippov's paper [6] contains results similar to ours, but assumes the

existence of a measurable selector f(t, x) contained in F(t, x) and

does not contain proofs.

To make the paper self-contained we include results on upper

semicontinuity due to Berge [2] and a proof of the existence of solutions.

2. Upper semicontinuity

Upper semicontinuity of compact set valued functions is a

generalization of the concept of continuity of point valued functions. A

point valued function is upper semicontinuous (as a set valued function) if

and only if it is continuous. This section is based on Berge [2].

X and X are topological spaces and &(Y) is the set of nonempty

compact subsets ot X . F maps from X to £l(.X) . Let A be a subset

of X . Then

F(A) = U F{x) .
xeA

F is upper semicontinuous at XQ if for all open sets G containing

F(XQ) , there exists a neighbourhood £/(XQ) of X Q such that

F(U(XQ)J C G . F is upper semicontinuous if F is upper semicontinuous

at every point of X .

THEOREM 2.1. F is upper eemiaontinuoua if and only if

F+(G) = {x | F{x) c G) is an open set for all open sets G in X .

Proof. (a) Assume F is upper semicontinuous. Let ij f F (G) .

There exists a neighbourhood U{XQ) of XQ such that F{U(XO)) £ G •

Thus U(x0) c F
+(C) and F+(G) is an open set.

(b) Assume G is open implies F (G) is open. Let XQ € X and let
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A generalized differential equation 381

G be an open set containing F(XQ) . F (G) is a neighbourhood of XQ

and F{F+{G)) CG. //

THEOREM 2.2. If F is upper semiaontinuous the image F{K) of a

compact set K is compact.

Proof. Let {G. \ i € 1} be an open covering of F(K) . If x € K ,

the set F(x) , which is compact, is covered by a finite number of G. .

Let their union be denoted by G . \F [G ) | x € Kj is an open covering
x \ x j

of K . Thus, there exists a finite subcovering F [G I, ..., F [G \ .

G , ..., G cover F(K) and each G is the union of a finite number
Xl Xn xj

of G. . Therefore F(K) is covered by a finite number of G. and thus
If I*

is compact. //

THEOREM 2.3. If F is upper semicontinuous, K is a connected

subset of' X and F{x) is a connected subset of Y for each x € K then

F(K) is a connected subset of Y .

Proof. Suppose F(K) is not connected. That is, there exist two

open disjoint sets A\, Az of Y such that F(K) c/ij u A2 and

F(K) n Ax t 0 and F(K) n A2 t 0 . Then F+{AX) and F+(A2) are open

sets of X . Let x € K ; then F(.x) cAx u A2 , and since F(x) is

connected, it is contained in A\ or in A2 • Thus KcF (Ax) u F (A2) .

Xt is obvious that F+(Ax) n F+{A2) = <D , and K n F*(A\) * 0 and

K n F (̂ 2) ^ 0 . Thus K is not connected, which is a contradiction.

Therefore F(K) is connected. //

THEOREM 2.4. Let Fx • X •* Q(Y) and F7 : Y + Q(Z) be upper

8emicontinuous. Define F2 ° F^x) = F2[F\(x)) . Then F2 o Fx maps X

to ft(Z) and is upper semicontinuoue.

Proof. By Theorem 2.2, F2[Fx(x)) i fi(2) . Let C be an open set of

Z .
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382 J.L. Davy

(F2 o FX)
+(C) = {x | F2 ° F

= {x | Fj(x) c f j

which is open in X by Theorem 2.1. Thus F2 ° Fj is upper

semicontinuous by Theorem 2.1. / /

Let X be a metric space, e a positive real number and x d X .

Define B£(x) = {y \ d(x, y) < t] . Let A be a subset of X . Define

A£ = U B£(x) .
id

THEOREM 2.5. Let X and Y be metric spaces and F : X ->• Q(y) .

F ie upper semi continuous at x. if and only if for each e > 0 there

exists 6 > 0 such that F\B&[XQ)\ C Fe[xQ) .

