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If a droplet smaller than the capillary length is placed on a substrate with a conical
shape, it spreads by itself in the direction of growing fibre radius. We describe this
capillary spreading dynamics by developing a lubrication flow approximation on a
cone and by using the perturbation method of matched asymptotic expansions. Our
results show that the droplet appears to adopt a quasi-static shape and the predictions
of the droplet shape and the spreading velocity from the two mathematical models
are in excellent agreement. At the contact line regions, a large pressure gradient is
generated by the mismatch between the equilibrium contact angle and the apparent
contact angle that maintains the viscous flow. It is the conical shape of the substrate
that breaks the front/rear droplet symmetry in terms of the apparent contact angle,
which is larger at the thicker part of the cone than at its thinner part. Consequently, the
droplet is predicted to move from the cone tip to its base, consistent with experimental
observations.

Key words: capillary flows, contact lines, thin films

1. Introduction
A spherical droplet that comes in contact with a solid substrate will change

its shape in order to minimize its total surface energy by generating a spreading
motion. Droplet spreading on flat substrates has been widely studied and is quite
well understood (Tanner 1979; Hocking 1983; Cox 1986; Chen & Wada 1989;
Brenner & Bertozzi 1993; Bonn et al. 2009; Carlson, Bellani & Amberg 2012). If
the flat substrate has a constant equilibrium contact angle, the centre of mass of
the droplet will not change its position along the substrate. One way to generate
a directional droplet spreading is to manipulate the chemical composition or the
microscale/nanoscale structure of the substrate to make the equilibrium contact angle
vary on the substrate (Brochard 1989; Chaudhury & Whitesides 1992; Dos Santos &
Ondarçuhu 1995; Sumino et al. 2005; Moosavi & Mohammadi 2011; Li et al. 2017),
where the contact angle difference at the front and back of the droplet generates its
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motion. An alternative to surface coatings is to instead change the macroscopic shape
of the substrate to a geometric structure that breaks the front/rear symmetry, e.g. a
cone-like structure. A droplet placed on a fibre with the shape of a cone spontaneously
starts to move in the direction of a growing cone radius when the flow is dominated
by capillary forces (Bico & Quéré 2002; Lorenceau & Quéré 2004). In fact, the
principle of capillary induced self-propelled droplets by tuning the macroscopic
geometry of the substrate has been widely exploited by living creatures, where plants
(Liu et al. 2015) and animals (Zheng et al. 2010; Duprat et al. 2012; Wang et al.
2015) have evolved thin structures that generate droplet motion. Cacti that reside
in arid regions have developed conical spines for water collection from humid air,
which also transport the water droplets from the spine tip to its base for adsorption
(Liu et al. 2015). Zheng et al. (2010) showed that a similar principle of directional
water collection appears on wetted spider silk, where small water droplets condense
at the thinner part (the joint) and move to the centre of the thicker part (knots) where
multiple droplets in time coalescence to create a large droplet. It was recently shown
by Chen et al. (2018b) that the plant Sarracenia trichome has developed a solution
for droplet transport that generates velocities three orders of magnitude larger than
that found on the spines of cacti by careful design of its macroscopic geometry and
its microscopic structure. The biological transport solution in Sarracenia trichome
was mimicked in microchannels as a solution for rapid droplet transport. Insects,
on the other hand, are in general interested in getting rid of the unwanted weight
of water droplets. Water striders have legs covered with tilted conical setae, which
are elastic and hydrophobic, and aid the removal of water droplets (Wang et al.
2015). Controlled droplet motion has a broad industrial relevance for manipulation of
chemical reactions, fabrication of materials that can maintain a dry or a wet state or
new materials for water harvesting, where recent advances have found inspiration in
nature (Park et al. 2016; Chen et al. 2018a,b).

When the droplet size, V1/3 with V the droplet volume, is smaller than the
capillary length ≡(γ /ρg)1/2 with γ the surface tension coefficient, g the gravitational
acceleration and ρ the liquid density, its shape and directional movement on a
conical fibre is expected to be generated by the capillary forces. Lorenceau &
Quéré (2004) studied this droplet dynamics experimentally, where the motion was
rationalized by the aid of a theoretical model. The authors first consider the pressure
pcy inside an equilibrium barrel-shaped droplet on a cylindrical fibre of radius R,
which was derived by Carroll (1976), and expressed as pcy = (2γ /(R+H)) + po,
where H is the maximal thickness of the droplet and po is the surrounding pressure
in the air. It is then assumed that the pressure pco(x) inside a moving droplet on
a conical fibre can be written in the same functional form, but with a replacement
of R and H by the cone radius R(x) and the droplet thickness H(x), respectively.
The substitution of these constants to variables gives rise to a pressure gradient
dpco/dx = −(2γ /([R(x)+H(x)]2))((dR/dx) + (dH/dx)) inside the droplet along the
fibre’s central axis, x. Despite this pressure gradient model being widely adopted
to explain the motion of droplets on conical fibres (Zheng et al. 2010; Li et al.
2013; Li, Wu & Wang 2016; Chen et al. 2018b), it is conceptually not justified. For
dynamical situations, the pressure gradient is determined through the coupling with
the fluid flow inside the droplet and the interfacial curvature κ from the Laplace
equation, i.e. pco − po = γ κ . In this study, we provide a different physical picture to
this phenomenon building on earlier seminal works on moving contact lines (Tanner
1979; Hocking 1983; Cox 1986; Eggers 2004, 2005b); when a droplet is placed in
contact with a conical fibre, it quickly adopts to a quasi-static shape of uniform
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FIGURE 1. Sketch of a droplet on a conical fibre with an angle α. The droplet shape
is described by the height h(r, t) from the substrate to the free surface as a function
of the radial distance from the vertex along the substrate r and time t. At the contact
line positions, i.e. r= rr and r= ra, the free surface intersects with the substrate with an
equilibrium (microscopic) contact angle θe. The free surface deforms significantly in the
vicinity of the contact line due to a large viscous stress. At the droplet scale, the contact
angle appears as the apparent contact angles, θr at the thinner part of the cone (receding
contact line) and θa at thicker part of the cone (advancing contact line).

