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Abstract

The sociogenomics revolution is upon us, we are told. Whether revolutionary or not, socio-
genomics is poised to flourish given the ease of incorporating polygenic scores (or PGSs)
as “genetic propensities” for complex traits into social science research. Pointing to evidence
of ubiquitous heritability and the accessibility of genetic data, scholars have argued that social
scientists not only have an opportunity but a duty to add PGSs to social science research.
Social science research that ignores genetics is, some proponents argue, at best partial and
likely scientifically flawed, misleading, and wasteful. Here, I challenge arguments about the
value of genetics for social science and with it the claimed necessity of incorporating PGSs
into social science models as measures of genetic influences. In so doing, I discuss the
impracticability of distinguishing genetic influences from environmental influences because
of non-causal gene–environment correlations, especially population stratification, familial
confounding, and downward causation. I explain how environmental effects masquerade as
genetic influences in PGSs, which undermines their raison d’être as measures of genetic
propensity, especially for complex socially contingent behaviors that are the subject of
sociogenomics. Additionally, I draw attention to the partial, unknown biology, while high-
lighting the persistence of an implicit, unavoidable reductionist genes versus environments
approach. Leaving sociopolitical and ethical concerns aside, I argue that the potential scientific
rewards of adding PGSs to social science are few and greatly overstated and the scientific costs,
which include obscuring structural disadvantages and cultural influences, outweigh these
meager benefits for most social science applications.

1. Introduction

Extraordinary techno-scientific advances over the past two decades have transformed human
genetics. Scientists are now able to measure several million genetic variants across the genome
(i.e., genome-wide) relatively cheaply (<$100) and efficiently with automated pipelines.
Consequently, millions of individuals have been genotyped, which is the measurement of pre-
selected variants, across the genome. Over the past decade, genome-wide association studies
(GWASs), in which a phenotype (trait) is regressed on each of the millions of genetic variants
with a few controls, have become the predominant method to statistically estimate genetic
associations with genome-wide data and increasingly large datasets. Thousands of GWASs
have been performed, identifying hundreds of thousands of significant associations with a
multitude of traits and disease states (e.g., Buniello et al., 2019).

These molecular and computational innovations have launched the new science of socio-
genomics, characterized by the application of cutting-edge statistical genetic tools and mea-
sures to social outcomes. In recent years, social scientists have teamed with biostatisticians
and formed large consortia to conduct GWASs on complex social outcomes, such as educa-
tional attainment (Lee et al., 2018), same-sex sexual behavior (Ganna et al., 2019), number
of children (Barban et al., 2016), and income (Hill et al., 2019), with large (and growing)
genetic datasets. In sociogenomics, as elsewhere, GWAS results are commonly used to create
genetic summary scores, known as polygenic scores (PGSs), representing the (additive) genetic
propensity for some trait or behavior (e.g., years of educational attainment completed).
Preconstructed PGSs have been incorporated into widely used social science datasets, such
as the Add Health Study and Health and Retirement Study (HRS), to be dropped into models
“just like any other variable,” no genetic expertise required (Braudt, 2018). Given the availabil-
ity and increased acceptance of genetics in social science, sociogenomics is poised to flourish.

This new “golden age” of sociogenomics filled the void left by the recent demise of the can-
didate gene × environment era, which was, by and large, a spectacular failure because of meth-
odological limitations and an oversimplified biology (see Charney, 2022; Dick et al., 2015).
Suggesting the candidate gene-era “should be a cautionary tale,” psychiatric geneticist
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Matthew Keller asked: “How on Earth could we have spent 20
years and hundreds of millions of dollars studying pure noise?”
(quoted in Yong, 2019; cited in Charney, 2022). With adjustments
for multiple testing, attention to statistical power and large sam-
ples, and emphasis on replication, among other revisions, this
nascent sociogenomics approach has addressed several methodo-
logical limitations plaguing the candidate gene approach. As a
result, sociogenomics findings are touted as methodologically
robust. Advocates are especially bullish about the potential of
PGSs, which, they argue “just work” (i.e., are statistically signifi-
cant genetic predictors) and have several potential social science
applications that break through the stale, outdated nature versus
nurture debate, on the one hand, and the neglect of genetics (or
assumption of “genetic sameness”) on the other (e.g., Belsky &
Harden, 2019; Conley, 2016; Conley & Fletcher, 2017; Freese,
2018).

Further still, many sociogenomicists encourage other behavio-
ral scientists to incorporate PGSs into their research (e.g., Braudt,
2018; Cesarini & Visscher, 2017; Harden, 2021b; Mills & Tropf,
2020). Pointing to evidence of ubiquitous heritability, the widen-
ing availability of genetic data, and the ease of incorporating PGSs
into quantitative research, these scholars urge social scientists to
incorporate genetics or risk losing out (e.g., Conley, 2016; Mills
& Tropf, 2020). Others take an even stronger stance and empha-
size not only the potential but also the necessity of incorporating
genetics into social science, arguing that social science research
that neglects genetics is, at best, partial and potentially flawed
and misleading (e.g., Braudt, 2018; Harden, 2021a; Hart, Little,
& van Bergen, 2021; Kweon et al., 2020). In her recent book,
The Genetic Lottery, Harden (2021a) contends that social science
sans genetics wastes time, resources, attention, and effort; sup-
ports misguided models of human behavior; and misinforms pol-
icies, causing still further damage. This neglect of unmeasured
genetic heterogeneity makes social science research vulnerable
to sweeping dismissals from other scientists (Freese, 2008) or
political extremists (Harden, 2021a).

Yet it remains the case that only a paucity of behavioral
science research includes genetics. This “neglect of genetics” is,
some proponents have argued, not because of valid scientific rea-
sons but of an ideologically motivated “tacit collusion” to ignore
genetic differences between people among social scientists (Freese,
2018; Harden, 2021a; Wright & Cullen, 2012). Harden (2021b)
argues that this alleged tacit collusion is not just misguided or
morally “wrong in the way that jaywalking is wrong” but, given
the scientific warrant to include genetics, it is “wrong in the
way that robbing banks is wrong.” Harden avers that “Failing to
take genetics seriously is a scientific practice that pervasively
undermines our stated goal of understanding society so that we

can improve it” (p. 186). On this view, if progressive social scien-
tists really want to ameliorate inequality, they need to get with the
science and add genetics to their research.

Here, I scrutinize proponents’ arguments about the significant
value of PGSs for social science and with it the need to incorpo-
rate genetics into social science models. I do so not by questioning
the ethical or sociopolitical implications of this work, as is com-
mon, but by scrutinizing the science of sociogenomics.
Specifically, I focus on the utility of PGSs for social science and
the key premises underlying their use as measures of “genetic pro-
pensities” for behavioral differences. Drawing on contemporary
statistical genetic research, I explain how methodological limita-
tions produce environmentally confounded PGSs. I emphasize
that environmentally confounded genetic associations with com-
plex social outcomes is not simply a tractable empirical problem
to be addressed with more sophisticated methods. Rather, such
confounding is inevitable when attempting to map layered and
contingent social behaviors, like educational attainment, to a
score representing a linear summation of base-pair differences,
which themselves represent an entirely different set of layered
contingencies. I explain why this inevitable environmental con-
founding of PGSs for complex social traits undermines their use
as “genetic influences on” or “genetic potential for” social traits
and achievements – as is common. After outlining the limitations
of current sociogenomics methodologies, I consider the practical
implications by examining several existing applications of PGSs to
social science and their substantive contributions.

My explicit aim is to challenge the claim that genomics has
much to offer social science, so much so that social science
sans genetics is fatally flawed, scientifically indefensible, and pos-
sibly even morally suspect. I argue that, leaving sociopolitical risks
aside, the potential scientific rewards are few and greatly over-
stated, and the potential scientific costs – obscuring environmen-
tal influences, perpetuating a flawed concept of genetic potential
for social behaviors and achievements, and wasting resources –
outweigh these meager benefits for most applications. I am not
alone in my concerns, and not all sociogenomics practitioners
are sold on the touted benefits of PGSs; however, cautious and
skeptical arguments are invariably drowned out by enthusiastic
hype and promissory notes. Much of the excitement around soci-
ogenomics comes from the application of these new measures and
techniques without clearly acknowledging limitations or account-
ing for well-known biases. Given this situation, my goal is to draw
attention to and explicate the limitations of sociogenomics meth-
ods, especially PGSs, that vitiate their utility in the behavioral
sciences.

Before moving forward, a few remarks about the larger
backdrop are in order. Most historical and current critiques of
social science genetics emphasize sociopolitical or ethical
considerations rather than scientific concerns. This focus is
because of both socio-historical reasons (racist and eugenicist
applications and/or interpretations of this work in the past) and
the fact that the advanced biology and statistical genetic methods
of sociogenomics are well outside the bailiwick of most social sci-
entists (and thus lack of expertise and skills to critically engage
with this research). Here, I do not concentrate on sociopolitical
or ethical concerns about sociogenomics research, because exist-
ing scholarship addresses these issues, acknowledging historical
misuses with some atrocious results and highlighting the potential
misrepresentation of sociogenomics findings to support genetic
determinist and inferiorizing claims (e.g., Bliss, 2018; Duster,
2015; Harden, 2021a; Herd, Mills, & Dowd, 2021; Martschenko,
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Trejo, & Domingue, 2019). Although I share these concerns, my
current focus is scrutinizing sociogenomics with the aim of foster-
ing a dialogue that focuses squarely on the science.

This critical analysis proceeds in several parts. First, I provide a
brief overview of the genetic and statistical genetic fundamentals
necessary to understand these models and their limitations, recog-
nizing that sometimes social scientists’ lack of expertise in genet-
ics and statistical genetics methods is a key barrier to engagement.
(Readers wholly unfamiliar with genetic concepts can see the
primer in Appendix A, whereas those familiar with sociogenom-
ics concepts and methodologies may opt to jump to sect. 4.) Next,
I describe proponents’ key arguments for the value of adding
genetics to social science. I then discuss and critique the key pre-
mises underlying these arguments, with a particular focus on
explicating intractable environmental confounding in GWAS
associations and PGSs.1 I then explain how these challenges
undermine the utility of PGSs as measures of genetic influences
or potential. I conclude by offering several suggestions for the
field.

2. A primer on genomics

At present preconstructed polygenic scores (PGSs) are available in
several accessible social science datasets available to be dropped
into models just like any other variable (Braudt, 2018; Mills &
Tropf, 2020). Properly interpreting the meaning and challenges
of PGSs, however, requires some knowledge of what PGSs cap-
ture, what they don’t, and what these models assume.

2.1 Basic genetic concepts in sociogenomics

See Table 1.

2.2 Genetic variants, function, and prevalence

Given that sociogenomics focuses on genetic variation among
people, understanding the type, prevalence, and distribution of
human variation is necessary to understand what is and is not
being captured in these studies. Genetic variants can be classified
into three types: (1) single-nucleotide variants (SNVs), which are
single-base changes (G→A); (2) indels, which are insertions of
base pairs or deletions up to 50 bp and often involve tandem
repeating units (e.g., GATA repeated 2–8 times); and, (3) struc-
tural variants (SVs), which are DNA rearrangements (deletions,
duplications, or inversions) ranging from 50 bp to more than a
million base pairs (1 Mbp). As discussed below, GWASs and
PGSs analyze a subset of “common” single-nucleotide variants,
known as single-nucleotide polymorphisms (SNPs), where com-
mon usually means present in at least 1% of the population (see
Appendix A for more details).

Human genetic variation is extensive – all genetic variants
compatible with life are likely represented in some individual liv-
ing today (McClellan & King, 2010). Comparing the genomes of
any two humans around the world, we would typically find
between 3 and 4.5 million genetic differences between them or
approximately 1 variant every 800 bases.2 Most of these genetic
variants are SNPs and are non-functional. That is, they have no
effects on biological functioning or differences between people.
Obviously, only functional variants contribute to differences
between people. Although some genetic variation is debilitating,
most genetic variation in a given genome is benign, ancient,
and common.