Proof. (a) Suppose F is upper semicontinuous at xQ . Choose a

neighbourhood u[xQ) of xQ such that FU/(xQ) E ^ f o J • Choose 6 > 0

such that B6[x0)cu{x0) . Therefore F\B&(XQ)j c f£(*0) •

(b) Let ff be an open set of Y containing ^"(^Q) • Suppose there

does not exist e > 0 such that F (xn) c G . Then there exists

x, € F (xQ) such that x, \ G . Now x, € F^ (xQ) which is a compact

set. Therefore there exists a subsequence, also denoted by ^-xv^ >

converging to a point xm f F
1(x0) . But xfe « F

 P (xQ) for all k i p .

Thus x^ € F"̂  P(xQ) for all p . Therefore x^ is contained in F ( X Q ) .

But Xp € u , which is closed. Hence i M 5 (T . This contradiction

implies that there exists e > 0 such that F€[xQ] c G . Choose 6 > 0

such that F ( B 6 ( X Q ) ] c F
e(xQ) c G . Put U (xQ) = Bg (xQ) . //

Let X be a nonned linear space. A subset K of X is said to be
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convex if, given xi and X2 € K , all points of the form otxi + (l-a)x2

with 0 2 a s 1 are in K . If A is a subset of X , the convex hull of

A , denoted by ca4 , is the smallest convex set containing A . Since the

intersection of any collection of convex sets is a convex set, coA is the

intersection of all the convex sets containing A . The closed convex hull

of A , denoted by coA , is defined by COJ4 =

LEMMA 2 .6 . co{AZ) = (co/3)e .

Proof. (a) Let x (. co(A ) . Then x = Xx. + (l-X)x_ where

x, , Xp £ A and 0 S X 5 1 . Thus there exist y^ and y^ (. A such that

ll*1-J/1ll < £ and | |x2-j/2 | | < e . Put y = \y± + (l-X)y2 . Then y d coA

and

ll*-yll = Uix^yJ + U-X) {x2-y2)\\ < Xe + (l-A)e = e .

Therefore x € {coA)

(b) Let x i (ca4) . Then there exists y t coA such that

\\x-y\\ < e . Therefore y = Aj/1 + (l-\)y2 where y1 and y2 (. A and

0 £ X < 1 . Put z = x - y , x. = y. + z and Xp = y2 + z . Then x.

and x2 € AZ and Xx + (l-X)x = x . Thus x € co(4E) . / /

COROLLARY 2 . 7 . ^ 4 = c o ( J ) .

THEOREM 2.8. Let X be a metric space and Y a normed linear

space. Suppose F : X •* £2(7) is upper semicontinuaus at x . If x.

tends to xQ then

n co U F(xk) c cof(x0) .
i l k=ik=i

Proof. Let e > 0 . Choose 6 > 0 such that F B^ (xQ) c FZ (xQ) .

Choose kQ such that k 2 k implies x, € B$(x0) • Therefore k > k
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implies f ( i , ) c f E y and U F (xj c F£ (xj .
K ° fe=fe

Thus

co U
k=k0

Therefore

U F{xA c fcoF(x )] .

Hence

n co U F(x.) £ (coF(x )] .

Thus

00 00

D co U F(xJ C COF(XQ)

since coF(x ) i s closed by Corollary 2.7- / /

3. Generalized differential equations

We will consider the generalized differential equation

x'(t) i F[t, x(t)) almost everywhere til,

x{ 0' ~ x0 '

where F satisfies the following conditions:

1. F maps from I x ft into U\R ) where / is the compact

interval [a, b] ;

2. F{t, x) is convex;

3. for all til, x •-»- F(t, x) is upper semicontinuous on i? ;

h. for all x i if there exists / : I -»• rf1 such that / is

measurable and / (t) i F{t, x) ;
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5. there exists g d L (I) such that y t F{t, x) implies

\y\ sff(t) .

Let tjj f I and xQ t R . The function x is a solution of the

generalized differential equation if and only if

(i) x : I -*• R is absolutely continuous,

(ii) x'(i) I F[t, x(t)} almost everywhere t € I ,

(iii) x{tQ) = xQ .

The set of all solutions is called the solution set and is denoted by

H[t xQ) . In this paper we will study the properties of the solution

set.

