Versal deformations in spaces of polynomials of fixed weight

A.A. DU PLESSIS ${ }^{1}$ and C.T.C. WALL ${ }^{2}$
${ }^{1}$ University of Aarhus, Department of Mathematical Sciences, NY Munkegade, Denmark;
e-mail: matadp@mi.aau.dk
${ }^{2}$ Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.; e-mail: ctcw@uxa.liv.ac.uk

Received: 11 April 1997; accepted in final form: 23 April 1997

Abstract

This work was largely inspired by a paper of Shustin, in which he proves that for a plane curve of given degree n whose singularities are not too complicated the singularities are versally unfolded by embedding the curve in the space of all curves of degree n; however, our methods are very different.

The main result gives fairly explicit lower bounds on the sum of the Tjurina numbers at the singularities of a deformation of a weighted-homogeneous hypersurface, when the deformation is the fibre over an unstable point of an appropriate unfolding. The result is sufficiently flexible to cover a variety of applications, some of which we describe. In particular, we will deduce a generalisation of Shustin's result.

Properties of discriminant matrices of unfoldings of weighted-homogeneous functions are crucial to the arguments; the parts of the theory needed are described.

Mathematics Subject Classifications (1991). 14J70, 14B07.
Key words: discriminant, hypersurface, instability, Tjurina number, unfolding.

0. Introduction

It is a well known principle of singularity theory, established by Thom [9], that a generic map is transverse to any submanifold of its target, or more generally of any jet space. There are several versions of the proof; an essential point is that we are contemplating deformations in the (infinite-dimensional) space of all maps.

There are also in the literature several more delicate transversality theorems in which the given map is only permitted to vary in a finite dimensional space; here of course there must be some restrictions on the manifolds to which generic transversality can be established. Some such results follow from Bertini's Theorem in algebraic geometry; others may be found, for example, in [1]. We shall prove further results of this kind.

Our work was largely inspired by a paper of Shustin [8], in which he proves that for a plane curve of given degree n whose singularities are not too complicated the singularities are versally unfolded by embedding the curve in the space of all curves of degree n; however, our methods are very different.

Our main result gives fairly explicit lower bounds on the sum of the Tjurina numbers at the singularities of a deformation of a weighted-homogeneous hypersurface, when the deformation is the fibre over an unstable point of an appropriate unfolding. The result is sufficiently flexible to cover a variety of applications, some of which we describe. In particular, we will deduce a generalisation of Shustin's result.

Properties of discriminant matrices of unfoldings of weighted-homogeneous functions will be crucial to our arguments. We discuss the parts of the theory that we need in the first section. The main result is proved in the second section, and applications given in the third and fourth.

1. Theory of the discriminant

Let $f_{0}: \mathbb{C}^{r} \rightarrow \mathbb{C}$ have an isolated singular point at the origin: for the purposes of this paper, we also suppose f_{0} weighted homogeneous. As is well known, it follows that the ideal $J f_{0}:=\left\langle\partial f_{0} / \partial x_{1}, \ldots, \partial f_{0} / \partial x_{r}\right\rangle$ has finite codimension in the ring \mathcal{O}_{x} of convergent power series in the x variables. Choose a basis $\phi_{0}=1, \phi_{1}, \ldots, \phi_{\mu-1}$ of the quotient vector space $\mathcal{O}_{x} / J f_{0}$: it is traditional, and usually convenient, to choose the ϕ_{i} to be monomials, and we arrange them in some order of nondecreasing weight. Now define the unfolding $F(\mathbf{x}, \mathbf{u})=(y, \mathbf{v})=(f(\mathbf{x}, \mathbf{u}), \mathbf{u})$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right), \mathbf{u}=\left(u_{1}, \ldots, u_{\mu-1}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{\mu-1}\right)$, and $f(\mathbf{x}, \mathbf{u})=$ $f_{0}(\mathbf{x})+\Sigma_{i=1}^{\mu-1} u_{i} \phi_{i}(\mathbf{x})$.

This is the usual construction of a versal unfolding of f_{0} : we recall that the resulting map F has a stable germ at the origin, and using the \mathbb{C}^{*}-action arising from the homogeneity (where u_{i} and v_{i} are assigned weight $\operatorname{wt}\left(f_{0}\right)-\mathrm{wt}\left(\phi_{i}\right)$), it follows that all germs of F are stable: F is locally stable in the sense of [2].

Now write $\mathcal{O}_{x, u}$ for the ring of convergent power series in the x and u variables, and $J_{x} f:=\left\langle\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{r}\right\rangle$ for the indicated ideal in it. It follows from Nakayama's Lemma that the ϕ_{i} form a free basis of the quotient \mathcal{O}_{u}-module $\mathcal{O}_{x, u} / J_{x} f$. Hence there exist uniquely determined elements $a_{i, j} \in \mathcal{O}_{u}$ such that

$$
\begin{equation*}
f \phi_{i} \equiv \sum_{j=0}^{\mu-1} a_{i, j}(\mathbf{u}) \phi_{j} \quad \bmod J_{x} f(0 \leqslant i<\mu) . \tag{1}
\end{equation*}
$$