In contrast, functional variants are those that either alter gene
product (the protein produced) or gene dosage (e.g., the amount
of protein produced). As an example of the former, the SLC24A5
gene encodes a protein involved in epidermal melanogenesis and
skin pigmentation through its intracellular potassium-dependent
exchanger activity (Ginger et al., 2008). Several thousand years
ago, a G→A mutation in SLC24A5 occurred among people
migrating from Africa to Europe. This variant, which changes
the encoded amino acid from alanine to threonine, disrupts mela-
nogenesis and thereby results in lighter skin tone (Lamason et al.,
2005). Other variants can affect function not by changing the pro-
tein produced but, for example, by affecting the binding sites for
various RNAs in a manner that reduces or increases transcription
and thereby contributes to trait differences by altering gene dos-
age (the production of too much or too little of the functional
protein).

All three variant types can be functional and contribute to dif-
ferences between people. Although rare compared to SNVs and
indels, evidence suggests that SVs have a disproportionate role
in shaping human differences compared to other variants
(Chiang et al., 2017; Collins et al., 2020; Takumi & Tamada,
2018). SVs can involve multiple copies of genes or the deletion
of a gene and thus influence gene dosage. Sudmant et al. (2015)
estimated that SVs were 50 times more likely than SNVs to affect
gene expression and three times more likely to be associated with
a trait difference than an SNV.

Despite being the extreme minority among the variants we
carry, we all have thousands of functional variants in our
genomes. A recent deep sequencing study of diverse ancestries
identified approximately 11,700 functional variants per individual
genome (Taliun et al., 2021). Another study of roughly half a mil-
lion people in the United Kingdom, Backman et al. (2021)
observed an average of ∼600 variants, including 50 putative
loss-of-function (pLOFs) variants, per gene. Backman et al.
(2021) estimated that on average each of us carries 214 pLOF var-
iants as “defective” gene copies. Although this variation is non-
trivial, recall that we receive two copies of our genes (excepting
the male-specific genes on the Y chromosome). In addition, a
host of cellular mechanisms, including those shaping gene expres-
sion, compensate for many of these loss-of-function variants and
facilitate robustness to functional mutations by, for example,
up-regulating transcription (thereby producing more mRNA
transcripts) and slowing the rate of mRNA decay (thereby
increasing the ability of the cell to generate more polypeptides
from the same mRNA transcript) (see Strachan & Read, 2018).

In addition to the several million genetic variants passed
down by each of our parents, we inherit roughly 30–80 new
mutations that arise during meiosis. The human population
explosion over the past several hundred years has produced an
abundance of new mutations as rare variants. Rare variants are
disproportionately deleterious. Fu et al. (2013) estimated that
∼86% of all deleterious SNVs are rare and recent. Many of
these variants are found in only a handful of related people
and are not represented in population samples. As discussed
later, despite their prevalence and disease-relevance, rare vari-
ants pose a challenge for GWASs.

2.3 A brief note on ancestry and continental populations

Most sociogenomics studies at least briefly discuss ancestry and
issues related thereto. A basic understanding of what this refers
to is helpful (for a social science discussion, see Herd et al.,
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2021). Modern humans are, of course, a single species, which
emerged some 550–750 thousand years ago (Fu et al., 2016).
Although terminology varies, several population genetic studies
classify humans roughly into five continental populations:
African (AFR), European (EUR), East Asian (EAS), South
Asian (SAS), and American (AMR), differentiated by their conti-
nental migration out of Africa within the last 100,000 years (The
1000 Genomes Project Consortium, 2015). Importantly, these
populations are abstractions from an underlying continuum of
genetic relatedness and should not be thought of as genetically
distinct subpopulations (Coop & Przeworski, 2022; Feldman,
Lewontin, & King, 2003).

The vast majority of variants in an individual’s genome are
shared by all continental populations (The 1000 Genomes
Project Consortium, 2015). Only a small proportion of the vari-
ants in an individual genome are restricted to one continental
population, and these tend to be recent mutations that are also
rare in the populations in which they are found. However, allele
frequencies for common variants do differ across groups because
of population patterns of migration and mating, shaped by phys-
ical boundaries and sociocultural influences. Furthermore, allele
frequencies vary in a more fine-grained manner across subgroups
of populations, especially for rare variants (Mathieson & Mcvean,
2012). As discussed later, this variation in mostly random allele

Table 1. Glossary, acronyms, and definitions for sociogenomics terms

Concept Acronym Definition

Allele A version or alternative form of a DNA sequence (e.g., a version of an SNP) or a gene.

Allele frequency The proportion of all variants at a given position that are the specific allele in question; usually reported as the
frequency of the second most common variant (i.e., “minor allele frequency”).

Copy number variant CNV A type of genetic variant in which the number of copies of a particular sequence varies between individuals.*

Gene Sequences of DNA interspersed at irregular intervals on our chromosomes that serve as templates for making
an RNA product.

Genetic risk score GRS Alternative for PGS

Genome The total DNA sequence in an organism or cell; the human genome consists of roughly 6 billion nucleotide
bases of nuclear DNA separated into 46 chromosomes plus mitochondrial DNA.

Genome-wide association
study

GWAS A statistical analysis that estimates the partial correlation between each measured DNA variant (usually SNPs)
and a particular phenotype, net of a few controls (usually age, sex, and ancestry PCs).

Haplotype A sequence of alleles found at linked loci on a chromosome.

Haplotype block Blocks of variants that are in linkage with each other but not with variants in adjacent blocks (separated by
recombination); the consequence of shared ancestry.

(Short) insertion–deletion Indel Narrowly, a change where one or more nucleotides are inserted (or deleted) in a sequence; broadly as used
here, all types of DNA change that cause a size change at a specific position: insertions, duplications,
deletions, and compound insertion/deletion up to 50 bp (includes short CNVs).

Linkage disequilibrium LD When particular alleles at separate loci are associated with each other at a significantly higher frequency than
would be expected by chance.

Locus Designated region on a chromosome. Can refer to a single-base position or a broader region.

Non-coding RNA ncRNA RNA that does not code for a protein; ncRNA has many functions in the cell.

(Genetic) principal
components

PCs Orthogonal controls for ancestry created from a principal components analysis (a dimension reduction
technique) of the genetic relatedness or allele dosage matrix.

Polygenic index PGI Alternative for PGS

Polygenic risk score PRS Alternative for PGS

Polygenic score PGS A genetic summary score representing the additive genetic association with a trait; composite measure
created as the sum of the GWAS-weighted allele dosages for each individual; human equivalent to the
breeding value.

Quantitative trait locus QTL A locus (that statistical analysis has) linked to a continuous (quantitative) trait, like height.

Single-nucleotide
polymorphism

SNP A position on the genome where two (or more) alternative nucleotides are common (>1%) in the population;
common SNVs.

Single-nucleotide variant SNV A position on the genome where alternative nucleotides exist.

Structural variant SV Sequence changes (insertions, deletions, translocations) that involve a change in more than 50 bases. (In the
past, structural variation was concerned with large sequence changes of >1 kb, but with next-generation
sequencing, SVs, it has come to represent smaller changes.)

Tag SNPs Mostly non-functional SNPs in GWASs used to tag a region of common variation; common SNPs used to tag
haplotypes.

*The term copy number variant used to be applied to all variants that had a variable number of tandem repeats, including short tandem repeats, such as the microsatellite in (D) where there
are 12 or 11 copies of the CA dinucleotide. In genome sequencing projects, the term is reserved for large size changes only, such as variable numbers of repeats exceeding 50 nucleotides in
the case of the 1000 Genomes Project. (Strachan & Read, 2018)
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frequencies across difference groups poses a major challenge for
GWASs by inducing or inflating genetic associations through con-
founding between genotypes and outcomes (e.g., Berg et al., 2019;
Morris, Davies, Hemani, & Smith, 2020a).

3. Statistical genetic methods of sociogenomics

3.1 What genetic differences are measured?

The complexity of GWASs/PGSs and the way that they are dis-
cussed can produce confusion over what is measured in these
studies. Readers can be excused from thinking that these studies
measure genes and/or causal variants that shape differences
through some known biological pathway. The abstract of a recent
study, for example, referenced “mothers with more education-
related genes” (Armstrong-Carter et al., 2020). Genes are not
measured in these studies. Rather, these studies measure and ana-
lyze a select subset of one form of variation in the genome:
Single-nucleotide polymorphisms (SNPs) that have two alleles
(e.g., A or C) (see Appendix A for a detailed discussion).3 In
this section, I describe with as much simplicity as possible what
is measured in GWASs/PGSs and why. Although intricate, under-
standing what GWASs/PGSs do measure (SNPs) and that they do
not measure (genes or causal variants) is necessary to understand
the inherent limitations with this approach.

The GWAS methodology is rooted in the blocklike structure of
our genome. Although technical detail is out of scope, we inherit
whole chromosomes from each parent, but these chromosomes
are composed of unique blends of blocks of our parents’ maternal
and paternal chromosomes created during the process of “cross-
ing over” (or genetic recombination). Each chromosome we
inherit is a unique blend of our parents’ matching chromosomes,
created when segments are exchanged in meiosis (an average of
1.5 blocks of exchange per chromosome). Helpfully, crossing
over does not occur randomly across the genome but tends to
occur in 1–2 kb regions, known as recombination hotspots,
which occur every 50–100 kb across the genome (Myers,
Bottolo, Freeman, McVean, & Donnelly, 2005). Consequently,
blocks of chromosomal segments are passed down across many
generations unbroken by recombination, and, by dint of being
passed down unbroken, contain correlated SNPs (i.e., SNPs that
are not inherited independently). These chromosomal segments
that exist between recombination hotspots are known as haplotype
blocks. The association between SNPs on a haplotype is known as
linkage disequilibrium (LD) and exists as a matter of degree (as a
correlation).

This haplotype structure of our genome means that there is
much less variability between genomes than would occur from
the random assortment of SNPs. For example, the average haplo-
type block contains ∼50 SNPs, which would, in theory, allow 250

different combinations. Typically, however, most haplotype
(>90%) blocks will be characterized by six or fewer combinations
of alleles (The International HapMap Consortium, 2005). The
combination of alleles on a haplotype block is known as haplo-
type and represents ancestral segments defined by common,
ancient SNPs. Rarer variation exists as heterogeneity around the
SNPs that define haplotype blocks (Strachan & Read, 2018).

This haplotype structure of our genomes undergirds the
GWAS methodology. Measuring and testing each of our 3 bn
base pairs is impracticable. Instead, GWASs analyze a smaller
number of SNPs from across the genome to tag regions of com-
mon variation (i.e., haplotypes). Contemporary GWASs scan

the genome for associations between several millions of these pre-
selected SNPs, known as “tag SNPs” and a trait. Significant SNP
associations mark a genomic region (“genomic risk locus” or
quantitative trait locus, QTL) in which an unknown causal vari-
ant(s) driving the association is presumed to lie. Tag SNPs are
thus usually non-functional, common variants used as proxies
for some unknown causal variant(s) in proximity (with which
they are in LD). Proximity is relative and varying. Genomic risk
loci can range in size from several hundred thousands to more
than 1Mbp.

Crucially, rare and more likely deleterious variants are not well
tagged by SNPs, given that SNPs tag haplotypes defined by shared
common variants, and most haplotypes will not contain the rare
variants (or they wouldn’t be rare)4 (Backman et al., 2021;
McClellan & King, 2010; Tam et al., 2019). Additionally, other
variant forms – indels, copy number variants (CNVs), and SVs
– are not measured in GWASs, and many are not well-tagged
by common SNPs (Backman et al., 2021; Tam et al., 2019).