4. Existence

In this section we give Aumann's proof [/] of a result on the

convergence of absolutely continuous functions and use this result in

Kikuchi's proof [7] of the existence of a solution.

THEOREM 4.1. Let fa?,} be a sequence of absolutely continuous

functions x, : I •* R*1 . We suppose that

(i) xAt) -*• x(t) as k •*• °° for all til where x : I •*• Rn ,

(ii) \xxAt)\ £ git) almost everywhere til where g : I •*• R is

an integrable function.

Then x is an absolutely continuous function such that

CO 00

x ' ( t ) i D co U x'At) almost everywhere t i l .
i=X k=i

Proof. Since x. is absolutely continuous, x£ € L (J) . Also

|x'(t)| <j(t) almost everywhere til. Therefore by Theorem IV.8.9 on
K.

page 292 of Dunford and Schwartz [5] there exists a subsequence
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converging weakly to / ( I (I) . Thus

x(t) = lim xu.dt)

= x(a) + \ f .
'a

Therefore x i s a b s o l u t e l y continuous and x'it) = fit) almost everywhere

til.

By Corollary V.3.11* on page 1*22 of Dunford and Schwartz [ 5 ] , there

exis ts a sequence {g } of convex combinations of ^xl(x)' xk(2)' "'^

converging strbngly to / . There exists a subsequence, also denoted by

{g } , such that g (t) -»• f{t) almost everywhere t € I . But

00

gm{t) € co U x'kU){t)

c co U x'At) .
k=l *

Hence

f(t) € co U x'At) almost everywhere t d I .
fc=l K

But {x., x. . , } also tends to x for all positive integers i .

Thus

fit) € co U xUt) almost everywhere t (. I .
k=i

Therefore

GO 00

f(t) € n co" U x'At) a l m o s t e v e r y w h e r e t i l . II
i=l k=i K

THEOREM 4 . 2 . H(tQ, xQ) is nonempty.
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Proof. Subdivide [t , b] into k equal parts by

b-t
t. = tQ + i —r— . We define x, : [tQ, b~] •*• fl

n inductively. First

x, (t.) = *. . Suppose x, is defined up to t. where 0 S t < It .

Select a measurable function f. : ft., t. ,1 -*• R such that
i u t t+lJ

/£(t) € F(t, ^ ( ^ j ) for all t € |V., t £ + j . Define

xfe(t) = X ^ * i ^ + \t h
 for a11 * < C*i« *i+J •

Define f : [tQ, b] - i?" by f{t) = J\(t) for all t € [t^, t ^ J .

Hence

f*

g

^ l*ol
 +

•b

to

Therefore x, is well defined.

Now

xAt) = f{t) almost everywhere t i [t , i>] .

Thus

|x,(t)| s g(t) almost everywhere t t [t., fc] .

Therefore {x,} is equicontinuous. Define y, : [tQ, b] •* FT by

yk(t) = x^tj if t f [U, ti+1] . Then x £ U ) € P(t, j/fc(t)) almost

everywhere t i [t^t b] .

Consider the sequence tx,} . It is bounded and equicontinuous. Thus
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by Ascoli 's Theorem i t has a convergent subsequence, also denoted by

{x ,̂} , converging to x € C(J) . By Theorem U.I, x i s absolutely

continuous and

OO CO

x'(t) € D co U x'At) almost everywhere t f \t , b~]
i=l k=i K °
OO CO

c n co U F[t, yAt)) almost everywhere t £ [tn, b]
t=l k=i K °

cF(t, x{t)) almost everywhere t € [tQ, b]

by Theorem 2.8 since J/̂ .(*) tends to x(t) . Also

x(t0) =limxfe(t0) =xQ .

Similarly-we can find x : [a, t ] •* Rn such that x(t ) = x and

x'{t) € f(t, x(t)) almost everywhere t i [a, t ] . Putting these two

functions together we have x : [a, b] •* Bn and x € #(*0> *0) • Thus

ff(iQ, xQ) is nonempty. //

5. Compactness and upper semi continuity

In this section we prove that the solution set is compact and upper

semicontinuous.