Then the transpose of $A=\left(a_{i, j}(\mathbf{v})-y \delta_{i, j}\right)$ is a discriminant matrix in the sense of [2], p. 421. Its importance here is largely in its relation to vector fields. Replacing the congruence (1) by an equation gives, say

$$
\begin{equation*}
f(\mathbf{x}, \mathbf{u}) \phi_{i}=\sum_{j=0}^{\mu-1} a_{i, j}(\mathbf{u}) \phi_{j}+\sum_{k=1}^{r} b_{i, k}(\mathbf{x}, \mathbf{u}) \frac{\partial f}{\partial x_{k}} . \tag{2}
\end{equation*}
$$

Then the vector field ξ_{i} defined on the source of F by

$$
\xi_{i}=\sum_{k=1}^{r} b_{i, k}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x_{k}}+\sum_{j=1}^{\mu-1}\left(a_{i, j}(\mathbf{u})-f(\mathbf{x}, \mathbf{u}) \delta_{i, j}\right) \frac{\partial}{\partial u_{j}}
$$

lifts the vector field η_{i} defined on the target by

$$
\eta_{i}=\sum_{j=0}^{\mu-1}\left(a_{i, j}(\mathbf{v})-y \delta_{i, j} \frac{\partial}{\partial v_{j}},\right.
$$

where $\partial / \partial v_{0}$ denotes $-\partial / \partial y$.
We next observe the
LEMMA 1.1. The linear relation $\Sigma c_{j}\left(a_{j, k}-y \delta_{j, k}\right)=0$ between the rows of the discriminant matrix holds at a point p of the target of F if and only if the function $\psi=\Sigma c_{j} \phi_{j}$ satisfies the condition $\psi f_{p} \in J\left(f_{p}\right)$, where f_{p} is the restriction of f to the fibre of F over p.

Proof. Let $p=(y, \mathbf{v})$. We have the relation $\Sigma c_{i}\left(a_{i, j}(v)-y \delta_{i, j}\right)=0$ for each j. Add c_{i} times the i th Equation (2), and subtract the sum of ϕ_{j} times the j th relation. The terms in $a_{i, j}$ then all cancel. Write $f_{p}(x)=f(x, \mathbf{v})-y$ and (as above) $\psi=\Sigma c_{j} \phi_{j}$. Then the expression may be written as

$$
\psi(x) f_{p}(x)=\Sigma_{i, k} c_{i} b_{i, k} \frac{\partial f_{p}}{\partial x_{k}}
$$

This establishes the forward implication: for the converse, if any relation of the form $\psi(x) f_{p}(x)=\Sigma \alpha_{k} \partial f_{p} / \partial x_{k}$ holds, then reversing the argument shows that at the point $p=(y, \mathbf{v})$ in question, $\Sigma c_{i}\left(a_{i, j}(v)-y \delta_{i, j}\right) \phi_{j}$ lies in $J f_{p}$, whence the conclusion.

We define two points \mathbf{y} and \mathbf{y}^{\prime} in the target of a stable map $F: N \rightarrow P$ to be equivalent if the germs of F at the sets $\Sigma(F, \mathbf{y})$ and $\Sigma\left(F, \mathbf{y}^{\prime}\right)$ are \mathcal{K} - and hence \mathcal{A}-equivalent (here $\Sigma(F, \mathbf{y})$ denotes $\Sigma F \cap F^{-1}(\mathbf{y})$). The equivalence classes form a partition of P; here we shall refer to the parts as leaves.

The following results are well known: a convenient reference for them (in more generality than we require here) is Looijenga's book [5], Chapter 6.

- A vector field on P is liftable if and only if it is tangent to the discriminant ΔF.
- The leaf containing \mathbf{y} is smooth there, with tangent space given by the values at \mathbf{y} of the liftable vector fields.
- The codimension of this leaf equals the sum τ_{y} of the Tjurina numbers of the singularities of F at the points of $\Sigma(F, \mathbf{y})$.
- The η_{i} form a free basis of the $\mathcal{O}_{y, v}$-module of vector fields tangent to ΔF.

The instability locus of a map f is the set of points y in the target such that the germ of f at $\Sigma(f, y)$ is not a stable germ. Our objective is, under suitable conditions, to describe this set. More precisely, we consider the partial unfoldings

$$
F^{k}\left(\mathbf{x}, u_{1}, \ldots, u_{\mu-1-k}\right)=\left(f_{u}^{k}(\mathbf{x}), u_{1}, \ldots, u_{\mu-1-k}\right)
$$

where

$$
f_{u}^{k}(\mathbf{x})=f_{0}(\mathbf{x})+\sum_{1}^{\mu-1-k} u_{i} \phi_{i}(\mathbf{x})
$$

Thus $F=F^{0}$ is the above versal unfolding of f_{0}, and F^{k} is obtained by omitting the last k unfolding monomials.

By Mather's criterion [6] for stable map-germs, the instability locus of $F^{k}: N \rightarrow$ P is the support of the instability module $\theta\left(K^{k}\right) / t F^{k}\left(\theta_{N}\right)+\omega F^{k}\left(\theta_{P}\right)$, i.e. of the cokernel of $\overline{\omega F^{k}}$. We begin by analysing the module $M\left(F^{k}\right)=\theta\left(F^{k}\right) / t F^{k}\left(\theta_{N}\right)$: in fact, we start with $M(F)$.