pressure at the droplet scale. The conical geometry breaks the front/rear symmetry
of the droplet shape. At the thicker part of the fibre, the apparent contact angle is
larger than the equilibrium (microscopic) contact angle, thus a flow is generated and
the contact line advances. The fluid recedes at the thinner part of the fibre, where
the apparent contact angle is smaller than the equilibrium contact angle. Hence the
droplet is expected to move from the tip to the base of a conical fibre, see figure 1.
The pressure gradient in the bulk of the droplet only acts as a correction term for
determining the droplet shape and plays a minor role on the dynamics.

We start our study by considering a viscous droplet of dynamic viscosity η
that moves on a fibre when inertia can be neglected, i.e. Reynolds number,
Re ≡ ((ρUV1/3)/η) � 1 with the droplet size V1/3

� (γ /ρg)1/2. The motion is
dominated by the capillary force but hindered by viscous friction, i.e. the capillary
number Ca ≡ (ηU/γ ) � 1. A characteristic feature of slowly spreading viscous
droplets is that it maintains a quasi-static shape during wetting (Tanner 1979; Bonn
et al. 2009), where viscous stresses are predominantly located in the vicinity of
the contact line and balanced by the capillary stress through interface deformations.
Together, this makes the problem well suited to be studied by the perturbation method
of matched asymptotic expansions, which has been widely used to describe viscous
spreading of droplets on flat substrates (Tanner 1979; Hocking & Rivers 1982; Wilson
1982; Hocking 1983; Cox 1986; Eggers 2004, 2005b; Pismen & Thiele 2006; Savva
& Kalliadasis 2009; Snoeijer & Eggers 2010; Chan, Gueudré & Snoeijer 2011). We
develop here a similar approach, where we consider the viscous spreading of an
axisymmetric droplet on a conical fibre by combining the lubrication theory and
a perturbation method of asymptotic matching, to describe the directional droplet
motion.
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2. Mathematical formulation
We consider a droplet in contact with a solid conical fibre with an angle α as shown

in figure 1. We assume the shape of the droplet is symmetric around the central axis
of the cone. The droplet shape is described by the height h(r, t) from the substrate
to the free surface as a function of the radial distance from the vertex along the
substrate r and time t. As the droplet spontaneously starts to move on the cone, an
incompressible viscous flow is generated. Since Re� 1, the flow inside the droplet is
described by Stokes equations

η∇2u−∇p= 0, (2.1)

and the continuity equation reads

∇ · u= 0, (2.2)

where u is the velocity and p is the pressure. Moreover, we only consider small
droplets, with a shape unaffected by gravity, i.e. the Bond number Bo≡ρgV2/3/γ � 1.
We neglect any influence of the air surrounding the droplet as its viscosity is orders
of magnitude smaller than the liquid viscosity.

To describe the fluid flow and the droplet motion, equations (2.1)–(2.2) need to be
accompanied by several boundary conditions. At the free surface, the tangential stress
is zero as we neglect the viscous effects in the air. The normal stress σ f

n is described
by the Young–Laplace law

σ f
n = γ κ, (2.3)

where κ is the curvature of the interface.
At the wetted substrate, the normal velocity is zero and we assume a tangential

velocity us
t described by the Navier slip condition (Lauga, Brenner & Stone 2008)

us
t =
λ

η
σ s

t , (2.4)

where σ s
t is the shear stress parallel to the substrate and λ is the slip length. Slippage

of fluid along the substrate is well known to regularize the viscous stress singularity
at the moving contact line where the liquid, air and solid phase intersect. The slip
length has been measured to be in a range of a few nanometres or less for simple
fluids (Lauga et al. 2008). Other models, such as the diffuse interface model (Qian,
Wang & Sheng 2006; Carlson, Do-Quang & Amberg 2011), a precursor film (Eggers
2005a) and the molecular-kinetic theory (Blake 2006) have been proposed to tackle
the hydrodynamic singularity at the moving contact line. Nevertheless, like the slip
length, these models introduce a characteristic length that is typically at the nanoscale,
several orders of magnitude smaller than a droplet size of a few millimetres.