Additionally, because different ancestral groups can have dif-
ferent allele frequencies, different patterns of LD, and somewhat
different haplotypes, tag SNPs often do not work in the same
way across populations, even when the causal variant is the
same (Martin et al., 2017; Peterson et al., 2019). This ancestral
variation in LD and haplotypes is one biological reason why
GWAS findings do not “port well” or generalize across ancestral
groups (e.g., Mostafavi et al., 2020).

The haplotype structure of our genome also enables GWASs
by facilitating imputation. GWASs rely on large samples; however,
studies vary in the genotyping platforms they use, which measure
somewhat different SNPs, and contain missing data. Knowledge
of haplotypes allows the probabilistic imputation of missing or
untyped genotypes at adjacent SNPs using more densely geno-
typed samples or whole-genome reference panels.5 Most genotype
arrays now measure between 500,000 and 2 million SNPs, and
most contemporary GWASs now include ∼10 million SNPs,
most imputed (Tam et al., 2019).

The original aim of GWASs was to understand the underlying
molecular basis of trait variation by tracing causal pathways from
genetic variants to outcomes. The idea was that tag SNPs could be
used to mark risk loci that could be followed up with fine-
mapping and functional annotation to identify causal variants
in genes with well-defined functions. Although GWASs have, in
some cases, facilitated the identification of causal variants
involved in disease pathogenesis, for reasons that are out of
scope, biological interpretation is exceedingly difficult, in general,
and even more so for complex social traits with increasingly
numerous (>1,000) GWAS hits and miniscule effect sizes (see
e.g., Backman et al., 2021; Crouch & Bodmer, 2020; Edwards,
Beesley, French, & Dunning, 2013). Hence, sociogenomicists pri-
marily use GWAS results for polygenic prediction, explicitly
deemphasizing inquiry into causal variant(s) or biological path-
ways (but not always, see e.g., Ganna et al., 2019). In what follows,
I briefly describe the nuts and bolts of GWASs, this is followed by
a discussion of PGS generation.

3.2 GWAS methodology

GWASs are a theory-free analytic approach to scan the genome
for trait-associated tag SNPs. This involves testing, for each SNP
one at a time, whether an allele (SNP variant) is more common
in cases versus controls (or for continuous traits, across different
levels). GWASs thus test for independence between genotype and
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outcome for each SNP, with a few controls (not including other
SNPs). The 2018 educational attainment GWASs, for example,
assessed whether allele frequencies – for roughly 10 million
SNPs – differed (across groups stratified by) years of education
(Lee et al., 2018). Typically, the type of effect of interest in
GWASs is variant substitution effects, which can be understood
as the counterfactual change in an individual outcome that
would occur from changing the individual’s genotype for a partic-
ular SNP at conception (holding all else constant) (Freese, 2008;
Morris et al., 2020a). This counterfactual model assumes that
genetic associations indicate a causal path from an individual’s
genotype (or allele dosage) to complex social traits, reflecting a
variant substitution effect (Lawson et al., 2020).

The basic form of GWASs is straightforward. Here I focus on
these basics, including the familiar linear equation form that
underlies the model. This model has been elaborated in recent
years, but the underlying logic remains the same. Using bi-allelic
SNPs and assuming additive SNP effects, genotypes for a partic-
ular SNP (e.g., AA, AC, CC) are translated to numeric allele dos-
age effects by counting the number of minor (or effect) alleles
(0, 1, or 2) for each individual. Allele dosages for each SNP are
the focal independent variable in each of these millions of regres-
sions (again, one for each SNP examined separately), which take
the following general form:

Y = b0 + b1 × SNP+ b2 × Sex+ b3 × Age+ b4

× PC1 . . . b14 × PC10+ e

where Y is a continuous variable (e.g., years of education), and
SNP represents the allele dosage measure, controlling for age,
sex, and usually 10–20 genetic ancestry principal components
(PCs, discussed shortly). The outcome of interest in this model
is β1 – the effect size for each SNP – which can be interpreted
as the marginal effect of having one more minor allele (a unit
increase in allele dosage) and its associated p-value. For binary
outcomes, this would just approximate the form of a familiar
logistic regression model. These results for the millions of separate
regressions are automatically compiled into results by modern
computational programming software, such as PLINK (Purcell
et al., 2007) and METAL (Willer, Li, & Abecasis, 2010). Focal
GWAS results, as the SNP effect size estimates and p-values, are
known as summary statistics, which provide the input for further
analyses. Summary statistics are often considered the “data” in
GWASs even as these are more accurately referred to as the results
(of the first step of the analysis) (Burt & Munafò, 2021).

Following the estimation of the GWASs from the primary
study sample or the “discovery” sample, a number of diagnostic
tests (e.g., Manhattan and QQ-plots, which display p-values on
a −log10 scale) are performed (see Choi, Mak, & O’Reilly, 2020;
Schaid, Chen, & Larson, 2018). Because of LD (non-
independence among SNPs sharing a haplotype) and the exami-
nation of each SNP separately, there will invariably be multiple
(even dozens of) SNPs marking a risk locus. Thus, follow-up
analyses (e.g., clumping and thresholding) are conducted to
define clusters of SNPs in high LD (often high LD is defined as
r2 > 0.16) and to identify a single “lead SNP,” usually the SNP
with the lowest p-value, to represent this clump and mark a
risk locus. In this way, risk loci (or QTLs) are defined as
trait-associated regions marked by approximately independent
(“lead”) SNPs.

As noted, risk loci range in size from ∼50 kbp to over 1Mbp
(e.g., Lee et al., 2018). Thus, a GWAS that reports 1,237 lead
SNPs can thus be understood as identifying 1,237 approximately
independent risk loci defined by a lead SNP and in which the
causal variant(s) responsible for the association is presumed to
lie. Such risk loci, which often stretch across multiple haplotypes,
usually contain thousands of SNVs along with SVs and indels,
and often multiple genes (hence the difficulty of biological
interpretation).

Importantly, lead SNPs for complex social traits are invariably
very weakly associated with an outcome, usually accounting for
less than 0.01% of the variation. In their educational attainment
study, for example, Lee et al. (2018) reported that “the median
effect size of the lead SNPs corresponds to 1.7 weeks of schooling
per allele.” Similarly, among the five lead SNPs identified in their
study of “non-heterosexuality” in the UK Biobank, Ganna et al.
(2019) observed “very small effects”; “males with a GT genotype
at the rs34730029 locus had 0.4% higher prevalence of same-sex
sexual behavior than those with a TT genotype (4.0 vs. 3.6%)”
(p. 3). Given the impracticability of biological interpretation
and the weak prediction from any single variant or QTL, research-
ers have shifted to creating genetic summary scores that aggregate
SNPs weighted by their effect sizes, discussed next.

3.3 Polygenic score (PGS) construction

Calculating PGSs (also called polygenic risk scores [PRSs] or
genetic risk scores [GRSs], usually when referring to adverse bio-
medical outcomes) is now a common application of GWASs to pre-
dict complex traits (or disease risk) from weight and height to
depression and educational attainment (Evans, Visscher, & Wray,
2009; Wray, Goddard, & Visscher, 2007). PGSs operate under a
massively polygenic, additive model (Boyle, Li, & Pritchard,
2017). Under this model, summing the GWAS-weighted risk (or
effect) allele dosages (0, 1, or 2) usually with several sophisticated
statistical adjustments can provide an index of a continuous under-
lying (additive) genetic liability for a trait.7 The human equivalent
of the “breeding value” is in selective plant and animal breeding in
human populations (Meuwissen, Hayes, & Goddard, 2001), and
PGSs have been described as “summariz[ing] the cumulative effects
of many variants across the genome and aim[ing] to index an indi-
vidual’s genetic liability for a given trait” (Domingue, Trejo,
Armstrong-Carter, & Tucker-Drob, 2020, p. 465) or a “single quan-
titative measure of genetic predisposition” (Mills, Barban, & Tropf,
2018). The educational attainment PGS has been characterized as
measuring “an individual’s genetic predisposition for completing
[more years of] formal schooling” (Bolyard & Savelyev, 2020)
and a “DNA-based indicator[] of propensity to succeed in educa-
tion” (Harden et al., 2020).

The specific details on PGS construction can, and have, filled
articles (see Choi et al. [2020] for more details), but the basic pro-
cess is as follows: Run GWAS in discovery sample→ replicate
results in an independent sample→ adjust for LD using a refer-
ence panel→ select SNPs→ adjust for LD and winner’s curse→
construct PGS→ test PGS prediction in a target sample→ assess
PGS with incremental R2. It is worth noting that there are several
decisions by researchers involved in PGS construction. In the
“select SNPs” phase of PGS construction, researchers decide
which SNPs to include in the PGS (via p-value thresholds)
based on the success of prediction. Specifically, researchers evalu-
ate several PGSs created at a variety of p-value thresholds and
select the best PGS predictor (measured by R2), which is usually
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the PGSs created from a p < 1 threshold (i.e., no p-value thresh-
old) (e.g., Belsky et al., 2018; Ganna et al., 2019; Lee et al., 2018).8

Thus, in what may come as a surprise to some, most PGSs are
constructed from all available SNPs regardless of their statistical
significance in the GWAS. Available evidence suggests that
these “all SNPs” PGSs are more environmentally confounded
than those that use (more stringent) p-value thresholds, such
that while these may explain more variance, they do so because
they capture environmental influences as well as genetic ones
(Berg et al., 2019; Mostafavi et al., 2020).

4. The utility of PGSs for social science: Proponents’
arguments

Touted as a powerful new “tool” for social scientists to incorporate
genetics into their research, PGSs are said to offer exciting new
opportunities for social science research (Braudt, 2018; Freese,
2018; Harden & Koellinger, 2020; Mills & Tropf, 2020). Below I
describe proponents’ chief arguments about the utility of PGSs
for social science, but first a note on PGSs lack of efficacy in indi-
vidual prediction.

With few exceptions (e.g., Plomin, 2019; Plomin & Von Stumm,
2018), scholars agree that PGSs do not predict complex social out-
comes with any degree of efficacy or accuracy and, therefore, should
not be used for individual prediction (see, e.g., Harden & Koellinger,
2020; Morris, Davies, & Smith, 2020b). Although not appropriate
for predicting individual outcomes, proponents emphasize myriad
of benefits to incorporating PGSs to social science.

4.1 “Getting genetics out of the way”

Perhaps the most hyped value of PGSs in social science is to con-
trol for genetic heterogeneity in studies of environmental effects.
According to Harden (2021a), many sociogenomicists are most
excited about the potential of PGSs as a tool “to make genetics
recede into the background, to get it out of the way” so that we
can more clearly see the effects of environments (see also
Conley, 2016). Given ubiquitous heritability, proponents argue
that uncontrolled genetic heterogeneity poses a serious threat to
inferences about the effects of specific environments, as these
ostensibly environmental causes may be biased or spurious (as
actually driven by genetic differences) (Harden & Koellinger,
2020; Hart et al., 2021). For example, rather than health or lon-
gevity being influenced by higher educational attainment, scholars
have suggested, these relationships may be spurious with genetic
endowment being the causal force. Similarly, sociogenomicists
have asked, whether parental environments, including early child-
care, causally influence educational attainment or whether these
are spuriously associated because of shared genetic endowments.

Proponents also argue that incorporating PGSs as control var-
iables into social science research can enhance the precision of
environmental estimates (Cesarini & Visscher, 2017; Harden,
2021a, 2021b; Kweon et al., 2020). This enhanced precision may
increase the power associated with randomized controlled trials,
potentially shrinking their cost (Lee et al., 2018; Rietveld et al.,
2013). Controlling for genetic heterogeneity with PGSs, propo-
nents argue, may also reveal previously obscured environmental
effects. For example, some environmental influences on educa-
tional attainment may only be apparent among those at “high
genetic risk” (Herd et al., 2021). For these reasons, proponents
suggest, PGSs are valuable as a control for differential genetic pro-
pensity to illuminate more clearly and precisely the effects of

environmental influences (Harden & Koellinger, 2020; Trejo &
Domingue, 2019).