We have an isomorphism of $\mathcal{O}_{x, u} / J_{x} f$ onto $M(F)$, since $t F\left(\partial / \partial u_{i}\right)$ has one coordinate 1 and all the rest, save the first, 0 . In turn, we have identified $\mathcal{O}_{x, u} / J_{x} f$ with the free \mathcal{O}_{v}-module on the classes of the ϕ_{i}, and hence with the cokernel of the map of free $\mathcal{O}_{y, v}$-modules defined by the discriminant matrix. Since F^{k} is the restriction of F where the source variables u_{i} and target variables v_{i} are set equal to 0 for $i>\mu-1-k$, we obtain $M\left(F^{k}\right)$ from $M(F)$ by factoring out by these v_{i}.

We now study the ωF^{k} : again we begin with ωF. This is a map of $\mathcal{O}_{y, v}$-modules; it suffices to identify the generators. The source θ_{P} of the map is generated by $\partial / \partial y$ and the $\partial / \partial v_{i}$; which are mapped into θF by composing with F. When we project to $M(F) \cong \mathcal{O}_{x, u} / J_{x} f$, the first generator maps to 1 and, since $t F\left(\partial / \partial u_{i}\right)=$ $\phi_{i} \partial / \partial y+\partial / \partial v_{i}$, the i th generator maps to $-\phi_{i}$ for $i \geqslant 1$. These images are thus up to sign the elements we chose as \mathcal{O}_{u}-generators of this module.

For ωF^{k} with $k>0$, as well as setting the variables $v_{i}=0$ for $i>\mu-1-k$, the corresponding generators are not available. Thus $\theta\left(F^{k}\right) / t F^{k}\left(\theta_{N}\right)+\omega F^{k}\left(\theta_{P}\right)$ is obtained from the cokernel of $A^{T}: \mathcal{O}_{y, v}^{\mu} \rightarrow \mathcal{O}_{y, v}^{\mu}$ by setting $v_{i}=0$ for $i>\mu-k$ and factoring out the generators corresponding to ϕ_{i} for $i \leqslant \mu-1-k$: thus (after the substitution) we have the cokernel of the map defined by the last k rows of the discriminant matrix A^{T}, so by the last k columns of A. The stage is thus set for application of the theory of the discriminant matrix.

The next result we require concerns the symmetry of this matrix. The following result is a special case of a result of Mond and Pellikaan [7]; for a proof in the present context see [2], (10.5.30).

THEOREM 1.2. Let $f_{0}:\left(\mathbb{C}^{s}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a weighted homogeneous germ of finite singularity type. Then any homogeneous unfolding of f_{0} admits a symmetric homogeneous discriminant matrix.

We have seen above that the instability locus of F^{k} coincides with the locus where the rank of the submatrix consisting of a certain set of k rows of the discriminant matrix drops below k. In the case when the matrix is symmetric, we can replace this by a submatrix consisting of k of the columns. To use this, we need to be able to identify the columns in question, so now assume that the remaining unfolding monomials have strictly lower weight than those omitted.

PROPOSITION 1.3 ([2], Theorem 10.5.32.). If F^{k} is the unfolding obtained by omitting the k unfolding monomials of highest weight, the instability module for F^{k} is the submodule of \mathcal{O}^{k} spanned by the k columns of lowest weight of any discriminant matrix for F.

For the k rows of lowest weight of the discriminant matrix must correspond by symmetry to the k columns of lowest weight.

COROLLARY 1.4. For f as above, a point $p=(y, \mathbf{v})$ lies in the instability locus of F^{k} if and only if there exists a linear combination $\psi(x)$ of the k unfolding monomials of least weight such that $\psi f_{p} \in J\left(f_{p}\right)$.

This follows at once from the Proposition on recalling Lemma 1.1.
In what follows, we will not need to study the full instability locus of F^{k}, but only the positive instability locus, which is the intersection of the instability locus of F^{k} with the subspace of positive weight of its target (obtained by setting $v_{i}=0$ whenever wt $\left.\left(v_{i}\right) \leqslant 0\right)$.

2. A bound on Tjurina numbers of unstable maps

Let f_{0} be a weighted homogeneous function of finite singularity type; write $H\left(f_{0}\right)$ for its Hessian determinant. Let c be a positive integer, and define

$$
k(c)=\#\left\{i>0 \mid \operatorname{wt}\left(\phi_{i}\right)>\operatorname{wt}\left(H\left(f_{0}\right)\right)-c\right\},
$$

by duality, $k(c)=\#\left\{i \geqslant 0 \mid \operatorname{wt}\left(\phi_{i}\right)<c\right\}$.
We consider the corresponding maps F and $F^{k(c)}$, as above. Define also

$$
\nu_{c}\left(f_{0}\right)=\max \left\{\operatorname{dim}_{\mathbb{C}} \frac{\mathcal{O}_{r}}{J\left(f_{0}\right)+\mathcal{O}_{r} g}\right\},
$$

where the supremum is taken over homogeneous polynomials g not contained in $J\left(f_{0}\right)$ and of weight less than c. The theory we present is independent of the value of c, but usually it will be small: we will mainly be interested in cases where $c \leqslant \mathrm{wt} H\left(f_{0}\right)-\mathrm{wt}\left(f_{0}\right)$, so that the unfolding monomials omitted have weight at least as great as f_{0}.