We also need to specify the slope of the free surface at the contact line. We assume
that molecules at the contact lines quickly redistribute so that an equilibrium angle
θe is achieved and given by Young’s law cos θe = (γSL − γSV)/γ , and is independent
of the contact line velocity, where γSL and γSV are, respectively, the liquid/solid and
solid/air surface tension coefficients, as used in previous studies (Cox 1986; Eggers
2005b; Duez et al. 2007). The justification of this assumption is beyond the extent of
our hydrodynamic model, and could be solved by other modelling approaches such
as the diffuse interface model (Qian et al. 2006; Carlson et al. 2011) and molecular
dynamics simulations (Johansson, Carlson & Hess 2015). Moreover, the surface of the
fibre is assumed to be chemically homogeneous and smooth, allowing us to neglect
any contact angle hysteresis.
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Directional spreading of a viscous droplet on a cone 894 A26-5

2.1. Lubrication approximation on a cone
For polar angles θ � 1 and an equilibrium contact angle θe� 1, the flow inside the
droplet is primarily in the radial direction and the droplet is fairly flat. By using these
approximations, the Stokes equations (2.1) simplifies to the lubrication equations here
given in spherical coordinates (a detailed derivation is given in A.1),

∂p
∂r
=

η

r2θ

∂

∂θ

(
θ
∂u
∂θ

)
, (2.5)

∂p
∂θ
= 0, (2.6)

where u= u(r, θ) is the radial velocity. The boundary conditions are

∂u
∂θ
= 0 at θ = α +

h
r
, (2.7a)

u
λ
=

1
r
∂u
∂θ

at θ = α. (2.7b)

Equation (2.6) implies that p is independent of θ . Solving (2.5) and (2.6) with the
boundary conditions (2.7) gives us the velocity

u=
r2

2η
∂p
∂r

[
θ 2
− α2

2
−

(
α +

h
r

)2

ln
(
θ

α

)
−
λh
αr2

(
2α +

h
r

)]
. (2.8)

The dynamics of the droplet’s interface, i.e. θ = α + h(r, t)/r, is obtained by
imposing mass conservation of the liquid

∂h
∂t
+

1
rα + h

∂

∂r

∫ α+h/r

α

ur2θ dθ = 0. (2.9)

The characteristic velocity scale U in the radial direction is much smaller than the
capillary velocity γ /η as Ca� 1, see A.2 for a further description. Hence the free
surface relaxes much faster than the motion of the droplet. We then expect that the
spreading will be quasi-steady, and the entire droplet moves at a contact line velocity
ucl. In the frame of the moving droplet, the droplet shape is stationary for a small
time increment, i.e. ∂h/∂t= 0, and the velocity inside the liquid is u− ucl, hence we
can reduce the time-dependent lubrication equation (2.9) to a stationary form∫ α+h/r

α

(u− ucl)θ dθ = 0. (2.10)

In addition we have imposed a zero flux condition at the contact line. To evaluate
(2.10), we substitute (2.3) and (2.8) with the normal stress σ f

n =−p into (2.10) and
get

∂κ

∂r
=

Ca
F(h, r, α, λ)

, (2.11)

with Ca= ηucl/γ and

F(h, r, α, λ)=
r2α2

2

[
(1+ φ̄)4

φ̄(2+ φ̄)
ln(1+ φ̄)−

1
4
(2+ 6φ̄ + 3φ̄2)+ λ̄φ̄(2+ φ̄)

]
, (2.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.240


894 A26-6 T. S. Chan, F. Yang and A. Carlson

where φ̄ = h/(αr) and λ̄ = λ/(αr). In the limit of the film thickness being much
smaller than the cone radius, i.e. φ̄ � 1, F ≈ h(h + 3λ)/3. Hence (2.11) is reduced
to the standard two-dimensional steady lubrication equation ∂κ/∂r= 3Ca/(h(h+ 3λ)).
The curvature of the free surface κ is expressed as

κ =
h′′

(1+ h′2)3/2
−

1− αh′

(rα + h)(1+ h′2)1/2
, (2.13)

with ()′ ≡ ∂()/∂r. We note the second term of the curvature is derived by using a
rotation matrix with an angle α� 1, see the derivation in A.3. We use (2.13) as a
description of the curvature as we will see in the following that the droplet shape
away from the contact line is determined by κ = constant.

The boundary conditions for h(r) at the receding contact line r= rr read

h(r= rr)= 0, (2.14a)
h′(r= rr)= θe, (2.14b)

and at the advancing contact line r= ra read

h(r= ra)= 0, (2.15a)
h′(r= ra)=−θe. (2.15b)

In the following, all the lengths are rescaled by V1/3 with the volume V given by

V =π

∫ ra

rr

h(h+ 2αr) dr. (2.16)

For simplicity of notation, we keep the same symbols for all rescaled quantities, i.e. h,
r, λ and κ . Note that (2.11)–(2.15) have the same forms after rescaling and the model
parameters that dictate the dynamics are the cone angle α, the equilibrium contact
angle θe and the slip length λ. The droplet profile h(r) and the capillary number Ca
are determined by solving (2.11) with the boundary conditions (2.14) and (2.15) by
using the shooting method (Press et al. 2007).