4.2 A powerful, flexible analytic tool for causal inference

Proponents also emphasize the value of PGSs as a powerful tool
for causal inference (Belsky & Israel, 2014). This strength of
PGSs, proponents argue, draws on several unique advantages of
genetic data (Conley, 2016; Harden, 2021a). First, evidence
(from twin studies of heritability) suggests that genetic differences
matter. Second, “the genetic sequence of each person is fixed at
conception and does not change throughout one’s lifetime”
(Kweon et al., 2020), which means that genotype need only be
measured once. Further, once measured, PGSs can be calculated
for any outcome, which need not be measured in the study, and
as PGSs are updated with larger and more diverse samples,
these individual scores can be created and updated (Belsky
et al., 2018; Harden, 2021a, 2021b).

Proponents emphasize that this fixity of our DNA sequence
means that reverse causality from behavior or environmental
exposures to the genome can be ruled out. Given this, genetic
data can serve as exogenous measures of individual characteristics,
which do not change over the life course, “facilitating the tracing
of developmental paths” or as a “fixed point from which to
observe child development” (Belsky & Israel, 2014; Harden
et al., 2020). Scholars have argued that PGSs can be used as a
“molecular tracer”: “Just as a radiologist might administer a radio-
active tracer to track the flow of blood within the body, research-
ers can use genetics as a molecular tracer to get a clearer image of
how students progress through the twists and turns of the educa-
tional system” (Harden et al., 2020).

4.3 Gene–environment interplay

PGSs are also advertised as a more direct and powerful tool to
explore how gene–environment interplay influences social out-
comes. Broadly, gene–environment interplay with PGSs can be
demarcated into three broad types: (1) PGS–environment interac-
tions (e.g., does gender suppress “genetic potential” for educa-
tional attainment; Herd et al., 2019), (2) PGS–environment
combinatory effects (e.g., how do “nature” and “nurture” combine
to shape children’s resemblance to their parents in human capital
accumulations over time; Harden & Koellinger, 2020), and (3)
PGS-through-environment pathways (e.g., through what social–
psychological mechanisms does the education PGS increase edu-
cational attainment; Bolyard & Savelyev, 2020).

Proponents have argued that PGSs can reinvigorate the study
of gene–environment interactions (G × E) with “robust measures
of genotype,” in contrast to the limited candidate G × E approach
(Harden & Koellinger, 2020; Martschenko et al., 2019). “By apply-
ing the prism of GxE models, it is hoped that the white light of
average effects will be refracted into a rainbow of genetically
mediated responses that are made clear to the scholar interested
in describing human behavior” (Conley, 2016, p. 293). In addi-
tion, PGSs may also be gainfully employed in the service of under-
standing heterogeneous responses to social interventions, in the
form of a PGS × intervention (Harden & Koellinger, 2020).

4.4 Risk stratification and/or early identification

Although most scholars agree that PGS-based personalized pro-
grams or policies are not realistic because of poor individual
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prediction, PGSs are still advertised as having potential use in risk
stratification, particularly for those in the upper and lower deciles
of PGSs. On this view, PGSs could be used to identify “at-risk”
individuals before problems manifest or become severe through
the implementation of an early genetic screening system
(Martschenko et al., 2019). Such genetic screening is argued to
provide an inexpensive way to more expansively identify those
at high genetic risk of problems, such as lower educational attain-
ment or physical inactivity, and intervene in advance with, for
example, extra support or placement into a different learning
environment (Harden & Koellinger, 2020; Martschenko et al.,
2019). Similarly, PGSs could be used to identify “high potential”
individuals, who could also be targeted with different learning
environments.

In addition to risk stratification, proponents argue that
enhanced understanding of the distribution of genetic risks
could be used to study the effects of social institutions and pro-
grams. For example, in educational systems, studying the distribu-
tion of genetic risks “across schools could be used to study
inequities in the current ways that the educational system
under- and overdiagnoses students… thereby identifying differen-
tial diagnoses and treatment across groups” using PGSs as “indi-
cators with some degree of objectivity” (Martschenko et al., 2019).

4.5 Changing worldviews and approaches to social inequalities

Finally, some proponents claim that incorporating genetics into
social science will change the way that social scientists think
about the world. In the words of Harden and Koellinger (2020,
p. 567):

Ultimately, the greatest impact from integrating genetics into the social
sciences will probably not come from simply applying new tools to old
questions, but from changing how people think about the world around
them, allowing them to ask new questions and to pursue new answers
that would not have been feasible before. For example, the realization
that success in life is partly the result of a genetic lottery raises new ques-
tions not only about underlying mechanisms, but also about fairness and
what a desirable distribution of wealth in a society should look like.

On this view, GWASs and PGSs reveal the hitherto unrecog-
nized fact that “success in life” is partly shaped by our genetic
inheritances. In general, these scholars maintain that incorporat-
ing genetics into social science will stimulate new ways of thinking
about and investigating our differences and inequalities, which
may inform social policies to ameliorate inequalities.

4.6 Summary

Proponents tout several benefits from incorporating PGSs into
social science to enhance social science research. In the next sec-
tion, I scrutinize the science of sociogenomics, highlighting limi-
tations, which I argue, undermine the utility of PGSs into social
science. Most of these limitations are acknowledged by socioge-
nomicists; yet the full implications of these challenges are invari-
ably unheeded in practical applications.

5. Limitations of PGSs that undermine their utility for social
science

As is well known, a person’s social traits emerge from a complex
interplay of environmental and genetic influences over their

lifetime. As I have discussed, the goal of GWASs is to identify var-
iant substitution effects as causal genetic effects, and the
primary raison d’être of PGSs is to index genetic influences on
(differences in) phenotypes. Proponents hype the value of PGSs
for “unbraiding” and “disentangling” the effects of genetics and
environments in shaping individual differences in complex social
outcomes. Naturally, this only works if (a) genetic and environ-
mental influences on traits can be differentiated, and, if so, (b)
PGSs are relatively accurate and unbiased estimates of genetic
influences (Barton, Hermisson, & Nordborg, 2019).
Unfortunately, for a variety of biological, statistical, and develop-
mental reasons, GWASs cannot disentangle “genetic” from “envi-
ronmental” influences, such that PGSs do not index genetic
influences on complex traits (Haworth et al., 2019; Morris
et al., 2020a). In particular, dynamic population phenomena
induce confounding between genotypes and complex social out-
comes at multiple levels, inter alia: family, neighborhood, peer
group, region, culture, nation, and historical time (Barton et al.,
2019; Lawson et al., 2020). I discuss four primary limitations of
PGSs that vitiate their utility for social science as measures of
“genetic influences on” or “genetic propensities for” complex
social traits: relatedness confounding, downward causation, lim-
ited coverage of genetic influences, and context-specificity.

5.1 Relatedness confounding of PGSs

The most widespread and widely recognized form of environmen-
tal confounding is because of (genetic) relatedness and passive
gene–environment correlations. Basically, people who are more
genetically similar (i.e., more closely related, even distantly) also
tend to develop in more similar sociocultural, political, and phys-
ical environments, which influence most complex social traits.
Thus, genotype and environments are correlated for non-causal
reasons. Generally, relatedness confounding is demarcated into
population genetic structure and familial confounding. Both are
known issues in GWASs/PGSs and steps are taken to mitigate
this confounding. However, evidence is mounting that these cor-
rections are insufficient, such that inflated or spurious genetic
associations persist (e.g., Barton et al., 2019; Berg et al., 2019;
Haworth et al., 2019; Morris et al., 2020a; Mostafavi et al., 2020).

5.1.1 Population (sub)structure and phenotype stratification
With respect to confounding by population structure, the key qualitative
difference is between controlling the environment experimentally, and
not doing so. Once we leave an experimental setting, we are effectively
skating on thin ice, and whether the ice will hold depends on how far
out we skate. (Barton et al., 2019, p. 3)

Population (genetic) (sub)structure refers to patterns of genetic
variation within populations because of non-random mating.
Population structure arises because of complex demographic his-
tories (separation, migration, admixture), which result in mostly
random allele frequency differences between population sub-
groups (Cardon & Palmer, 2003; Lawson et al., 2020). When
these coarse population genetic subgroups (shaped by geographic
region, race/ethnicity, social class, religion) are differentially
exposed to trait-associated sociocultural and physical environ-
mental factors – as they often are – alleles associated with sub-
group membership are also associated with trait differences,
producing spurious or inflated genetic effect size estimates,
known as phenotype stratification (Browning & Browning, 2011;
Cardon & Palmer, 2003; Morris et al., 2020a).
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The classic example used to illustrate phenotype stratification
is a genetic association study of chopstick-eating skills (Hamer,
2000; Lander & Schork, 1994). If we were to conduct a GWAS
of using chopsticks in a sample of diverse ancestry, we would
no doubt find significant associations. Although there may be
some genetic variants affecting our ability to handle chopsticks
(e.g., finger dexterity), most genetic associations would be because
of cultural differences, namely random variants that differed in
frequency between East Asia and the rest of the world and had
nothing to do with “genetic propensity” for chopstick use skills.
In practical applications, phenotype stratification is most plainly
manifest with the geographic patterning of PGSs, which reflects
sociocultural and physical environmental influences (Abdellaoui,
Verweij, & Nivard, 2022; Haworth et al., 2019; Lawson et al.,
2020).

The minimal approach to mitigate phenotype stratification is
the examination of an ostensibly homogenous ancestral group.
However, population substructure exists within these groups,
including populations from a single location, such as “white
Europeans” within the United Kingdom, Finland, the
Netherlands, and Western France (e.g., Bycroft et al., 2019;
Byrne, van Rheenen, van den Berg, Veldink, & McLaughlin,
2020; Haworth et al., 2019; Karakachoff et al., 2015; Kerminen
et al., 2017; Leslie et al., 2015). Such finer-scale genetic population
structure (known as local or regional population structure) is a
function of non-random mating shaped by sociopolitical forces,
cultural factors, and different physical environments all of which
foster assortative mating (Morris et al., 2020a; Richardson &
Jones, 2019; Zaidi & Mathieson, 2020). Consequently, pervasive,
albeit often subtle, allele frequency differences between subgroups
experiencing many different physical and social environments
exist and can be picked up by GWASs as genetic causes, even if
functionally unrelated to trait variation. For these reasons, in the
presence of population structure, GWAS SNP associations may
just be proxies for (or inflated by) an environmental variable that
has not been properly corrected (Browning & Browning, 2011;
Cardon & Palmer, 2003; Novembre & Barton, 2018).

Several sophisticated statistical methods have been introduced
to mitigate or adjust for population structure-confounding, includ-
ing genomic control (Devlin & Roeder, 1999), genetic principal
components (PCs) (Price et al., 2006), linear-mixed models
(LMM) (Kang et al., 2010), and LD score regression (LDSC)
(Bulik-Sullivan et al., 2015). Although these methods appear to
reduce population stratification, evidence from a variety of studies
using whole-genome sequence data, simulations, and tests of non-
genetic traits (like latitude/longitude of birth, birth order) evince
that these methods do not adequately correct for population struc-
ture, and this is especially true for complex social traits of interest
to sociogenomicists (e.g., Berg et al., 2019; Dandine-Roulland
et al., 2016; Mostafavi et al., 2020; Sohail et al., 2019; Zaidi &
Mathieson, 2020).