THEOREM 2.1. The positive instability locus of $F^{k(c)}$ presents only multi-germs of Tjurina number $\geqslant \mu\left(f_{0}\right)-\nu_{c}\left(f_{0}\right)$.

We may observe that when $c=1$ this is essentially equivalent to the algebraic part of Wirthmüller's Theorem [12]. For clearly $\nu_{1}=0$, and the positive instability locus of $F^{k(1)}$ thus presents only multi-germs of Tjurina number $\geqslant \mu\left(f_{0}\right)$. But the only (multi-)germ of Tjurina number $(\geqslant) \mu\left(f_{0}\right)$ is presented at 0 , and so the positive instability locus is $\{0\}$.

We shall require a number of preliminaries before commencing the proof proper. We begin by re-stating a consequence of the theory of the discriminant. For a point p of the target of F, write f_{p} for the corresponding map, considered globally, and τ_{p} for the sum of the Tjurina numbers at the singular points of $f_{p}^{-1}(0)$.

LEMMA 2.2. The following numbers are equal:
(i) the difference $\tau_{0}-\tau_{p}$;
(ii) the dimension of the leaf through p;
(iii) the dimension of the span of the vectors η_{i} at p;
(iv) the dimension of the quotient U / U_{p}, where U is the vector space spanned by the ϕ_{i}, and U_{p} the subspace of those ψ such that $\psi \cdot f_{p} \in J\left(f_{p}\right)$.

Proof. The equality of (i) to (iii) follows from the general properties of the discriminant cited (from [5]) in Section 1; equality with (iv) now follows from Lemma 1.1.

Since f_{0} is weighted homogeneous, $\tau_{0}=\tau\left(f_{0}\right)=\mu\left(f_{0}\right)$ and $f_{0} \in J\left(f_{0}\right)$.
We will, from now on, suppose p to be contained in the subspace of positive weight of F, so that f_{p} differs from f_{0} by terms of weight less than $\operatorname{wt}\left(f_{0}\right)$.

We will work in the polynomial ring $\mathbb{C}[\mathbf{x}]$. Define K_{p} to be the ideal in it generated by the ψ such that $\psi \cdot f_{p} \in J\left(f_{p}\right)$.

LEMMA 2.3. We have $\tau_{0}-\tau_{p}=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[\mathbf{x}] / K_{p}$.
Proof. Since $U_{p}=U \cap K_{p}$, the conclusion follows from the equality $\mathbb{C}[\mathbf{x}]=U+$ K_{p}. In fact we assert that $\mathbb{C}[\mathbf{x}]=U+J\left(f_{p}\right)$. For this holds when $p=0$, by definition of U. The generators $\partial f_{p} / \partial x_{k}$ are obtained from the weighted homogeneous polynomials $\partial f_{0} / \partial x_{k}$ by adding terms of lower order. Thus for any $g \in \mathbb{C}[\mathbf{x}]$, if we write $g=\Sigma a_{i} \phi_{i}+\Sigma b_{k} \partial f_{0} / \partial x_{k}$, then the difference $g-\Sigma a_{i} \phi_{i}+\Sigma b_{k} \partial f_{p} / \partial x_{k}$ has lower degree than g. The result thus follows by induction.

We may suppose the weights w_{k} of the coordinates x_{k} to be positive integers. Introduce an additional parameter t, of weight 1 . We can then define a homogeneous function F_{p} of \mathbf{x}, t : if f_{0} has weight d, set $F_{p}\left(x_{1}, \ldots, x_{r}, t\right)=$ $t^{d} f_{p}\left(t^{-w_{1}} x_{1}, \ldots, t^{-w_{r}} x_{r}\right)$. Write $J_{x} F_{p}$ for the ideal in $\mathbb{C}[\mathbf{x}, t]$ generated by the $\partial F_{p} / \partial x_{k}$ and

$$
\tilde{I}_{p}=\left\{\psi \in \mathbb{C}[\mathbf{x}, t] \mid \psi \cdot F_{p} \in J_{x} F_{p}\right\}
$$

Substituting the value 1 for t, or, equivalently, factoring out the ideal $\langle t-1\rangle$, projects this to an ideal I_{p} in $\mathbb{C}[\mathbf{x}]$.

LEMMA 2.4. We have $I_{p}=K_{p}$.
Proof. The inclusion $I_{p} \subset K_{p}$ is immediate.
Now suppose that $\psi \in K_{v}$, so that we can write $\psi \cdot f_{p}=\Sigma_{k} g_{k} \partial f_{p} / \partial x_{k}$. As above, we introduce t to turn this into a homogeneous equation, say

$$
\tilde{\psi} \cdot F_{p}=\sum_{k} \tilde{g}_{k} \partial F_{p} / \partial x_{k}
$$

Thus $\tilde{\psi} \in \tilde{I}_{p}$, and now substituting $t=1$ we deduce $\psi \in I_{p}$.
Substituting the value 0 for t, or, equivalently, factoring out the ideal $\langle t\rangle$, projects \tilde{I}_{p} to an ideal L_{p} in $\mathbb{C}[\mathbf{x}]$.