2.2. Asymptotic analysis
We now turn to a description based on the method of matched asymptotic expansions.
The droplet size and the slip length differ by several orders of magnitude and we
expect that the governing forces are different at these two length scales. In the
vicinity of the contact line, denoted as the inner region, the flow is maintained by the
balance of capillarity and the viscous force. Away from the contact line, the droplet
is considered to be quasi-static with a shape only determined by the capillary force,
denoted as the outer region. In the following, we summarize our analysis, which
builds on the work by Eggers (2005b) and this matching procedure has also been
justified by a detailed analysis of the behaviour of the solutions in the framework of
the lubrication approximation (Sibley, Nold & Kalliadasis 2015).

2.2.1. Inner solutions
In the inner regions, the characteristic length is the slip length λ, which is assumed

to be much smaller than the local radius of curvature of the cone, i.e. h ∼ λ� rα,
hence

F(h, r, α, λ)≈
1
3

h(h+ 3λ)+O
(

h
rα

)
. (2.17)
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Directional spreading of a viscous droplet on a cone 894 A26-7

Equation (2.11) is then reduced to

∂κ

∂r
=

3Ca
h(h+ 3λ)

. (2.18)

We approximate the curvature of the free surface as κ ≈ h′′ ∼ θ 2
e /λ > 1/(rα),

equation (2.18) is then consistent with the lubrication equation for a two-dimensional
flow (Batchelor 1967; Oron, Davis & Bankoff 1997). The behaviour of the solution
of (2.18) has been discussed in detail by Eggers (2005b). To match the solution in
the outer region, only the asymptotic behaviour when h is much larger than λ is
required.

At the droplet’s trailing edge, i.e. the receding inner region, we define the interfacial
profile as hr = hr(xr), where xr ≡ r − rr is the distance along the substrate from the
contact line position, i.e. the profile is determined by the lubrication equation

h′′′r (xr)=
3Ca

h2
r (xr)+ 3λhr(xr)

. (2.19)

The prime symbol represents the derivative with respect to the independent variable.
Equation (2.19) is complemented by the boundary conditions at the substrate where
the height is

hr(xr = 0)= 0, (2.20)
and the profile slope is given by the equilibrium angle

h′r(xr = 0)= θe. (2.21)

By following the analysis by Eggers (2005b), the asymptotic behaviour of hr for
θexr/λ� 1 is

hr(xr)= (3Ca)1/3
[
κyx2

r

6λ
+ byxr

]
, (2.22)

where

κy =

(
21/6β

πAi(s1)

)2

, by =
−22/3Ai′(s1)

Ai(s1)
, β2

=
π exp[−θ 3

e /(9Ca)]
22/3

. (2.23a−c)

Here, Ai is the Airy function and s1 needs to be determined from the asymptotic
matching.

At the advancing droplet front, xa≡ ra− r is defined as the distance from the contact
line along the substrate, and has a profile ha = ha(xa) described by

h′′′a (xa)=−
3Ca

h2
a(xa)+ 3λha(xa)

, (2.24)

and complemented with the boundary conditions at the substrate where the height is

ha(xa = 0)= 0, (2.25)
and the slope is given by the equilibrium angle

h′a(xa = 0)= θe. (2.26)

The asymptotic behaviour for θexa/λ� 1 is in a functional form of the Cox–Voinov
relation (Eggers 2005b)

h′a(xa)
3
= θ 3

e + 9Ca ln(eθexa/3λ), (2.27)

where e= 2.7182 . . . is Euler’s number.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.240


894 A26-8 T. S. Chan, F. Yang and A. Carlson

2.2.2. Outer solution
At the length scale of the droplet size, i.e. the outer region, the dominant force is

capillarity. Viscous effects appear only as a small correction in the higher-order terms
of Ca as we have Ca� 1. We define the outer solution as h̄(r) and expand it in series
of Ca

h̄(r)= h̄0(r)+Cah̄1(r)+O(Ca2). (2.28)

We solve for the leading-order term h̄0(r) from the condition of uniform interfacial
curvature κ0, which can be expressed by the relation

κ0 =
h̄′′0

(1+ h̄′20 )3/2
−

1− αh̄′0
(rα + h̄0)(1+ h̄′20 )1/2

. (2.29)

Note that this expression is the same as (2.13) with a replacement of h(r) by h̄0(r).
The value of the curvature κ0 depends on the position of the droplet and is determined
together with the relation between the volume V0 and the profile h̄0 of the droplet,
that is

V0 =π

∫ ra

rr

h̄0(h̄0 + 2αr) dr. (2.30)

The contact angle of the static profile h̄0(r) with the substrate at the receding part
is used to define the receding apparent contact angle θr, while the advancing droplet
edge is defined by the advancing apparent contact angle θa. Two boundary conditions
are required to solve the second-order ordinary differential equation (2.29), where we
impose the following conditions at the receding contact line:

h̄0(r= rr)= 0, (2.31)
h̄′0(r= rr)= θr. (2.32)

The position of the advancing contact line and the advancing apparent contact angle
are given by the conditions

h̄0(r= ra)= 0, (2.33)
h̄′0(r= ra)=−θa. (2.34)

To match to the inner solution at the receding contact line region, only the leading-
order term h̄0(r), i.e. the static profile, is required. The asymptotic behaviour of h̄0(r)
near the contact line is determined by a Taylor expansion:

h̄0(r)= θr(r− rr)+
1
2κr(r− rr)

2
+O((r− rr)

3). (2.35)