For example, in a recent study, Abdellaoui et al. (2022) dem-
onstrate that controlling for geographic region decreases heritabil-
ity signals for socioeconomic status (SES)-related traits, especially
educational attainment and income, as socioeconomic differences
between geographic regions induce gene–environment correla-
tions that are picked up in GWASs and inflate PGSs (see also
Leslie et al., 2015; Mostafavi et al., 2020; Sohail et al., 2019). In
another study using simulations, Zaidi and Mathieson (2020)
show that recent (within the past 100 generations or ∼2,500
years) genetic structure with sharp effects pose a particular prob-
lem for GWASs/PGSs given the tag SNP methodology. As they

explain, recent population structure with sharp local effects, as
may result from cultural, language, and/or physical boundaries
patterning mating, can only be adequately corrected with rare var-
iants, which are not measured in these studies.9

In sum, the evidence is clear that phenotype stratification per-
sists despite sophisticated methods to mitigate such confounding
– most obviously in the form of geographic patterning of PGSs
(Abdellaoui et al., 2022; Byrne et al., 2020; Haworth et al.,
2019) – and its effects (inflating PGSs) appear to be particularly
acute for complex behavioral traits related to socioeconomic status
(Abdellaoui et al., 2022; Lawson et al., 2020). Crucially, these
biases are exacerbated under the very modeling conditions most
often used for social science outcomes – when multiple studies
are meta-analyzed and millions of SNPs are aggregated in PGSs.
Even subtle population stratification can cumulatively generate
substantial biases when millions of SNPs are aggregated, espe-
cially when less stringent p-values are employed (as is typical)
(Barton et al., 2019; Berg et al., 2019; Mathieson & Mcvean,
2012). In short, PGSs for complex social traits capture some non-
trivial amount of social environmental effects because of uncor-
rected population substructure (Abdellaoui et al., 2022; Curtis,
2018; Lawson et al., 2020).

5.1.2 Familial confounding10

Biological parents not only pass on half of their genome to their
children but also their environments, including social status, cul-
ture, worldviews, values, habits, and the like (Shen & Feldman,
2020). Therefore, the association between parental and offspring
genotypes is often confounded by the association of genotypes
with rearing environments, effects which may be amplified over
generations via social mechanisms (as “dynastic effects”;
Brumpton et al., 2020). Such gene–environment correlations
inflate estimates of genetic influences, especially for complex
social traits where the transmission of social advantages (e.g., sta-
tus and wealth) and associated familial practices are significant
(e.g., Kong et al., 2018; Morris et al., 2020a).

Several innovative sociogenomics studies have illuminated the
extent of familial confounding in PGSs. These studies suggest that
roughly half of the effect of the education PGS is because of familial
confounding. For example, Kong et al. (2018) found that controlling
for an education PGS created from parents’ non-transmitted alleles
(i.e., the other half of alleles not passed down) reduced the variance
explained by the offspring education PGSs by roughly half. If child
PGS captures causal genetic effects, then controlling for non-
transmitted parental alleles would not substantially reduce the effect
of the child PGS on their education. In contrast, Kong et al.’s results
suggested significant inflation of ostensibly genetic effects by familial
confounding. In another study, Cheesman et al. (2020) compared
the predictive effects of an education PGS on years of education
in adopted and non-adopted youth. They observed that the PGS
was twice as predictive of years of education in non-adopted versus
adopted individuals (R2 = 0.074 vs. 0.037), as would be expected if
the education PGS captures familial effects. Similarly, Belsky et al.
(2018) observed that controlling for parental education reduced
the effect of the education PGS on years of education by about
half, which “suggests environmental confounding of polygenic
score associations with educational attainment” (p. E7277).

As with population structure, practitioners are aware of the
issues with familial confounding and have employed statistical
techniques to attempt to mitigate this confounding (see, e.g.,
Trejo & Domingue, 2019; Wu et al., 2021; Young et al., 2018).
The most rigorous approach to reduce familial and population
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structure confounding is a within-family or sibling-difference
design. These studies examine how differences between siblings
in their genotypes (in GWAS or PGS prediction) explain sibling
differences in phenotypes, net of their shared rearing environ-
ments using family fixed effects (Belsky et al., 2018; Laird &
Lange, 2006). For illustration, Lee et al. (2018) used a sibling-
difference study to test the robustness of their (conventionally)
unrelated sample education GWAS findings using a sample of
∼22,000 sibling pairs. Given differences in statistical power, Lee
et al. (2018) examined sign concordances of the GWAS coeffi-
cients (i.e., whether the effect direction of the risk alleles matched
+/+) rather than their significance or effect sizes across the studies
at three different p-value thresholds. By chance, of course, we
would expect 50% of the signs to match. Their results showed
that for the less stringent p-value threshold ( p < 5 × 10−3), sign
concordances between the discovery GWAS and sibling-difference
GWAS were only slightly better than chance at ∼56.5%, which
improved at more stringent p-value thresholds to ∼60% at p <
5 × 10−5 and ∼65% at p < 5 × 10−8.11 [Aside: Although expecting
perfect sign concordance is unrealistic, a sign concordance of
<57% at a p-value threshold that was more stringent than the
one employed to create the widely used education PGS does
not, in my view, demonstrate robustness or constitute replicated
findings.] Lee et al. (2018) reported that the within-family effect
sizes were, on average, 40% smaller than that from the unrelated
GWASs. The just-published updated education GWAS did not
present a within-family GWAS replication; however, their within-
family PGS analyses indicated that only 30.9% of the PGS effect
was a “direct effect” (Okbay et al., 2022; see also Morris et al.,
2020a).

Not unexpectedly, sibling-difference studies of non-social
(more proximally biological) traits, like height and C-reactive pro-
tein, report only minor evidence of familial confounding and
slightly reduced effect sizes, whereas sib-studies of social out-
comes, like educational attainment and smoking behavior, invari-
ably report appreciably smaller effect size estimates, given the
significance of sociocultural forces on these traits (Howe et al.,
2022; Lee et al., 2018; Mostafavi et al., 2020). Importantly, this
confounding is not simply a minor issue affecting the precise
effect size but evidence suggests that this confounding substan-
tively alters sociogenomics findings. For example, Howe et al.
(2022) demonstrated that strong genetic correlations between edu-
cation and height, weight, and C-reactive protein from population
genetic studies become “negligible” in sibling-difference analyses.

Given the persistence of genetic relatedness confounding in
GWASs and PGSs even with sophisticated methodological “cor-
rections,” research employing PGSs as indicators of genetic influ-
ence should, at a minimum (a) control for relevant social
environments that are associated with genotype, including geo-
graphic location (Abdellaoui et al., 2022), or, preferably, (b) use
sibling-study adjusted PGSs through a two-stage model to reduce
(if not completely eliminate12) relatedness confounding. In the
two-stage model, SNP p-values are estimated using a large unre-
lated GWAS, but the effect sizes are adjusted (downward) using
the coefficients from a sibling-difference study (Choi et al.,
2020; Zaidi & Mathieson, 2020). Unfortunately, neither is com-
mon practice. Estimates used to create the education PGS, now
widely available for use in social science datasets, were not
adjusted based on the sibling study reduced effects sizes or the
sign mismatch in the replication mentioned above. Creditably,
the authors (Lee et al., 2018) recognized the persistence of con-
founding, writing:

[o]ur within-family analyses suggest that GWAS estimates may overstate
the causal effect sizes: if educational attainment-increasing genotypes
are associated with parental educational attainment-increasing genotypes,
which are in turn associated with rearing environments that promote edu-
cational attainment, then failure to control for rearing environment will
bias GWAS estimates…. Without controls for this bias, it is therefore inap-
propriate to interpret the polygenic score for educational attainment as a
measure of genetic endowment (p. 1116, emphasis added).

Despite this clear caution about using PGSs as genetic poten-
tial without controls for confounding, subsequent education PGS
studies did not heed these cautions and failed to control for rear-
ing environments while examining PGSs as “genetic propensity”
(e.g., Harden et al., 2020; Herd et al., 2019; Wedow et al., 2018).

Notably, even PGSs created from within-family GWASs are not
immune to environmental confounding for two key reasons. One
has to do with the uniqueness of within-family designs. Because of
subtle micro-stratification and complex social–psychological
dynamics within families, the extent to which the causes of sibling
differences for complex social traits are the same as the causes of
general population differences is questionable. Research suggests
sibling differences may be amplified or distorted as siblings
attempt to create their own niches or fill unique roles in their fam-
ilies (e.g., “the smart one,” “the athlete,” “the funny one,” “the
troublemaker,” “the pretty one”) (see, e.g., Healey & Ellis, 2007;
Sulloway, 2001) in part through “sibling contrast effects” (Carey,
1986). For other traits and behaviors, differences may be mini-
mized as families tend to socialize children in similar ways and sib-
lings imitate one another. These interactional dynamics influence
child identities, expectations, motivations, personality, and devel-
opmental outcomes and thus undermine the generalizability of
sibling-difference studies.13

In addition, genetic associations and PGSs from sib-studies are
confounded by broader sociocultural influences. This is because
the counterfactual model that underlies genetic association studies
does not distinguish between authentic (upward) genetic causes
(i.e., from genetic differences to trait differences through biologi-
cal mechanisms) and artificial downward (social) causation. Both
are identified as causes in GWAS’s counterfactual variant substa-
tion effects approach.

5.2 Downward causation and artificial genetic signals

Downward causation – defined as sociocultural forces that sort
and select individuals based on genetically influenced traits,
such as skin pigmentation and height, into different environments
and exposures that influence social outcomes – creates what I call
artificial genetic associations, which are environmental influences
masquerading as genetic influences in GWASs. Although the fact
that sociocultural environments shape and filter genetic influ-
ences is understood by most, less well understood is the extent
to which the causal effects of social structural and cultural forces
acting on genetically influenced differences are identified as
genetic influences in GWASs and PGSs.14

Jencks’ (1972) now classic thought experiment on discrimina-
tion by hair color can be used to illustrate downward causation
creating artificial genetic associations. Jencks asks us to imagine
a system where red-haired children are barred from school. In
such a system, genetic variants linked to red hair would be iden-
tified by GWASs as genetic causes of educational attainment.
However, neither an individuals’ red hair, nor the genetic variants
contributing to red hair, are appropriately conceived as causes of
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differences in educational attainment in this hypothetical case, in
my view and that of others (Kaplan & Turkheimer, 2021), but see
Harden (2021a). The “difference that makes a difference” is not
red hair but the social-institutional policies excluding people
with red hair, which is why a change in the rules would (over
time, I presume) make hair color unrelated to educational attain-
ment (and remove any red-hair genetic associations with educa-
tion). Although explicit discriminatory exclusionary policies like
this one are largely a thing of the past in most developed nations,
both ongoing discrimination and the legacy of past discrimination
(through intergenerational transmissions of wealth, status, social
capital, etc.) continue to influence individual development and
trait differences. More broadly, our environments and institutions,
educational and otherwise, continue to differentially treat individ-
uals based on a variety of genetically influenced individual traits
such as height, body weight, personality, attractiveness, and skin
tone into different environments and exposures and thus oppor-
tunities, achievements, and developmental outcomes (e.g., Monk,
Esposito, & Lee, 2021; Simons, Burt, Barr, Lei, & Stewart, 2014).

GWASs and PGSs capture artificial genetic signals, and these
artificial effects are likely to be pervasive given the extent to
which we respond to phenotypic cues in our interactions with
others in a manner that is unavoidably socioculturally mediated.
Although casting such socioculturally driven genetic associations
as genetic propensity or even “indirect genetic effects” is mis-
guided, even more concerning is the subsequent framing of
such correlations as innate individual propensities (individual
“genetic fortune” or “misfortune”). Because of downward causa-
tion, genetic associations for many complex social behaviors are
unavoidably environmentally confounded and are not appropri-
ately conceived as genetic causes of outcomes.