LEMMA 2.5. We have $\operatorname{dim} \mathbb{C}[\mathbf{x}] / L_{p} \geqslant \operatorname{dim} \mathbb{C}[\mathbf{x}] / I_{p}$.
Proof. Choose homogeneous functions $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ in $\mathbb{C}[\mathbf{x}]$ whose classes in $\mathbb{C}[\mathbf{x}] / L_{p}$ form a basis. We will show that the α_{r} span $\mathbb{C}[\mathbf{x}, t] / I$ as $\mathbb{C}[t]$-module. It follows, substituting $t=1$, that they also span $\mathbb{C}[\mathbf{x}] / I_{p}$, which proves the result.

For any element $g(\mathbf{x}, t) \in \mathbb{C}[\mathbf{x}, t]$, we can find elements $\lambda_{r} \in \mathbb{C}[\mathbf{x}]$ such that $\left(g(\mathbf{x}, 0)-\Sigma_{r} \lambda_{r} \alpha_{r}\right)=\beta^{\prime} \in L_{p}$. Choose $\beta \in I$ which projects onto β^{\prime}. Then $g(\mathbf{x}, t)-\Sigma_{r} \lambda_{r} \alpha_{r}-\beta$ is divisible by t, so is of form $t g^{\prime}$, where g^{\prime} has lower degree than g. The result thus follows by induction on degree.

We are now ready for the
Proof of Theorem 2.1. It follows from the above lemmas that

$$
\tau_{0}-\tau_{p}=\operatorname{dim} U / U_{p}=\operatorname{dim} \mathbb{C}[\mathbf{x}] / K_{p}=\operatorname{dim} \mathbb{C}[\mathbf{x}] / I_{p} \leqslant \operatorname{dim} \mathbb{C}[\mathbf{x}] / L_{p}
$$

Since \tilde{I}_{p} contains $J_{x}(F)$, it certainly follows that $J\left(f_{0}\right) \subset L_{p}$. It follows that $\mathbb{C}[\mathbf{x}] / L_{p}$ is supported at the origin, and has the same dimension as $\mathcal{O}_{x} / L_{p} \mathcal{O}_{x}$. We will show that $L_{p}-J\left(f_{0}\right)$ contains a homogeneous polynomial g of weight less than c; if so, then L_{p} contains $J\left(f_{0}\right)+\mathbb{C}[\mathbf{x}] . g$, so $\operatorname{dim} \mathbb{C}[\mathbf{x}] / L_{p} \leqslant \operatorname{dim} \mathcal{O}_{x} /\left\langle J\left(f_{0}\right), g\right\rangle$; but this is $\leqslant \nu_{c}\left(f_{0}\right)$, completing the proof.

We have not yet used the condition that p belongs to the instability locus. By Corollary 1.4, it follows from this that there is a non-trivial linear combination ψ of the k unfolding monomials of least weight - and so of weight less than c with $\psi \in K_{p}$. Making this homogeneous using t gives a homogeneous $\tilde{\psi} \in \tilde{I}_{p}$, of weight less than c, and not contained in $\left\langle t, J_{x}\left(F_{p}\right)\right\rangle$. Now setting $t=0$ gives a non-zero homogeneous polynomial $g \in L_{p}-\left(f_{0}\right)$, and of weight less than c. This concludes the proof.

3. Applications to hypersurfaces

To apply Theorem 2.1 , we need to estimate the numbers $\nu_{c}\left(f_{0}\right)$. In the case of homogeneous functions, such an estimate is in some cases obtained from

PROPOSITION 3.1. Let $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ be a regular sequence of homogeneous polynomials of degree k in $\mathbb{C}[\mathbf{x}]$ (with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$). Let h be a nonzero homogeneous polynomial of degree r. Then

$$
\operatorname{dim} \mathbb{C}[\mathbf{x}] /\left\langle f_{1}, \ldots, f_{n}, h\right\rangle \leqslant r k^{n-1}
$$

Proof. We can regard \mathbf{f} as a map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, which is finite since $\left(f_{1}, \ldots, f_{n}\right)$ is a regular sequence. The variety $V \subset \mathbb{C}^{n}$ given by $h=0$ has dimension $n-1$, hence also $f(V)$ has dimension $n-1$. Choose a point $P \notin f(V)$: then since everything is homogeneous, the line $\mathbb{C} P$ meets $f(V)$ only in the origin.

Making a non-singular linear transformation of \mathbf{f} (which does not affect our hypothesis), we may suppose this line given by $f_{2}=\cdots=f_{n}=0$. Then h is a nonzero-divisor modulo $\left\langle f_{2}, \ldots, f_{n}\right\rangle$, so $\left\{f_{2}, \cdots, f_{n}, h\right\}$ is a regular sequence. Hence $\operatorname{dim} \mathbb{C}[\mathbf{x}] /\left\langle f_{2}, \ldots, f_{n}, h\right\rangle=r k^{n-1}$, and the result follows.

COROLLARY 3.2. If $f_{0}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is homogeneous of degree d and of finite singularity type, then $\nu_{c}\left(f_{0}\right) \leqslant(c-1)(d-1)^{n-1}$.