At the advancing droplet front, the first-order correction h̄1(r) is required in order
to match to the logarithmic behaviour of the inner solution in (2.27) (Eggers 2005b).
However, there is no analytical solution for the correction term for a cone geometry.
Instead of computing the exact expression as done by Eggers (2005b) for a flat
substrate, we assume that the outer solution near the advancing contact line has the
functional form

h̄′3 = θ 3
a + 9Ca ln[ca(ra − r)], (2.36)

where ca is an adjustable parameter but appears in the logarithm and has only a
weak effect on the results. The excellent agreement between the results from matching
and the numerical results from solving the full lubrication equation suggests that the
assumption we have made here is justified.
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Directional spreading of a viscous droplet on a cone 894 A26-9

2.2.3. Matching the inner and the outer solutions
We are now in a position to perform the matching between the asymptotic behaviour

of the inner and outer solutions to determine the unknown quantities, Ca, s1 and θr.
To do this, we see that three matching conditions are required. By comparing the
asymptotic behaviour of the inner solution (2.22) and the outer solution (2.35) at the
receding region, we find the matching conditions

θr = (3Ca)1/3by, (2.37)

κr =
(3Ca)1/3κy

3λ
. (2.38)

At the advancing contact line region, we match the inner solution (2.27) to the outer
solution (2.36). This procedure of matching the cubes of the free surface slope has
been shown to be justified for these flows described by lubrication theory (Sibley et al.
2015). The advancing apparent contact angle becomes

θ 3
a = θ

3
e + 9Ca ln(c/λ), (2.39)

with c≡ eθe/3ca that is treated as an adjustable parameter. We fix c= 0.04 when θe=

0.2 rad by fitting the results of asymptotic matching and lubrication approximation.
We also find that c depends on θe, and we use c= 0.027 when θe = 0.3 rad and c=
0.007 when θe = 0.4 rad (see § 3).

2.2.4. Completely wetting substrate, θe = 0 rad
In the case of a completely wetting droplet, a Landau–Levich–Derjaguin film

(Landau & Levich 1942; de Gennes 1985) will be deposited on the substrate at the
receding contact line as the droplet moves. We can assume that the receding apparent
contact angle θr is zero for any value of Ca and matching at the receding region is
not needed. The advancing apparent contact angle θa is obtained by solving for the
static outer solution governed by (2.29) with θr = 0 rad. Once θa is computed, the
capillary number Ca is determined by the condition (2.39) at the advancing contact
line

Ca=
θ 3

a

9 ln(c/λ)
. (2.40)

3. Results
Next, we solve the two mathematical models, the lubrication approximation on a

cone (LAC) and the asymptotic matching (AM), to predict the directional spreading
dynamics of droplets on a conical fibre. There are several physical parameters that
can influence the spreading phenomenon, the cone angle α, the slip length λ and
the equilibrium contact angle θe and we show how these parameters influence the
dynamics, i.e. the droplet’s capillary number Ca and shape. The LAC given by
(2.11)–(2.13) is solved by using the shooting method with boundary conditions
(2.14), (2.15) and the constant volume condition (2.16). The solution for the AM is
obtained by solving the matching conditions (2.37)–(2.39) together with the uniform
curvature condition (2.29) and the constant volume condition (2.30) for the static
outer solution, which allows us to determine Ca, s1, θr and θa. The droplet centre of
mass xcm is used to quantify its position on the cone and is given by

xcm =π

∫ ra

rr

h(h+ 2αr)r dr. (3.1)
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Ca = 1.1 ÷ 10-4 Ca = 8.9 ÷ 10-5 Ca = 7.4 ÷ 10-5

FIGURE 2. (a) The blue curves are the droplet shapes predicted by the lubrication
approximation on a cone for a slip length λ= 10−6 and α= 0.01. The grey area represents
the conical fibre. Here, x and y are the coordinates, respectively, along and perpendicular
to the axis of rotation. The equilibrium contact angle is θe = 0.2 rad (11.5◦). The cone
angle is α = 0.01 rad (0.57◦), similar to the experiments by Lorenceau & Quéré (2004).
(b) The droplet capillary number as a function of the droplet’s centre of mass xcm for
three different slip lengths using the LAC and the asymptotic matching. (c) The receding
apparent contact angle θr as a function of Ca computed by asymptotic matching. The
vertical dotted lines indicate the critical capillary numbers Cac.

3.1. Droplet spreading velocity on a cone

The droplet shape during directional spreading is shown in figure 2(a), where the
droplet moves from left to right for a cone with radius R = αx, i.e. the droplet
moves to the thicker part of the cone but decelerates along the way, qualitatively
consistent with experimental measurements (Lorenceau & Quéré 2004). We start by
determining the droplet velocity along the cone, illustrated by the capillary number
Ca as a function of xcm and shown for different slip lengths in figure 2(b). The
predictions from the two mathematical models (LAC and AM) are in excellent
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5550454035
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(÷ 10-3)