THEOREM 5.1. If M d fi(j x i?n} , then H{M) is a compact subset of

Proof. (a) Let x * H(M) . There exists tQ 6 I such that

\tQ, x(tQ) e M . Let M' be the projection of M into Rn . M' is

compact and x(tQ) € M' . Thus |x(tQ) | < d , where d is a bound for

M' . Now x(t) = x(tQ) + I x' . Therefore \x(t)-x(tQ) | < I g .

Hence ||x|| £ d + ^ . Thus H{M) is bounded.

(b) If x f H{M) we have |x'(t)| 5 git) almost everywhere til
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it

Thus \x(t)-x[tQ)| 5 I g . Therefore H{M) is equicontinuous.

*0

(c) Let x. •+ x where a;, £ H(M) . By Theorem U.l, x is

absolutely continuous and

00 GO

x'{t) i PI 'co~ U x'fAt) a l m o s t e v e r y w h e r e t i l
i=l k=i

CO 00

c (1 c o U F{t, x A t ) ) a l m o s t e v e r y w h e r e t i l
i=l k=i K

c F ( t , x(t)) almost everywhere til

by Theorem 2.8.

For each x, there exists t, i I such that tv, xfc(*fc) € Af .

Since M is compact there exists a subsequence, also denoted by

' SUch that [h' Xk^k)} tends tO ^ 0 ' X0^ € W * Let

e > 0 . Choose kQ such that k > kQ implies ||x-x, || < — , and 6 > 0

such that |*-*ol < <5 implies |x(t)-x(t ) | < — . Choose fc > k such

that k 2 fe, implies I^-^QI < * a n d l̂ fê fê Ô̂  < T ' T h e r e f o r e

« ! * ! • § • • •

/Since e is any positive number we have x(*0) = ̂ 0 • Thus x i H(M) and

is closed in C(I) .

(d) Thus by Ascoli's Theorem, H{M) is compact in C(I) . II

COROLLARY 5.2. H maps from I * Rn into n(c(D) .

Proof. Theorems U.2 and 5-1 give the result. //

We now use Theorem 5.1 to prove that B is upper, semicontinuous.

THEOREM 5.3. H : I * Rn •* il[c(l)) is an upper semicontinuous map.
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Proof. Let [t , x ) f i x / ? " . Assume that H is not upper

semicontinuous at (tQ, xQ) ; that i s , there exis ts eQ > 0 such that

for a l l 6 > 0 , S B j ( t 0 , xQ) £.He°[tQ, xQ) . Choose x, such that

xk € * ( W V xo]) and xk * ff£°(*o' *o) • Kow xk € " ( V V xo>} '
which is compact by Theorem 5«1- There exists a subsequence, also denoted

by {x,} , such that xfc converges to x € H\B {t , x ) . But there

exis ts tfe € X such that tfe, *j,(*^) f Bi/fe^*0' X0^ " L e t e > ° •

Choose fc_ such that k >. kQ implies ||x-x, || < — and 6 > 0 such that

\t-tQ\ < 6 implies | x ( t ) - x ( t o ) | < - | . Choose k± 2 kQ such that k 2

|x(to)-xQ| S |«(to)-x(tfc)| + I x ^ j - x ^ t ^ l + \xkitk)-xQ\ <

Since £ i s any posi t ive number we have xi^rJ = XQ • Thus

implies l*^~*nl < ^ a n d I f̂e *̂fê  ~x0 ^ < "? ' T h e r e : £ ' o r e

x 6 fl(t0, xQ) .

But x, ^ He° (t , xQ) . Therefore x ^ *(*0» ^0) • From this

contradiction we conclude that H is upper semicontinuous. //

6. Connectedness

In this section we prove that the solution set is connected.

LEMMA 6.1. Let [t , x ) (I " / . Suppose F does not depend on

x . Then H[tQ, xQ) is convex.

Proof. Let x and x g i B[tQ, x ) ; that is x^ (tQ) = xQ and

x'.(t) € F(t) almost everywhere til for i = 1, 2 .