5.3 Limited coverage of genetic variation

To serve as a control for genetic influences, in addition to not
being substantially environmentally confounded, PGSs need to
capture genetic influences relatively accurately and comprehen-
sively. They do not.

5.3.1 Low resolution
GWASs and PGSs capture genetic variation at low resolution. As
noted, SNPs rarely have functional effects and usually tag large
regions of common variation, which may contain numerous causal
variants including large effect extremely rare variants (McClellan &
King, 2010).15 The causal variant(s) in the tagged region may often
be multiple and rare, and such that only a paucity of individuals with
the risk allele (tag SNP) will carry the actual causal variant. Thus, tag
SNPs – even if they reflect causal genetic influences – are very
imprecise proxies for a causal variant that may only exist on that
haplotype for a small minority of individuals.16 The tag SNP meth-
odology, which excludes rarer and likely functional SNVs, indels,
and SVs make GWASs possible, but it also makes PGSs incompre-
hensive measures of genetic risk (Backman et al., 2021).

PGSs also ignore the X chromosome (given that females have
two and one is usually inactivated in a cell), and both GWASs and
PGSs invariably ignore the Y chromosome. Mitochondrial DNA
is also neglected.

5.3.2 Genetic additivity and interactionism
Finally, GWASs and PGSs usually estimate additive genetic influ-
ences. However, because of pervasive gene–gene interactions and
interactions between non-coding RNA genes and coding genes,

focusing on additive effects from tag SNPs is necessarily mislead-
ing (as oversimplified) about the true nature of genetic influences
(Belsky & Israel, 2014; Zuk, Hechter, Sunyaev, & Lander, 2012).
Almost everything that happens even at the cellular level is
because of the combined influences of different molecular mech-
anisms, such as different proteins and functional RNA molecules.
Given that, the idea that genotypes can just be summed together
to arrive at a measure of genetic liability seems naïve.

To be sure, evidence for a substantial role of interactionism is
lacking; however, the current evidence is primarily based on low-
resolution tag SNP methodologies. That low-resolution methods
have not yet substantiated the importance of gene–gene interac-
tions, does not suggest they are not biologically important.

In sum, for a variety of methodological reasons, PGSs do not
control for genetic heterogeneity. The final limitation of PGSs I
consider relates to the neglect of developmental interactionism.
As I discuss next, the well-known context-specificity of genetic
influences (Feldman & Lewontin, 1975) impedes some of the
intended uses of PGSs.

5.4 Context and population specificity

That heritability studies are context- and population-specific – a
point made clearly and forcefully by Lewontin (1974) nearly 50
years ago – is now widely appreciated after considerable scholarly
effort and some costly misrepresentations (Jensen, 1967).
However, that GWASs and PGSs are similarly context- and
population-specific is not as widely appreciated in theory or practice
(but see Kaplan & Turkheimer, 2021). It should be. This is partic-
ularly true for non-biological social behaviors and achievements like
educational attainment or same-sex sex, which involve somewhat
arbitrary institutional structures (e.g., financial resources and oppor-
tunities) as well as cultural norms.17 For reasons expounded upon
below, such genetic associations should not be understood as time-
less, context-independent genetic influences. That is, even if we
could disentangle the influence of genes from environments for
these outcomes, these associations reflect developmental gene–envi-
ronment interactions under current social arrangements in each
context, not what could be in different circumstances (historical
periods, social position, cultural context, etc.).

This well-known context- and population-specificity exists for
two general reasons. The first is biological: Genes always interact
with environments across all levels of development in their effects
on complex traits. The second is sociocultural: The individual
characteristics influencing traits or achievements, and thus the
genetic contributors thereto, vary across historical time, society,
and even across structural location. For illustration, the genetically
influenced individual traits facilitating educational attainment for
a woman in Saudi Arabia in 2000 versus a woman in 1870s in
United States, in 2010 in India, in 2002 in Nigeria, in 1950
in Thailand, or in 2021 in United States are likely to be distinct
in non-trivial ways. Although a woman going to college in the
United States in 2020 would be conforming, a woman going to
college in 1870s in United States would be statistically deviant.
Because educational attainment reflects numerous genetically
influenced traits, filtered by context and relative condition, the
idea of a context-invariant “genetic propensity to” complex social
outcomes like educational attainment, like crime, smoking, or
same-sex sex, is misguided (Burt, 2023).

Moreover, the search for a “winning” genetic endowment that
can be measured on a unidimensional scale representing propensity
for social success is also misguided, in my view (e.g., Belsky et al.,
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2016). This is because our DNA is part of an interactional develop-
mental system that responds to context- and condition-dependent
stimuli (Burt, 2018; Ellis et al., 2012). Genetic differences
influencing complex traits, like traits themselves, are not amenable
to facile “good” or “bad,” “winning” or “losing” ratings but rather
more like “it depends,” on a host of other factors (e.g., other genetic
differences, other traits, historical context, social class, etc.). To use
an oversimplified example, while being confident, independent,
and talkative may enhance educational attainment and occupa-
tional success for an upper-middle class white male, those same
traits among a minority youth from a disadvantaged background
could very well impede educational attainment. Of course,
confidence and independence emerge from a host of influences,
but the point of this example is to reveal the oversimplified
(theoretically and empirically unwarranted) model underlying an
additive genetic index representing a context-independent propen-
sity for complex social behaviors like educational attainment.

The problems with a unidimensional genetic propensity for
complex biological traits are even more obvious for a phenotype
of (having ever had) same-sex sex. As with people who attain
higher levels of educational attainment, people who have ever
had same-sex sex display remarkable diversity. From “gold star”
lesbians and bisexual women to “femme” women who have
same-sex sex only to please their male partners, the search for
an additive, context-independent underlying continuum of
genetic propensity for “having ever had same-sex sex” is empiri-
cally and theoretically unwarranted. Not only is there expansive
heterogeneity within these groups, but also same-sex sex, like
other social behaviors such as doing ballet, trying ecstasy
(MDMA), and playing golf, is not simply the outer manifestation
of some inner potentiality. Different sociocultural constraints and
opportunities shape the behavioral manifestation of various traits
and propensities, however genetic, which are then further altered
by social responses in developmental feedback loops (including
labeling and self-identification). Of course, we can impose a uni-
dimensional propensity measure – a PGS or otherwise – for such
heterogeneous and socially contingent behaviors by estimating the
probability of the binary measure of having ever done so. But cre-
ating such a continuum statistically does not mean such a propen-
sity exists biologically.

Thus, for yet another reason, PGSs cannot be thought of as
“genetic potential,” inasmuch as genetic influences are not static
charges where PGS effects sizes can be facilely compared across
contexts or conditions. Traits that facilitate educational attain-
ment, and any genetic contributions thereto, are dependent on
sociocultural influences. For example, if physical education classes
were equally emphasized with non-PE courses and graded not by
effort but also by achievement, academic attainment may look
noticeably different.

This context-specificity has implications for some prominent
applications of PGSs. Following prior behavioral genetics work
that examined how heritability estimates varied across contexts
or conditions, several recent studies have used PGSs to explore
how “genetic influences” are moderated by (often “constrained”
or “suppressed” in) different contexts or for different social
groups (Harden et al., 2020; Trejo et al., 2018; Wedow et al.,
2018). For example, Herd et al. (2019) examined whether “the
influence of genetics on educational attainment has changed
across cohorts” and “whether this influence varies by gender”
by comparing the effect sizes of the education PGS on educational
attainment across cohorts (defined by historical time) and by sex.
Their focal hypothesis was that among older cohorts, social

structures of gender suppressed the “genetic potential for educa-
tional attainment” among women but not men, manifest in
weaker education PGS prediction among women in older cohorts.
To be sure, the Herd et al. study was explicitly sensitive to context,
recognizing how genetic effects are “filtered, altered, and shaped
by broader complex environments” (p. 1071). Even so, this
approach remains insufficiently context-situated and oversimpli-
fied. This is because the study rests on the idea that PGSs capture
a historically invariant genetic potential for educational attain-
ment, such that weaker PGS prediction can be interpreted as
lesser genetic influence and thus suppressed potential. However,
for reasons mentioned above, as contexts and opportunities
change, so too do the characteristics influencing achievements
and social behaviors, and thus their genetic influences. A weaker
PGS across contexts may just mean different traits matter (and
would be expected in this example for statistical reasons given
the lower mean and variance of educational attainment in the ear-
lier cohorts compared to the latter ones). For all these reasons,
interpreting effect size differences in PGSs as indicating that
“genetic influences matter less” for social traits in different con-
texts or as evidence that “potential is suppressed” is unsound.

Upon deeper reflection, the extent to which research into how
contexts suppress or constrain “genetic potential” (via reductions
in PGS effect sizes) advances knowledge is unclear. Leaving aside
my objection to the notion of a context-independent genetic
potential for social traits, in general, and PGSs as an indicator
of such potential, in particular, what, specifically, is the value of
assessing whether “genetic potential” is suppressed by these social
arrangements? Until well into the twentieth century, the potential
for educational attainment for women in the United States was, of
course, constrained by structures of gender that limited them to
family roles in the household. We already know women’s poten-
tial was suppressed, in these instances. What would it mean to say
that potential was suppressed but not genetic potential? Is the null
hypothesis that only “non-genetic potential” was suppressed (and
what would that even mean)? Phrased alternatively, given that
potential emerges from developmental systems shaped by inter-
acting genetic and environmental forces, is there any argument
that can be made that discriminatory arrangements or disadvan-
tages constrain achievement but do not affect genetic potential?
How would that work?

6. Questioning substantive value added

Even if the problems with environmental confounding could be
solved, the justification for incorporating PGSs into social science
is lacking. The scientific warrant to include PGSs to reveal well-
established social patterns more precisely or rigorously is, in my
view, wanting. Given that we have robust evidence that higher
education is associated with higher income, fewer children, and
better health, what is the value of demonstrating that an education
PGS is associated with fewer children born, household wealth, or
health? How could it not be? A recent study with an education
PGS investigated whether “parental genetics for educational
attainment” are associated with better (i.e., warm, stimulating)
parenting, thereby partially explaining the association between
parents’ education PGS and youth educational attainment
(Wertz et al., 2019). Armstrong-Carter et al. (2020) highlighted
this study as illustrating how “genes can be used as a lens for
the study of social processes through which parents influence
their children.” Do we need GWASs, PGSs, and studies of “genetic
nurture” to demonstrate that supportive, stimulating parenting is
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associated with child educational attainment and that higher edu-
cated – disproportionately well-off – parents are more likely to
engage in such parenting? Or that “children who experience
childhood disadvantage are not able to fully realize their educa-
tional potential” (Ronda et al., 2020). Or that “that genetic endow-
ments linked to educational attainment strongly and robustly
predict wealth at retirement” (Barth, Papageorge, & Thom,
2020). I think not.

Harden et al. (2020) touted the potential of PGSs as “molec-
ular tracers” for social achievements, like educational attain-
ment, that can “measure flows of students through the STEM
pipeline and assess how these flows differ across schools” anal-
ogous to how “a radiologist might administer a radioactive tracer
to track the flow of blood within the body.” However, the reason
that radiologists use molecular tracers to trace internal functions
is because they cannot observe such internal bodily processes.
Unlike the radiologist tracking unobservable internal bodily pro-
cesses like blood flow, we can observe and measure different stu-
dent aptitudes, skills, and background factors and assess how
these affect student progressions through educational systems.
Given that opportunities exist for measuring background factors
and proximal behaviors and that we already have a glut of
assessments (e.g., grades, cognitive testing), the need for and
utility of such a tracer – which those scholars admit is not a use-
ful individual predictor – is surely questionable (Morris et al.,
2020b).