This follows from the Proposition on setting $f_{i}=\partial f_{0} / \partial x_{i}$ and taking h as any homogeneous polynomial of degree $<c$.

Of course, the estimate is non-trivial only if $c<d$.
We now consider a hypersurface Γ of degree d in projective space $P^{n}(\mathbb{C})$. We suppose that Γ has isolated singularities, so that we can choose a hyperplane, which we may take as $x_{0}=0$, transverse to Γ. If the equation of Γ is $\gamma(\mathbf{x})=0$, we define $f_{0}\left(x_{1}, \ldots, x_{n}\right)=\gamma\left(0, x_{1}, \ldots, x_{n}\right)$: then f_{0} is homogeneous of degree d, and has an isolated singularity at the origin (with $\mu=(d-1)^{n}$). Set $g\left(x_{1}, \ldots, x_{n}\right)=$ $\gamma\left(1, x_{1}, \ldots, x_{n}\right)$.

The function g occurs as a fibre in the unfolding F of f_{0} obtained by taking all monomials of degree $\leqslant d$ as unfolding monomials. Since the Hessian $H\left(f_{0}\right)$ has degree $n d-2 n$, this is an unfolding, trivial by [2], (10.2.1), of the unfolding $F^{k(c)}$, where $c=n d-2 n-d$. Thus g is equivalent to f_{p}, for some p in (the positive subspace of) the target of $F^{k(c)}$. Theorem 2.1 gives a condition for p to belong to the instability locus of $F^{k(c)}$. Since an unfolding is stable if and only if it is versal, this coincides with the condition that the singularities of g are not simultaneously versally unfolded by $F^{k(c)}$. As Γ has no singular points on $x_{0}=0$, this is in turn equivalent to the condition that the singularities of Γ are not simultaneously versally unfolded by the family of all hypersurfaces of degree d in $P^{n}(\mathbb{C})$.

A similar argument applies if we consider the family of hypersurfaces whose intersections with $x_{0}=0$ coincide with that of Γ. Here we must take $c=n d-$ $2 n-d+1$.

A direct application of Theorem 2.1, using the estimate of Proposition 3.1 for ν_{c}, now gives

LEMMA 3.3. Let Γ be a hypersurface of degree d in $P^{n}(\mathbb{C})$ with isolated singularities only.
(i) Suppose $1 / n+1 / d>\frac{1}{2}$; set $\delta=(d-1)^{n-1}(2 n+2 d-n d)$. If $\tau_{\text {tot }}(\Gamma)<\delta$, then the family of hypersurfaces of degree d induces simultaneous versal deformations of all the singularities of Γ.
(ii) Suppose $1 / n+1 / d>\frac{1}{2}(1+1 / n d)$; set $\delta^{\prime}=(d-1)^{n-1}(2 n+2 d-n d-1)$. Let H be any hypersurface transverse to Γ. If $\tau_{\mathrm{tot}}(\Gamma)<\delta^{\prime}$, then the family of hypersurfaces of degree d with the same restriction to H as Γ induces simultaneous versal deformations of all the singularities of Γ.
The results given are, in fact, best possible. This, together with similar results in cases where the hypotheses above on $1 / n+1 / d$ do not hold, will be discussed elsewhere.

If $n=2$, the hypotheses are satisfied and we obtain:
COROLLARY 3.4. Let Γ be a reduced (projective) plane curve of degree d.
(i) If the sum of the Tjurina numbers of all the singularities of Γ is $<4(d-1)$, then the family of curves of degree d induces a simultaneous versal unfolding of all the singularities of Γ.
(ii) Let L be any line transverse to Γ. If the sum of the Tjurina numbers of all the singularities of Γ is $<3(d-1)$, then the family of curves of degree d with the same restriction to L as Γ induces a simultaneous versal unfolding of all the singularities of Γ.

Here (i) is the result of Shustin [8] which inspired this paper. A different generalisation of Shustin's result has been obtained by Greuel and Lossen [4]. Case (ii) in the case $d=5$ was cited in [11].

When $n>2$, Lemma 3.3(i) applies, apart from the trivial cases $d=2$ and $d=3, n=3$ (where all hypersurfaces with only isolated singularities are versally unfolded by the family), in four further cases; these are summarised in the following table.

n	3	3	4	5
d	4	5	3	3
δ	18	16	16	16.

These will be considered further elsewhere.
When $n>2$, Lemma 3.3(ii) applies, apart from the trivial cases $d=2$ (where all hypersurfaces are versally unfolded by the family), in three further cases; these are summarised in the following table.

n	3	3	4
d	3	4	3
δ	8	9	8.

The case $n=3, d=3$, where ' $c=1$ ', follows from Wirthmüller's Theorem [12], as discussed earlier; the other two cases will be considered further elsewhere.

4. Further applications

We now consider examples with distinct weights. Begin with $f_{0}=y^{3}+x^{b}$, of weight $3 b$ if wt $x=3$ and wt $y=b$; we have $\mu\left(f_{0}\right)=2 b-2$, and the singularity has modality m where $m=[b / 3]-1(3 m+3 \leqslant b \leqslant 3 m+5)$. For any value of $c \leqslant m$, we have $k=c$. The critical value for $\nu_{c}(f)$ is obtained by taking $g=x^{c-1}$ (the only monomial of this weight), yielding $2(c-2)$. Thus any combination of singularities with total Tjurina number less than $2(b-c+1)$ is versally unfolded by F^{c}.