Consider x = Xx1 + (l-A)x2 , 0 < X < 1 . We have

https://doi.org/10.1017/S0004972700044646 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044646


A generalized differential equation 391

*(*<>) = ̂ o + u" A ) a :o = x o

and

*'(*) = Xx^t) + (l-A)x^(t) ,

f F(t) almost everywhere til,

since F is convex. Thus H[tQ, xQ) is convex. //

LEMMA 6.2. Suppose F depends on a parameter u t n and that F

is upper semiaontinuous in (x, u) . Let #(£Q> xQ> uQ) denote the

solution set passing through [t , x ) when u = uQ . Then

H : I *• Rn •* C{I) is upper semiaontinuous.

Proof. We consider the system

x' i F(t, x)

u' = 0 ;

that is, x' I Fit, x) where x = r and F = . The solution set of

this system ^(*0> ^0> "0)
 i s upper semicontinuous by Theorem 5-3. Define

p : C -^(1) * C n(-Z") by p(x){t) = q o x(t) where q is the projection

operator q : R •* R71 . Then p is continuous, and

#(£„, XQ, U~) = p O fl(t_, x_, M-) . Therefore H is upper semi continuous

by Theorem 2.k. //

Subdivide J = [a, b] into k equal parts by t^ = a + i - j - . We

define a function /^ : C[*o, t̂ ] •+ &{C\tQ, *^+1]) . i = 0, .... fe-1 . Let

x € c[tQ, t̂ ] . Then y d A^(x) if and only if

(ii) y(t) = x(t) for all t t [tQ, t7\ ;

(iii) y is absolutely continuous on [t^, *£
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(iv) y'(t) i Fit, x[tj)\ almost everywhere t € \pi, t ^ J .

LEMMA 6.3. A^{x) is a compact convex nonempty set.

A. : C\t , £.] •* il{c[tQ, t.+/\) is upper semicontinuous.

Proof. Consider the equation

y'(t) € FU, x ( ^ ) almost everywhere t i \t^, t^ ] ,

The right-hand side does not depend on y . Thus by Lemma 6.1 and Theorems

k.2 and 5.1> A.(x) i s a compact convex nonempty se t .
If

By Lemma 6.2, H\t., x(t.) , x{t.} is upper semicontinuous. Let
(, v ^ t )

e > 0 . Choose 6 > 0 such that (£, u, v) - t., x.(t.), *n(*-)
 < 2(S

implies H(t, u, v) c H It., x (t.) , x (t.)\ and such that 6 < e .
^ % U t- U t- J

Therefore ||x-«ol| < <S implies |s(t )-xQ(t) | < e for all t € [tQ, t^\

and fi(^, x ^ ) , *(*£)) c fl6^, X Q ^ ) , *0(*i)] ; ^ a t i s , ||x-xol| < 6
implies A . ( I ) C ^ ( I ) . / /

Let i/ d C(I) . Define a function

Let r € [t^, t^+1] . Then 3 € 2> ̂ (r) if and only if

(ii) a(t) = y(t) if t i [tQ, rj ;

(i i i) 2 is absolutely continuous on [r, *^

( iv ) s ' ( t ) € F t , y ( * 0 almost everywhere t i [ r , t ^ + 1 ] •

LEMMA 6 . 4 . fc . ( r ) i s a compact convex nonempty set.
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b . : [*., *-+1] "* ̂ (^[*o' *'+iD ^s uPVeT semicontinuous.

Proof. Consider the equation

2'(t) f f t , #(t-) almost everywhere t i Tt., t. 1 ,

The right hand side does not depend on 2 . Thus by Lemma 6.1 and Theorems

U.2 and 5.1> b .(r) is a compact convex nonempty set. By Theorem 5.3,

#(r, a) is upper semicontinuous. Let e > 0 . Choose y > 0 such that

|(r, a)-(rQ, ao)\ < 2y implies ff(r, a) cHZ{rQ, aQ) . Choose &± > 0

such that lr~rol
 < T̂ implies \y{r)-y{r ) \ < y and such that 6 < y .