AM, œe = 0.2 rad
AM, œe = 0.3 rad
AM, œe = 0.4 rad
AM, œe = 0 rad, with LLD film

LAC, œe = 0.2 rad
LAC, œe = 0.3 rad
LAC, œe = 0.4 rad

FIGURE 3. The capillary number Ca plotted as a function of the droplet’s centre of
mass xcm for four different equilibrium contact angles θe, predicted by the lubrication
approximation on a cone and by the asymptotic matching. The three symbols in black
indicate the critical capillary numbers above which the film deposition occurs. The slip
length λ= 10−6 and the cone angle α= 0.01 rad (0.57◦). Note that the completely wetting
θe = 0 rad is a special case as a Landau–Levich–Derjaguin (known as LLD) film is
deposited on the substrate surface. The values of c used in AM for θe = 0, 0.2, 0.3 and
0.4 rad, respectively, are 0.07, 0.04, 0.027 and 0.007.

agreement although the slip length is varied by two orders of magnitude. We see
that the droplet velocity is not a linear function of the cone radius R and there
exists a critical capillary number Cac above which no solution is predicted by the
LAC or the AM. To understand why no solution is found, we show the receding
apparent contact angle θr as predicted by asymptotic matching as a function of Ca in
figure 2(c). The receding contact angle approaches zero as the capillary number gets
closer to the critical value Ca→ Cac. A vanishing receding contact angle implies
that a film is formed at the droplet tail (Cox 1986; Eggers 2004; Snoeijer et al.
2008). Also the slip length λ can influence the spreading, but its influence on the
results is weaker than the other parameters in the system and primarily influence the
results for larger Ca, in concordance with other moving contact line models (Cox
1986; Eggers 2005b; Snoeijer & Andreotti 2013) as λ appears in the logarithmic term
in (2.39).

The droplet wettability, i.e. the equilibrium contact angle θe also influences the
spreading dynamics and we solve the droplet velocity for different θe, see figure 3.
For partially wetting droplets, the capillary number Ca increases with θe when
compared at the same droplet position. The completely wetting droplet θe = 0 rad
is a special case in figure 3, with θr = 0 rad at any position xcm on the cone, as a
Landau–Levich–Derjaguin film formed at the receding contact line (de Gennes 1985).
We can then compare a completely wetting droplet with a partially wetting droplet
at θr = 0 rad and at the same position on the conical fibre. Here, the macroscopic
droplet shapes would be the same, as well as their advancing apparent contact angle,
but the droplet velocity is determined by (2.39) explaining why a completely wetting
droplet moves faster than a partially wetting droplet.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.240


894 A26-12 T. S. Chan, F. Yang and A. Carlson
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FIGURE 4. The capillary number Ca as a function of the cone radius Rcm evaluated at
the droplet’s centre of mass for three different cone angles α by using the approaches of
lubrication approximation on a cone and the asymptotic matching. The slip length λ=10−6

and the equilibrium contact angle θe = 0.2 rad.

To illustrate the dependence on the slope of the cone by varying α, we first define
Rcm as the cone radius at the droplet’s centre of mass,

Rcm = xcmα. (3.2)

Equation (3.2) allows us to compare Ca for different α at the same cone thickness
Rcm, as shown in figure 4. As expected, the droplet moves faster when α is larger
for the same Rcm. Our results highlight how the droplet velocity can be tuned by the
control of the macroscopic geometry of the conical substrate shape.

3.2. Mismatch between the apparent and equilibrium contact angle
Since the motion of the droplet is generated by the capillary force, which depends
on the interfacial curvature, we would like to know how the droplet shape maintains
the viscous flow. In figure 5(a), the interface shape is plotted at a scale similar to the
droplet size. We see that the prediction from the two theoretical approaches (LAC
and AM) are in excellent agreement, illustrating that the droplet shape is quasi-static.
In the contact line regions, it is expected that the viscous stress is balanced by the
capillary stress. We show the droplet shape and the slopes of the droplet profile in the
receding and the advancing contact line regions as a function of the distance from the
contact line positions, see figures 5(b) and 5(c). In the advancing contact line region,
we compare the results from the LCA and the AM in the form of the Cox–Voinov
relation (Voinov 1976; Cox 1986; Eggers 2005b). The good agreement between LAC
and AM suggests that the force balance assumption in the contact line regions is
correct. The interface deforms significantly near the contact lines. Large Laplace
pressure gradients are generated to maintain the flow inside the two contact line
regions. This large interfacial deformation is clearly illustrated in figure 6, where the
local slope of the interface is plotted as a function of the distance from the contact
line. As we can see from the curve computed by the LAC in figure 6(a), the local
interface slope decreases from the equilibrium value (θe = 0.2 rad) at the receding
contact line position to a local minimum within a very small distance. The variation
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FIGURE 5. (a) The droplet shape predicted by the lubrication approximation on a cone
h(r) and the asymptotic matching h̄0(r) for a slip length λ= 10−6, the equilibrium contact
angle θe = 0.2 rad and the cone angle α = 0.01 rad. The centre of mass of the droplet
is xcm = 30.0 and the capillary number Ca= 8.1× 10−5. Here, rr and ra are, respectively,
the receding and advancing contact line positions. (b) The droplet shape h(r) plotted as
a function of distance from the receding contact line in log–log scale. The curve for AM
is the inner solution hr(xr) from (2.22). (c) Comparison between LAC and AM in the
advancing contact line region. The curve for AM is from (2.27), ĥ′=−h′(r) for the LAC
and ĥ′ = h′a(xa) for the AM. Note that (2.22) and (2.27) are the asymptotic behaviour of
the inner solutions when θexr� λ or θexa� λ. The solution of LAC is not captured by
(2.22) when xr→ 0 and (2.27) when xa→ 0.

of local angle is due to the difference between the equilibrium contact angle and
the receding apparent contact angle (θr = 0.12 rad) determined from the macroscopic
shape, see figure 6(a). In the advancing region, since the apparent contact angle
is larger than the equilibrium angle, the interface slope increases with the distance
from the contact line position, see figure 6(b). The flow and the droplet motion is
generated by the mismatch of the equilibrium and apparent contact angles at the
receding and the advancing contact lines. Because of the asymmetry of the conical
shape, the apparent contact angle at the thicker part of the cone is larger than that
at the thinner part and the droplet moves spontaneously from the thinner part to the
thicker part.