It is shown in [3] that this result too is best possible. Indeed consider deformations of the form $y^{3}+\prod_{i=1}^{c-1}\left(x-\xi_{i}\right)^{b_{i}}$ with $\Sigma b_{i}=b$: these have Tjurina numbers $2(b-c+1)$ and, as is shown in [3], fail to be versally unfolded by the deformation in question.

In fact, in [3] we give a complete determination of the unstable deformations of the weighted homogeneous singularities in the E, Z and Q series. To save repetition, let us agree that ϕ can stand for any of $y^{3}+x^{b}$ (here we set $w=b / 3$), $y^{3}+u y x^{2 w}+v x^{3 w}$ with $4 u^{3}+27 v^{2} \neq 0$, and $y^{3}+y x^{a}$ (here we set $w=a / 2$). For the E series we set $f_{0}=\phi$ and consider the unfolding F^{k}, where we require $k \leqslant w-1$ so that no monomial of degree at most that of f_{0} is omitted in the unfolding. Since there is only one monomial in the relevant degrees, $c=k$ and

$$
\nu_{c}\left(f_{0}\right)=\operatorname{dim} \mathcal{O}_{x, y} /\left(J\left(f_{0}\right)+\mathcal{O}_{x, y} \cdot x^{k-1}\right)=\operatorname{dim} \mathcal{O}_{x, y} /\left\langle y^{2}, x^{k-1}\right\rangle=2 k-2 .
$$

The instability locus of F^{k} is the union of the images of the following, where $s \leqslant k$ and the ξ_{i} are all distinct in each case

$$
\begin{array}{lll}
y^{3}+\prod_{1}^{s}\left(x-\xi_{i}\right)^{b_{i}} & \sum b_{i}=3 w & \sum b_{i} \xi_{i}=0 \\
y^{3}+u y \prod_{1}^{s}\left(x-\xi_{i}\right)^{2 c_{i}}+v \prod_{1}^{s}\left(x-\xi_{i}\right)^{3 c_{i}} & \sum c_{i}=w & \sum c_{i} \xi_{i}=0 \\
y^{3}+y \prod_{1}^{s}\left(x-\xi_{i}\right)^{2 a_{i}} & \sum a_{i}=2 w & \sum a_{i} \xi_{i}=0 .
\end{array}
$$

In each case, the Milnor numbers (which equal the Tjurina numbers, since the singularities are weighted homogeneous) of the singularities at the singular points $\left(\xi_{i}, 0\right)$ add up to $6 w-2 s$; since $\tau_{0}=6 w-2$, we have $\tau_{0}-\tau_{v}=2 s-2 \leqslant 2 k-2$. Thus all the deformations with $s=k$ realise the bound obtained above.

For the Z series, matters are a little more complicated. We take $f_{0}=x \phi$, with ϕ as above, and consider the unfoldings F^{k} with $k \leqslant w$. Again we have $c=k$ and $\nu_{c}\left(f_{0}\right)=\operatorname{dim} \mathcal{O}_{x, y} /\left\langle y^{3}, x y^{2}, x^{k-1}\right\rangle=2 k-1$.

The unstable deformations are, with $s \leqslant k-1$ in each case

$$
\begin{array}{ll}
x y^{3}+\prod_{*}^{s}\left(x-\xi_{i}\right)^{b_{i}} & \sum b_{i}=3 w+1, \\
x\left(y^{3}+u y \prod_{1}^{s}\left(x-\xi_{i}\right)^{2 c_{i}}+v \prod_{1}^{s}\left(x-\xi_{i}\right)^{3 c_{i}}\right) & \sum c_{i}=w, \\
x y^{3}+y \prod_{*}^{s}\left(x-\xi_{i}\right)^{2 a_{i}} & \sum a_{i}=2 w+1,
\end{array}
$$

where ξ_{i} is nonzero for $i \geqslant 1$, and either $*=1$ or $*=0$ and $\xi_{0}=0$. Here we find that the sum of the Milnor numbers is $6 w+2-2 s$ for the first deformation with $*=1$, and $6 w+3-3 s$ in all the other cases, so that $\tau_{0}-\tau_{v}=2 s+1$ or $2 s$ correspondingly. Thus our bound is achieved by the first deformation, with $*=1$ and $s=k-1$: this is available only from $x y^{3}+x^{b}$: i.e. from the strata $Z_{(-1)}^{*}, Z_{(1)}^{*}$ and the part of Z_{0}^{*} with $u=0$.

For the Q series we take $f_{0}=x z^{2}+\phi$ with ϕ as above, and consider the unfoldings F^{k} with $k \leqslant w$. We again find only one monomial x^{c} in the relevant degrees $c, c=k$ and $\nu_{c}\left(f_{0}\right)=\operatorname{dim} \mathcal{O}_{x, y, z} /\left\langle y^{2}, z^{2}, x z, x^{k-1}\right\rangle=2 k$.