Thus ^^ o l
 < ^1 i m P l i e s #(r> J/(r)) E f f E r

0' ̂ (rnH ' T h e s e t o f a 1 1

solutions is an equicontinuous family. Choose 6 > 0 such that

|r-r.| < 62 implies |3(^)-3(r0)| < f- for all solutions s . Choose

6 > 0 such that |r-r | < 6_ implies \y(r)-y [rQ] | < ~ . Put

6 = m i n ^ , 62> 63) . Then \r-rQ\ < 6 implies b .(r) c i,^(r) . //

Define a function B . : [t^, *i +J -* n(c(i")) , i = 0, ..., fc-1 ,

t>y B .(t) = 4 , o ... o /i o J .(t) . Define a function
' yi k-l v+1 yi

By : I + a[C(I)) by B {t) = By£(t) for all t € [t^, ti+j .

LEMMA 6.5. B (t) is o oompact aonneated nonempty set.

B : I •*• il[C{I)) is upper semicontinuous.
u

Proof. First we note that a convex set is connected. By Lemmas 6.3

and 6.U and Theorems 2.2, 2.3 and 2.U we have that B ̂ (t) is a compact

connected nonempty set and that B . is upper semicontinuous. Now

B .ft. .) = B , .... At. J , i = 0, ..., k-2 . Hence B is well definedB , .... At. J , i = 0, ..., k-2 . Hence B

and upper semicontinuous. //

Having defined the operator B we can now mimic the standard proof
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of Kneser's Theorem, (see Coppel [4]).

THEOREM 6 . 6 . Let ( t Q . xQ) ( 1 ^ / . Then H[tQ, xQ) is a

connected subset of C(I) .

Proof. If B(tQ, x o ) | and H(tQ, xQ) are connected
[a,t0]

then H(rQ, xQ) is connected. So without loss of generality we can assume

that tQ = a .

Suppose that H(a, xQ) is disconnected; that is, H(a, X.) = H u ti

where #, and fl_ are disjoint nonempty closed sets. Let x. € H. and

x f H2 . Subdivide I into k equal parts. By Theorems 2.2 and 2.3 and

Lemma 6.5, B (I) and B (I) are compact connected nonempty sets.

Further B (a) = B (a) . Thus B (I) n B (I) * 0 and

Xj X£ Xj X2
AT, = B ( I ) u B ( J ) i s connected. Now B (fc) = {xn} and

AC Xi X2 Xi 1

B (fc) = {xo} . Thus x̂  and x^ i Xv . Let G and G be disjoint
X2 -̂ A. c K ±. c.

open sets in C(l) such that #. c G and flp c C . Then there exists a

function y, £ X, which is not contained in either G or G .

Now y, is of the form

(i) yk(t) = Xi(t) for all t « [a, rfe] ,

(ii) y'-J^) *• F\t * y-iJPi)\ almost everywhere t i [r^, b] where

Thus #r,(a) = x0
 a n d |j/l,(*)| - ff(*) • W e n o w l e t fe (tne number of

subdivisions of I ) vary to obtain a sequence {y,} . These t/, are

bounded and equicontinuous. By Ascoli's Theorem there is a convergent

subsequence, also denoted by {y,} , such that y, tends to y .

Therefore y is not contained in H[a, x.J .

But y(a) = lim yAa) = x . Define 2, : I •*• tf1 by
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(i) 3fcU) = yk(t) if t i [a, rfe] ,

( i i ) ak(t) = yk[tj i f * « \rk, b] and t € [ t ^ , * i + 1 ) .

Thus y J ( ) € F ( t , 3 ^ ( t ) ) a l m o s t eve rywhere t i l and 3 , t e n d s t o !/ .J( ) € F ( t , 3^(t)) a l m o s t e v e r y w h e r e t i l a n d 3,

T h e r e f o r e

00 00

y'(t) i fl c ^ U y'At) a l m o s t e v e r y w h e r e t i l
• i i • ^
t=l k=i

OO 00

c fl co U f(t, z,{t)) almost everywhere til
i=l fe=i K

c f ( t , y(t)) almost everywhere t € J ,

by Theorems 4.1 and 2.8. Thus j/ i H[a, x.) which gives us a

contradiction. Therefore tt{a, x.) is connected. //

COROLLARY 6.7. Let M be a connected subset of I x Rn . Then

H{M) is a connected subset of C(I) .