4. Discussion and conclusions
We have shown that the motion of a fairly flat and viscous droplet on a conical fibre

is driven by the difference between the equilibrium and the apparent contact angle,
which is not the same at the advancing front and the receding tail. Moreover, our
analysis shows that the capillary pressure gradient at the scale of the droplet size is
very small and scales with Ca�1, which predicts a quasi-static droplet shape. Instead,
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FIGURE 6. (a) The interface slope (h′ for LAC and h̄′0 for AM) plotted as a function
of the distance from the receding contact line position r − rr in logarithmic scale. The
slip length λ= 10−6, the equilibrium contact angle θe = 0.2 rad and the cone angle α =
0.01 rad. The centre of mass of the droplet is xcm = 30.0 and the capillary number Ca=
8.1 × 10−5. Black line, solution obtained by lubrication approximation on a cone; Red
dashed line, the outer solution obtained by asymptotic matching. (b) The predicted slopes
from the LAC and the AM are plotted as a function of the distance from the advancing
contact line.

large pressure gradients and strong interfacial deformations are found in the vicinity
of the contact line, along with the dominant part of the viscous stresses. Our findings
contrast the model proposed by Lorenceau & Quéré (2004) that is based on a capillary
pressure gradient at the drop scale to generate the droplet motion, which for complete
wetting is described by the relation

Ca∼
hm

(ra − rr)R3
cm

, (4.1)

where hm ≡ max (h) is the maximum height of the droplet. We plot our results for
the completely wetting case θe = 0 rad and compare the results with the prediction
(4.1) for several different cone angles α in figure 7. The first observation we make,
is that our predictions do not follow the relation (4.1). However, our results point
to the possibility that if measurements are made over a limited range of Ca or
hm/((ra − rr)R3

cm) the interpretation of the data can easily be misinterpreted to follow
(4.1) in particular for larger cone angles.

A mismatch between the equilibrium contact angle and the apparent contact angle
is found to dominate the flow and since this difference is not the same at the receding
tail and advancing front a directional droplet spreading motion is generated. Although
the equilibrium contact angle is constant on the conical fibre, the apparent angle
changes due to its macroscopic asymmetric shape. Our model provides a general
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104103102101

hm/(ra - rr)R3
cm

Ca

10010-1

100

110-1

10-2

10-3

10-4

10-5

å = 0.01
å = 0.03
å = 0.05
å = 0.07
å = 0.09

FIGURE 7. The capillary number Ca is computed by using asymptotic matching with
(2.40) for a completely wetting droplet as a function of the quantity hm/(ra− rr)R3

cm. The
slip length is λ= 10−6. The straight line has a linear slope.

description of droplet motion on a conical substrate and can help to better understand
droplet motion on slender geometries with varying shapes, which are found in an
abundance of engineering systems as well as in nature.
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Appendix A.
A.1. Derivation of the lubrication equations on a cone

We here give the details of the derivation of the lubrication equations. For axisym-
metric flow, the fluid velocity is described by u= u(r̃, θ)er̃+w(r̃, θ)eθ , where r̃ and θ
are, respectively, the radial distance and the polar angle in spherical coordinates, and
the corresponding unit vectors are er̃ and eθ . The vertex of the cone is defined as the
origin of the coordinate system, giving the Stokes equation as

1
η

∂p
∂ r̃
=

1
r̃2

[
∂

∂ r̃

(
r̃2 ∂u
∂ r̃

)
+

1
sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)]
−

2
r̃2

(
u+

∂w
∂θ
+w cot θ

)
(A 1)

and
1
η

∂p
∂θ
=

1
r̃

[
∂

∂ r̃

(
r̃2 ∂w
∂ r̃

)
+

1
sin θ

∂

∂θ

(
sin θ

∂w
∂θ

)]
−

2
r̃

(
w

2 sin2 θ
−
∂u
∂θ

)
. (A 2)

The continuity equation reads

1
r̃2

∂

∂ r̃
(r̃2u)+

1
r̃ sin θ

∂

∂θ
(w sin θ)= 0. (A 3)
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Next we perform a lubrication approximation by considering small polar angles θ� 1
and a small equilibrium contact angle θe� 1. In order to estimate the magnitude of
each term in (A 1) and (A 2), we introduce the following rescaled quantities:

θ∗ =
θ

ε
, h∗ =

h
H
, r̃∗ =

εr̃
H
, u∗ =

u
U
, w∗ =

w
W
, p∗ =

p
P
.