In addition to meager benefits, such research has several
potential costs. The use of PGSs as molecular tracers is rooted
in the misguided idea that PGSs reflect individual propensity –
that is, that the potential for educational success resides in our
genome. Indeed, the authors argue that “[t]his approach offers
a way of diagnosing the extent to which students who have high
genetic propensities for success in education leak out of the
STEM pipeline by failing to advance in their mathematics train-
ing” (Harden et al., 2020; emphasis added). Not only are PGSs
flawed as measures of “high genetic potential” but the concern
with the “high genetic potential” students “leaking out of the
STEM pipeline” seems unjustified given paltry PGS individual
prediction and the fact that potential for complex social achieve-
ments like years of education cannot be reduced to genotype
(which the authors acknowledge). The paper evidences a height-
ened concern over the “high genetic potential” students leaking
out over their “lesser potential” (lower PGS) counterparts, but
this concern is never explained. Even more concerningly, this
focus on the “high genetic propensity” seems to reflect the privi-
leging of the purportedly “genetically gifted” in a manner that will
increase rather than decrease inequalities.

To be sure, Harden et al. (2020) highlight the potential of the
education PGS as a molecular tracer to inform school perfor-
mance evaluations with the explicit aim of ameliorating inequal-
ity. However, such applications of school-level “genetic potential”
performance assessment would, given existing social arrange-
ments and environmental confounding, identify schools with a
much higher proportion of lower income students from
less-educated families as having lower genetic potential. Using
PGSs as potentials, schools with such lower performing students
would thus not be identified as “underperforming” because their
students just “lost” in the “genetic lottery” (and we cannot expect
much from them on this view). Although this is clearly not the
intention of the authors, using PGSs as tracers necessarily rests
on the idea of PGSs as indicating genetic potential for educational
success – and, as noted, the authors use such terminology.18

Casting PGSs as “potential” risks reifying genetic differences
among groups with different social behaviors and attainments
shaped by prior and existing unequal arrangements as “genetic
potential” and then excusing future patterns as inevitable because
of genetic propensities, even for traits that are substantially driven
by social inequalities and malleability.

These studies are in no way unique among sociogenomics
studies but instead reflect the implicit “because we can” rationale
of much sociogenomics research, often evidenced by the wholly
uncompelling justification for some studies. Take the GWAS of
“having ever had same-sex sex.” Ganna et al. (2019) explain the
value of their study as follows: “With respect to genetic influences
[on same-sex sex], several questions arise. First, what genes are
involved and what biological processes do they affect? …
Identification of robustly associated variants could enable explora-
tion of the biological pathways and processes involved in develop-
ment of same-sex sexual behavior” (p. 1). Leaving aside the
implicit assumption of a molecular pathology underlying ‘non-
heterosexuality’ indicated by “having ever had same-sex sex,” as
we have discussed, GWASs are not at all well suited for identifying
genes, underlying causal variants, or tracing biological pathways
for complex traits. In short, that scholars can conduct a study,
does not mean that they should (i.e., that doing so advances
science).19

From a broader perspective, sociogenomics’ ambiguous con-
tributions to knowledge are because of a prevailing deficit of the-
ory, especially as relates to causal theories about developmental
processes, which permits a rather shallow approach to the mean-
ing of genetics plus social questions. To be sure, that social sci-
ence genetics has a deficit of theory is not a novel criticism (e.g.,
Boardman & Fletcher, 2021; Burt, 2022; Panofsky, 2014), but
attention to this neglect of theory and the manner in which
this neglect hampers knowledge advancement is scarce. In my
view, excitement over our ability to conduct analyses with
incredibly advanced statistical and genetic tools appears to over-
shadow limitations and a sober evaluation of limitations. All too
often, the contemporary enthusiasm around applying new geno-
mics tools to social science adds a sheen that glosses over the
meager practical and scientific contributions of this work,
beyond simply showing that PGSs are statistically significant
or have some non-trivial R2.20 At this point, no serious scientist
can suggest that genetic differences do not influence – in some
complex, context-dependent way – developmental differences.
Simply demonstrating that yet again with sophisticated, albeit
biased, methods does not advance understanding (see also
Turkheimer, 2016).

Finally, as noted, scholars point to PGSs as a control to “get
genetics out of the way” to reveal aspects of our environment;
however, I have yet to see any sociogenomics findings that change
our understanding of environmental influences or suggest differ-
ent policy or programmatic approaches. Given the limitations
mentioned above, I am unable to conceive of any research find-
ings at the present state of the science, which would support
such changes in theory or practice. That is, even if the inclusion
of PGSs markedly altered an environmental estimate, because
PGSs are significantly environmentally confounded, we cannot
say that controlling for “genetics” is the cause of such changes.
What is more, we cannot say that environments matter “net of
genetics” because PGSs only capture a fraction of the ostensible
heritability of social outcomes. What, then, can or should we
do? Below, I outline suggestions for sociogenomics at the current
state of the science.
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7. Suggestions

An abundance of genetic data is available for incorporation
into social science with increasingly advanced computational
methods and enhanced rigor in approach, relative to earlier
eras. Given the limitations I have discussed along with my
arguments about limited contributions, how should PGSs be
used in social science, in my view? My answer is quite possibly
unsatisfying: Sparingly and cautiously with caveats placed front
and center. Enthusiasm about the opportunities genetics offers
behavioral science should be tempered with a more realistic
appraisal of current challenges and uncertainties. After all, we
have been here – with excitement around genetics, limitations
in methodology, and substantial unknown biology – before,
quite recently, with the candidate gene era of a few years ago
(see Charney, 2022).

Scholars should be more skeptical of the value added of PGSs
to social science, and I have several suggestions to this end. First,
when considering incorporating PGSs, behavioral scientists
should first ask whether the outcome is a sufficiently tightly bio-
logically regulated phenotype amenable to molecular genetic anal-
yses. If so, scholars should explicitly specify how incorporating
genetics advances science with a sufficiently high bar, one
which acknowledges potential risks and benefits and recognizes
that it is already well established that our genetic differences do
matter in a complex, context-sensitive way (Turkheimer, 2016).
Simply “showcasing the power of genetics” by revealing that
PGSs are correlated with some outcome does not advance knowl-
edge. Additionally, sociogenomics research should include con-
trols for social variables associated with complex traits. At
present, all too often easily measured and relevant social science
predictors are not included in research “showcasing the power
of genetics.” This is unsatisfactory.

Importantly, sociogenomics scholarship should eschew termi-
nology that implies that genetic differences are driving behavioral
differences given pervasive and unavoidable environmental con-
founding for all social outcomes. Framing PGSs as “genetic influ-
ences” should be avoided, and terminology like “association” or
“correlation” should be employed instead. Likewise, I urge schol-
ars to avoid “propensity” terminology or treating genetic endow-
ment as a “lottery” in which there are winners and losers for
complex social outcomes. Even if we could identify genetic influ-
ences on, for example, the type of intelligence that facilitates edu-
cational success and wealth, facilely equating genotypes associated
with such capacities to “winning” at genetic inheritance or, con-
versely a lower education PGS as “an unfavorable genetic endow-
ment” (e.g., Bolyard & Savelyev, 2020), is misguided. That is, of
course, not to deny that people with greater wealth have better
health and easier times dealing with stressors, on average; rather,
it is to say that neither higher education nor greater wealth equals
winning “the good life,” whatever that is.

In sum, I urge sociogenomics to think about where the science
is, not where it might be (avoid hype and promissory notes); to
acknowledge what questions we can answer at the current state
of knowledge and which ones we cannot; and, finally, to recognize
that just because social scientists can incorporate PGSs into our
models, does not mean that we should – that is, that doing so
advances knowledge.

8. Summary and discussion

Here, I challenged proponents’ claims about the scientific warrant
to include PGSs in social science. After outlining proponents’

arguments about the utility of PGSs for social science, I argued
that these ostensible scientific and practical benefits rely on the
misguided notion that PGSs represent “genetic influences” on
complex social traits. Instead, I explain that PGSs are unavoidably
environmentally confounded because of population stratification,
familial confounding, and downward (socio-environmental)
causation. Although methods exist to mitigate the former,
especially within-family studies, artificial genetic association
signals created by downward causation cannot be differentiated
from authentic genetic signals with the counterfactual models
employed. In addition, I explain why PGSs do not, in fact,
accurately or comprehensively control for “genetic influences”
on traits because of methodological limitations (e.g., the tag
SNP methodology) and biological challenges (including the
nature of genetic influences). Finally, I discussed the context-
specificity of PGSs, which precludes their use as “genetic
potential” in general, and comparisons across contexts and
conditions as a means of assessing the suppression of “genetic
influences,” in particular. I explained that these models remain
fundamentally and necessarily wedded to an overly simplistic
and ultimately misleading (environmentally confounded and
biologically implausible) reductionist genes-versus-environments
approach.

In response to this critique, scholars may point to the fact
that “PGSs just work.” By that, they presumably mean that
PGSs “predict” the outcomes they were created to predict,
even differences within families, albeit weakly in a manner
that is inappropriate for individual prediction. However, the
potential of PGSs is not rooted in their statistical predictive abil-
ity, however meager or substantial, but in their capturing genetic
(vs. environmental) influences on trait differences. Furthermore,
for complex social traits like education, as Morris et al. (2020b)
documented in their evaluation of practical utility, an education
PGS “provided little information on [youth] future achievement
over phenotypic data that is either available or easily obtainable
by educators.”

Others may respond by suggesting that I am holding socioge-
nomics methods to higher standards than standard social science
methodologies.21 To that charge I cannot plead “not guilty.”
Instead, I justify my scrutiny by pointing to the prior missteps
in social science genetics, including the recent spectacular failure
of the candidate gene era, the incautious hype, and the potential
for misuse (see Dick et al., 2015; Yong, 2019). Moreover, propo-
nents and critics alike have recognized that the scientific and
social risks for the misinterpretation of PGSs are real and poten-
tially significant, a situation exacerbated by the media tendency to
ignore caveats and uncertainties and social scientists’ lack of
expertise in genetics (Barton et al., 2019; Richardson, 2017).
These risks behoove us to approach the incorporation of genetics
into social science with special caution and appropriate scientific
skepticism.

Whether and to what extent incorporating genetics can benefit
social science theory and research in a manner that may have
practical implications remains to be seen. In my view, the payoffs
for studying genetic influences on non-disease complex social
traits and achievements for most applications are minimal. The
potential costs of prematurely and misguidedly promoting PGSs
as “genetic potential” are significant, and include, in addition to
wasting finite resources searching for “genes for educational
attainment,” obscuring social–structural and physical environ-
mental influences and promoting the individualization of social
problems.
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9. Caveats and conclusion

My critique is intended to promote a dialogue between social and
behavioral scientists about the scientific value of adding genetics
to social science at the current state of knowledge. I hope this dis-
cussion eschews hype, straw man arguments, imputing motives,
and ad hominem – all of which foster misunderstanding, polari-
zation, even hostility. If we avoid such discussion-impairing tac-
tics, which characterized some prior efforts to discuss genetics
in social science, both science and society will be the better for it.

To avoid misunderstanding, I wish to clarify that my stance
does not imply that the incorporation of genetics into social sci-
ence necessarily involves racist motives and/or tacit support for
eugenics; it quite clearly does not. Moreover, this critique is not
motivated by a desire to censure scholars by imputing (bad)
motives or to censor areas of study for ideological reasons or
because of sociopolitical concerns. My aim is to draw attention
to limitations of incorporating PGSs into social science and mis-
interpretations with the aim of promoting better science.