Proof. Theorems 6.6, 5.3 and 2.3 give the required result. //

7. Peripheral attainabi l i ty and the bang-bang property

If a point on the boundary of the funnel can be reached by a solution

lying on the boundary of the funnel, the point is said to be peripherally

attainable. In this section we prove that every point on the boundary of

the funnel is peripherally attainable.

Let tQ i I and xQ ( R
n . Define

Z(*o, xQ) = {[t, x(t)) : t € I, x i H{tQ, xQ)} .

Let til. Define

A{t, tQ, xQ) = lx(t) : x i H(tQ, xQ)} .

Z(* , x0) is called the solution funnel and A[t, tQ, xQ) is called the

solution cross-section.

The next two theorems follow easily from these definitions and the

preceding theorems.
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THEOREM 7.1. Z maps from I x Rn to a(l x / ) and is upper

semicontinuous. If M is a aomeoted subset of I * #" t&en Z(A/) is

THEOREM 7.2. /J maps from I x I x i?n to £}(#*) . For

til, the map (t x ) ** A(t, t x ) is upper semicontinuous. For all

[tQt XQ) t I * « the map t ** A[t, t x ) is continuous. If M is a

connected subset of I * if1 , then A(t, M) is connected.

We now use Corollary 6.7 to show that every point on the boundary of

the funnel is peripherally attainable.

THEOREM 7.3. Let K € n{Rn) . If q € dA(b, a, K) , then there

exists x e H(a, K) such that x(b) = q and x(t) € dA(t, a, K) for all

til.

Proof. (a) We first prove that there exists x i H{a, K) such that

x(b) = q and x(a) € dK . Suppose that intX is nonempty (otherwise

there is nothing to prove). Let y, be an exterior point of A(b, a, K)

such that |j/.-q| < X/k . Let y,q denote the closed line segment joining

y, and q . y^q is connected. Therefore K = A[at b, y,q) is

connected. Now ^ n Xs # 0 since yk \ A(b, a, K) . Also K± n K i- 0

since q i A(b, a, K) . If K^ n 9X = 9 , then K± n int^ t 0 and

K, c K n intX . But A and intX are disjoint nonempty open sets.

This is a contradiction since £. is connected. Therefore X n 3X # 0 .

Thus there exists x̂ , I H(a, K) such that xfe(a) i 3# and x
kW I ~y~^ .

Hence |x,{b)-q\ < 1/k . By Theorem 5-1 there exists a convergent

subsequence, also denoted by {x,} , converging to x € H(a, K) .

Therefore x(fc) = q . Also x(a) £ 3X since 3X is closed.

(b) Subdivide I - [a, b] into k equal parts by t. = a + i —j— .
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Using part (a) we can find x. i H(a, k) such that xAb) = q ,
k

x, (i, .) t %A{t. ., a, k) . Again using (a) we can extend to

x, i. H(a, K)\ such that x. [t, ) ( dA(t. , a, K) . Continuing

L*fc-2'6J
in this manner we obtain x, € H(a, K) such that xv [t.} € 8X(t., a, K) ,

i = 0, ..., fe-1 and xAb) = q . By Theorem 5.1 there exists a

subsequence, also denoted by {x.} , converging to x € H(a, K) .

Therefore x(t) € U(t, a, K) for all til and x(fc) = q . II

If x(t) i M(t, M) for all til implies that

x'(t) € W ( i , a;(t)) almost everywhere til, the generalized

differential equation x'(t) i F[t, x{t)) is said to have the bang-bang

property. In [9] Kikuchi proves that if F is continuous in x then F

has the bang-bang property.

The assumption of continuity is needed, as is shown by the following

example. Let I = [0, l] . Define

[0, 2] if x = t ,

Fit, x) = •

{0} otherwise.

Consider

x' (t ) i F[t, x(P)) almost everywhere t £ [0, l] .

x(0) = 0 .

The peripheral solutions are x. (t) = t and xAt ) = 0 . Thus x'At) - 1

is not on the boundary of [0,2] .
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