The unstable deformations are, with $s \leqslant k-1$ in each case

$$
\begin{array}{ll}
x z^{2}+y^{3}+\prod_{*}^{s}\left(x-\xi_{i}\right)^{b_{i}} & \sum b_{i}=3 w . \\
x z^{2}+y^{3}+u y \prod_{1}^{s}\left(x-\xi_{i}\right)^{2 c_{i}}+v \prod_{1}^{s}\left(x-\xi_{i}\right)^{3 c_{i}} & \sum c_{i}=w . \\
x z^{2}+y^{3}+y \prod_{*}^{s}\left(x-\xi_{i}\right)^{2 a_{i}} & \sum a_{i}=2 w . \\
x^{-1}\left\{(x z+C)^{2}+x y^{3}+\prod_{1}^{s}\left(x-\xi_{i}\right)^{b_{i}}\right\} & \sum b_{i}=3 w+1, \tag{4}
\end{array}
$$

where (as before) ξ_{i} is nonzero for $i \geqslant 1$, and either $*=1$ or $*=0$ and $\xi_{0}=0$, and in the final case, C is such that the division is possible. Here we find that the sum of the Milnor numbers is $6 w-2 s$ for (1) and (3) with $*=1$ and for (2), and $6 w+2-3 s$ in all the other cases, so that $\tau_{0}-\tau_{v}=2 s+2$ or $2 s$ correspondingly. Thus in each case there are some deformations with $s=k-1$ producing equality.

Finally we consider other weighted homogeneous germs of low modality, and the unfolding omitting all unfolding monomials of weight at least that of f.

For parabolic (simple elliptic) and exceptional unimodal (triangle) singularities, we take $c=1$. Here, as discussed earlier, the instability locus consists only of the origin.

For quadrilateral and exceptional bimodal singularities, there are two unfolding monomials, and two candidates for g, one of which is 1 (when $c=1$, with conclusion as above) and the other is the variable - say x - of least weight. The calculation of ν then turns out to depend only on the series, and we exhibit it in tabular form.

Series	Equation	$J(f)+\langle x\rangle$	ν
E	$y^{3}+y a(x)+b(x)$	$\left\langle y^{2}, x\right\rangle$	2
Z	$x y^{3}+y a(x)+b(x)$	$\left\langle x, y^{3}\right\rangle$	3
W	$y^{4}+y^{2} a(x)+y b(x)+c(x)$	$\left\langle x, y^{3}\right\rangle$	3
Q	$x z^{2}+y^{3}+y a(x)+b(x)$	$\left\langle x, y^{2}, z^{2}\right\rangle$	4
S	$x z^{2}+y^{2} z+z a(x)+y b(x)+c(x)$	$\left\langle x, y^{2}, y z, z^{2}\right\rangle$	3
U	$y^{3}+z^{3}+y z a(x)+y b(x)+z c(x)+d(x)$	$\left\langle x, y^{2}, z^{2}\right\rangle$	4

We have already seen that for most bimodals in the E, Z and Q series these estimates are best possible. This is true for all bimodals in the remaining cases: the deformations for the W series appear in [2], Chapter 11 and we have obtained the others subsequently.

These calculations of ν are valid for all singularities in the series in question, provided that only the case $k=2$ is under consideration.

It is similarly easy to compute ν for all weighted homogeneous trimodals (these were enumerated in [10]), and again the estimate is best possible in most cases. We defer the details to a subsequent paper.

References

1. Bruce, J.W., Giblin, P.J. and Gibson, C.G.: Source genericity of caustics by reflexion in the plane, Quart. J. Math. Oxford 33 (1982), 169-190.
2. du Plessis, A.A. and Wall, C.T.C.: The geometry of topological stability, London Math. Soc. monographs new series 9, Oxford University Press, 1995.
3. du Plessis, A.A. and Wall, C.T.C.: Topological versality for singularities in the E, Z and Q series, in preparation.
4. Greuel, G.-M. and Lossen, C.: Equianalytic and equisingular families of curves on surfaces, preprint, 24pp; available from ESN preprint archive (http://www mi.aau.dk/ esn/).
5. Looijenga, E.J.N.: Isolated singular points on complete intersections, London Math. Soc. Lecture Notes 77, Cambridge University Press, 1984.
6. Mather, J.N.: Stability of C^{∞}-mappings IV: classification of stable germs by \mathbb{R}-algebras, Publ. Math. IHES 37 (1970), 223-248.
7. Mond, D.M.Q. and Pellikaan, R.: Fitting ideals and multiple points of analytic mappings, Springer Lecture Notes in Math. 1414 (1989), 107-161.
8. Shustin, E.: Versal deformations in the space of planar curves of fixed degree, Functional Analysis and its applications 21 i (1987), 82-84.
9. Thom, R.: Un lemme sur les applications différentiables, Bol. Soc. Mat. Mex. 1 (1956), 59-71.
10. Wall, C.T.C.: Elliptic complete intersection singularities, pp. 340-372 in Singularity theory and its applications (Warwick 1989, Part I) ed. D. Mond and J. Montaldi, Springer Lecture Notes in Math 1462 (1991).
11. Wall, C.T.C.: Highly singular quintic curves, Math. Proc. Camb. Phil. Soc. 119 (1996), 257-277.
12. Wirthmüller, K.: Universell topologisch triviale Deformationen, doctoral thesis, Universität Regensburg, 1979.