Here ε� 1, is the characteristic magnitude of the interfacial slope, for example, one
possible choice is to define it as the spatial average of the interfacial slope. Here, H is
the characteristic scale of the droplet thickness. The radial distance r̃ is then rescaled
by H/ε. The scales for the radial velocity, the polar velocity and the pressure are
represented by U, W and P, respectively. Rewriting the continuity equation as

εU
r̃∗2

∂

∂ r̃∗
(r̃∗2u∗)+

W
r̃∗ sin(εθ∗)

∂

∂θ∗
[w∗ sin(εθ∗)] = 0, (A 4)

we see the polar velocity scales as W ∼ εU. Using the rescaled quantities, the Stokes
equations become

PH
ηUε

∂p∗

∂ r̃∗
=

1
r̃∗2

[
∂

∂ r̃∗

(
r̃∗2
∂u∗

∂ r̃∗

)
+

1
ε2 sin(εθ∗)

∂

∂θ∗

(
sin(εθ∗)

∂u∗

∂θ∗

)]
−

2
r̃∗2

(
u∗ +

∂w∗

∂θ∗
+ εw∗ cot(εθ∗)

)
(A 5)

PH
ηUε2

∂p∗

∂θ∗
=

1
r̃∗

[
ε∂

∂ r̃∗

(
r̃∗2
∂w∗

∂ r̃∗

)
+

1
ε sin(εθ∗)

∂

∂θ∗

(
sin(εθ∗)

∂w∗

∂θ∗

)]
−

2
r̃∗

(
εw∗

2 sin2(εθ∗)
+
∂u∗

ε∂θ∗

)
. (A 6)

We expect that the pressure gradient ∂p∗/∂ r̃∗ drives the flow. To balance the leading-
order terms on the right-hand side of (A 5), P= ηU/(εH). Since ε� 1, keeping only
the leading-order terms, equation (A 5) becomes

∂p∗

∂ r̃∗
=

1
r̃∗2

1
θ∗

∂

∂θ∗

(
θ∗
∂u∗

∂θ∗

)
, (A 7)

and (A 6) becomes

∂p∗

∂θ∗
= 0. (A 8)

In spherical coordinates, we describe the free surface by θ∗ = α∗ + φ∗(r̃∗). Using the
lubrication approximation ε � 1, φ∗ ≈ tan(εφ∗)/ε = h/(εr) = h∗/r∗, hence the free
surface is described by θ∗ = α∗ + h∗/r∗. Moreover, r̃∗ = r∗/ cos(εθ∗) ≈ r∗, we thus
replace r̃∗ by r∗.

A.2. Estimation of the capillary number Ca
We estimate the order of magnitude of the capillary number from the rescaling of the
stress condition (2.3) at the contact line region. As the length scale at the contact
line region is expected to be in order of the slip length, the first curvature term

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.240


Directional spreading of a viscous droplet on a cone 894 A26-17

in (2.13) dominates the second curvature term. The curvature κ ≈ (d2h(r))/dr2, which
is rescaled as κ∗≈ (d2h∗(r∗))/dr∗2= (1/εH)((d2h(r))/dr2). Since p∗= p/P= εHp/ηU,
the normal stress tensor is rescaled as

σ f∗
n =

σ f
n

P
=−p∗ + ε

1
r∗
∂u∗

∂θ∗
+O(ε2)≈−p∗, (A 9)

and the normal stress condition (2.3) written in terms of rescaled variables is
expressed as

σ f∗
n ≈−p∗ =

γ κ

P
=
ε3γ κ∗

ηU
. (A 10)

We see that the capillary number scales as Ca≡ ηU/γ ∼ ε3
� 1.

A.3. Derivation of the curvature
Here we give the derivation of the expression of curvature (2.13). We first describe
the interface as y = ȟ(x), where ȟ is the distance of the free interface from the
axis of rotation. The curvature can be expressed as the following standard form for
axisymmetric shape:

κ =
ȟ
′′

(1+ ȟ′2)3/2
−

1

ȟ(1+ ȟ′2)1/2
. (A 11)

Next we apply a change of variables using the rotation matrix[
x
ȟ

]
=

[
cos α −sinα
sin α cos α

] [
r
h

]
. (A 12)

Hence we have x= r cos α − h sin α and ȟ= r sin α + h cos α. The derivative ȟ′ can
be expressed as

ȟ′ =
∂ ȟ
∂x
=
∂(r sin α + h cos α)

∂r
∂r
∂x

= (sin α + h′ cos α)(cos α + ȟ′ sin α). (A 13)

So we have

ȟ′ =
sin α + h′ cos α
cos α − h′ sin α

. (A 14)

Substituting ȟ = r sin α + h cos α and (A 14) back into the expression of curvature
(A 11), we obtain

κ =
h
′′

(1+ h′2)3/2
−

cos α − h′ sin α
(r sin α + h cos α)(1+ h′2)1/2

. (A 15)

Note that
ȟ
′′

(1+ ȟ′2)3/2
=

h
′′

(1+ h′2)3/2
. (A 16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.240


894 A26-18 T. S. Chan, F. Yang and A. Carlson

For α� 1, equation (A 15) can be approximated as

κ =
h
′′

(1+ h′2)3/2
−

1− αh′

(rα + h)(1+ h′2)1/2
(A 17)

to the order of α.
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