In the end, my argument is simply that the claims made by
proponents about the benefits of PGSs and their utility as mea-
sures of “genetic influences” or “genetic propensity” are overstated
and misguided. Because of these limitations, PGSs cannot be
employed as measures of “genetic influences” as they are being
used with increasingly regularity. GWASs and PGSs may be pow-
erful tools for identifying genetic associations, but they are not the
right tools for understanding complex social traits.
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Notes

1. Notably, my coverage is not exhaustive. I highlight key issues, drawing
selectively on scholarship in these areas given finite space. I do not discuss,
e.g., the issue of selectivity (non-generalizability) of samples that predominant
in GWASs (e.g., UK Biobank and 23&Me samples) (see, e.g., Burt & Munafò,
2021; Fry et al., 2017); the lack of ancestral diversity in genomic data; or what
one reviewer called “the crude conceptualisation of psycho-social traits implicit
in GWAS/PGSs and of the measures used.”
2. Or 4–5 nucleotide differences every 1,000 bp accounting for structural
variants.
3. A relatively small number of GWASs (but none in sociogenomics) have
analyzed common copy number variants (CNVs) (see, e.g., Bochukova
et al., 2010; Willer et al., 2009).
4. E.g., in their recent UK Biobank study using whole-exome sequencing,
Backman et al. (2021) noted: “Rare variant associations were enriched in
loci from genome-wide association studies (GWAS), but most (91%) were
independent of common variant signals.”
5. Commonly used reference panels include the 1KG, HapMap Phase 2, and,
more recently, the ancestrally diverse Trans-Omics for Precision Medicine
(TOP Med) sample (Taliun et al., 2021). For better or worse, the reference

panels differ across samples used in meta-analyses. One might think it wise
to control for the reference population used for imputation in a meta-analysis;
however, I have not seen this done in practice.
6. As noted elsewhere (Burt & Munafò, 2021), these various thresholds are
somewhat arbitrary and vary across studies, increasing, as others have also
noted, researcher degrees of freedom (Charney, 2022).
7. As with the use of SNP associations for GWAS follow-up, when construct-
ing PGSs, LD between SNPs needs to be accounted for to avoid aggregating
SNPs that tag the same region of variation (i.e., multiple counting). That
said, not all studies correct for LD when creating PGSs (see, e.g., Wertz
et al., 2018, 2019). The consequence is an inflated PGS because of counting
multiple SNPs that tag the same effect.
8. Some more sophisticated models, like LDPred, do not use p-value thresh-
olds but instead involve the selection of various priors (assumptions) about
the number of causal SNPs. In practice, the prior is that “all SNPs are causal,”
which is curiously not defended anywhere to our knowledge. Moreover, the
idea that all SNPs have causal effects is not consistent with available empirical
evidence.
9. Recent population structure is driven by rare variants which have a more
recent origin and therefore are less likely to be shared among population sub-
groups (Fu et al., 2013; O’Connor et al., 2015). As such, recent structure (with
sharper effects) cannot be captured by or corrected with common SNPs used
in GWASs (Zaidi & Mathieson, 2020).
10. Familial confounding is sometimes called “indirect genetic effects” or
“genetic nurture”; however, I eschew these terms because these imply a causal
effect of parents’ genotypes on child phenotypes through nurture, which has
not been demonstrated. Familial confounding also includes so-called “dynastic
effects” as (dis)advantages passed down to children (Abdellaoui et al., 2022).
11. These findings provide further evidence that the “all SNP”/no p-value
threshold PGSs employed in most studies capture more bias than PGSs with
p-value thresholds (Barton et al., 2019; Berg et al., 2019; Sohail et al., 2019).
12. Importantly, although sibling difference PGS studies significantly reduce
environmental confounding, they do not eliminate it; as Zaidi and
Mathieson explain, although estimates are unbiased, stratification in the
PGSs persists because the frequency of the SNPs are systematically correlated
with the environment (see Zaidi & Mathieson, 2020).
13. I am grateful to an anonymous reviewer, whose suggestions enhanced my
discussion of this particular challenge.
14. Notably, downward causation is distinct from what is known as “evocative
gene–environment correlation” and “active gene–environment correlation.”
The former is the term for genetic propensities evoking environmental
responses (e.g., a pugilistic person evokes hostility from others), whereas the
latter refers to individuals’ genetically influenced propensities selecting them
into specific environments (e.g., a pugilistic person takes boxing classes).
Downward causation, by contrast, refers to social forces acting on (selecting
and sorting) individuals based on phenotypes. See Appendix A.3 for an elab-
orated discussion.
15. Notably, even expansively defined risk loci may not actually contain the
causal variant(s). Research using simulations or well-characterized genetic dis-
eases demonstrates that low-frequency causal variants can generate GWAS sig-
nals that extend over millions of base pairs and numerous haplotypes in what
is known as “long range LD” (Dickson, Wang, Krantz, Hakonarson, &
Goldstein, 2010).
16. Genes in risk loci may be several or zero, and there is often no direct link
to specific genes despite the use of “genes for” language that implies otherwise
(e.g., “mothers with more education-related genes are generally healthier and
more financially stable during pregnancy”; Armstrong-Carter et al., 2020;
emphasis added).
17. This context-dependency reflects the social reality of these “traits” and
behaviors, which I have argued, following others, makes them unsuited for
to a genetic reductionist epistemology (see e.g., Burt, 2023; also Dupré,
2012; Lewontin, Rose, & Kamin, 1984; Richardson, 2017).
18. Although ethical considerations are not our focus, I question the notion of
targeting interventions to those who might need extra support because of high
genetic risk vs. those whose performances or whose teacher evaluations indi-
cate they are at high risk, for whatever reason. Moreover, the use of PGSs as
indicators of potential raises a host of ethical concerns, including stigma and
self-limiting perceptions of one’s potential.
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19. To this, some may respond that social scientists should be able to explore
whatever outcomes they like and, even if not socially important, the findings
“advance science.” Perhaps, but I don’t see scholars studying the genetic archi-
tecture of whether people have “ever eaten sushi,” “ever played golf,” or “only
engage in sex in the missionary position in one’s bed.”
20. Although what is non-trivial is not always clear. Studies employing PGSs
that explain ∼1% or less of the variance in some outcome have been framed as
non-trivial (Mills et al., 2018).
21. I would also note that from the fact that I am holding sociogenomics to a
rigorous scientific standard, it does not follow that I do not believe that stan-
dard social science models should not be rigorous. That said, there is, in my
view, a qualitative difference in promoting the view of partial, environmentally
confounded PGSs as fixed genetic indicators of innate potential and using par-
tial measures of socioeconomic status on complex social outcomes for several
reasons that are, unfortunately, out of scope.
22. In addition to nuclear DNA, we have mitochondrial DNA (mtDNA) – a
relatively tiny, maternally inherited, circular DNA molecule containing 37
genes. Unless otherwise noted, my discussions refer to nuclear DNA.
23. The number of human genes is continually updated (revised up and
down) and varies across official counts because of slight differences in defini-
tions of genes but has stabilized around 20,000. The number can never be an
exact one given variation.
24. Geneticists are moving away from the SNP to SNV distinction given the
somewhat arbitrary classification and different usages of the term across disci-
plines. Instead, there is a move toward classifying SNVs as common (>5%),
low frequency (0.5–5%), and rare (<0.5%) (Strachan & Read, 2018).
However, given that the GWAS field uses the term SNP, I will do so here.
25. This is basic illustration showing processes of downward causation. As
noted, most GWASs imperfectly control for ancestral differences (continental
ancestry) and population substructure. However, as noted in the text downward
causation is pervasive – e.g., social selection on attractiveness, height, weight,
colorism – with most such factors imperfectly controlled, if controlled at all.
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Appendix A

In what follows, I provide a concise overview of the genomics of sociogenom-
ics, including an introduction to genomics, the types of genetic variation, and
their potential effects. This discussion is necessarily abbreviated and detailed as
“all going well” (e.g., chromosomal aneuploidies are not discussed). This is fol-
lowed by a short elaboration of downward causation and artificial genetic sig-
nals and a comparison with “authentic” genetic signals and conditional genetic
effects.

A.1 Basic genetics of sociogenomics

(Nuclear) DNA are the focus of human genetics.22 Humans have 46 chromo-
somes, each of which is a very long double-stranded molecule of DNA
arranged in the famous double helix. We inherit 22 matching pairs of non-sex
chromosomes, one each from our mothers and fathers. In addition, each of us
inherits an X chromosome from our mother and either an X or Y chromosome
from our father that determines sex, all going well. Each chromosome is com-
posed of a linear sequence of nucleotides – the building blocks of DNA.
Nucleotides are composed of three parts: a deoxyribose sugar, a phosphate
group, and one of four nucleic acid bases: adenine (A), thymine (T), guanine
(G), and cytosine (C). The order of these bases on our chromosomes is our
genetic code. Altogether, the human genome contains ∼6 billion bases (3 bil-
lion base pairs [bp]).

Genes are sequences of DNA scattered on our chromosomes that serve as
templates for making an RNA product (that becomes a protein or functional
RNA product with subsequent processing). The canonical gene is a protein-
coding gene – a stretch of DNA that encodes the sequence of amino acids
that will be folded into a functional protein. So-called “non-coding RNA
genes” are DNA sequences that encode functional RNA products, which per-
form essential cellular functions, including facilitating and regulating gene
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expression. Following others, when I use “gene,” I refer to protein-coding
genes.

Our DNA are informational storage molecules. Like recipes, genes are not
self-activating but are used by cellular machinery to create proteins via coor-
dinated cellular mechanisms, especially RNAs and ribosomes (Hubbard,
1999). Messenger RNAs, which are specified by the “genetic [protein]
code,” serve as the information-transfer intermediary between DNA and pro-
teins. The language or “ingredients” in our genetic code are three-base
sequences, known as codons, which specify an amino acid (or a stop message).
There are 20 amino acids and 64 codons, of which one is a “start” codon and
three codons specify a stop transcription message (like a period). Each codon
specifies only amino acid, but most amino acids are encoded by two or more
codons, primarily because of redundancy at the third base.

Excepting male-specific genes on the Y chromosome, we inherit two copies
of each gene, one from each parent. Overall, humans have ∼20,000 (protein-
coding) genes,23 slightly more than chicken and fewer than half the genes of
rice (∼50,000 genes). Despite only having ∼20,000 genes, humans can produce
more than 100,000 proteins. Our complexity is not a function of our gene
number (or genome size) but by complexities in gene regulation. This one
gene→multiple proteins potential is facilitated by a variety of RNA-mediated
mechanisms, including alternative splicing – where the same “gene” (more pre-
cisely, mRNA transcript) is “spliced” in different ways to make different amino
acid chains; “readthrough” or “conjoined” genes, where two adjacent genes are
transcribed together; as well as post-translational modifications, where different
folding of polypeptides creates different functional proteins. In the same way a
recipe does not make a cake, genes do not make a protein, much less a
phenotype.

Despite getting the most attention, protein-coding DNA only comprises
about 1.3% of our genome. Much of the remainder of our DNA was once
thought to be largely junk; however, research revealed that most of our genome
contains signals of function (ENCODE Project Consortium, 2004). How much
of our genome is, in fact, functional (∼5–85%) remains debated (Doolittle,
2013; Germain, Ratti, & Boem, 2014; Pennisi, 2012).

A.2 Overview of genetic variation

A.2.1 Types and consequences of genetic variation

There are three main classes of DNA variants. Almost always, GWASs examine
only a subtype of the first of these.

A.2.1.1 Single-nucleotide variants (SNVs) and single-nucleotide
polymorphisms (SNPs)
The first and by far the most common variant – accounting for almost 87% of
all variants between people – are single-nucleotide variants (SNVs). An SNV
exists where, for example, at specific position on the genome most people
may have an A but a minority of people have a C. SNVs that are “common”
occur in at least 1% (though sometimes >0.5%) of a population are known as
single-nucleotide polymorphisms (SNPs – pronounced “snips”). SNPs are thus
the subset of SNVs that are “common.”24 Most SNPs are ancient mutations
that predate the out of Africa dispersal of humans some 50–100 thousand
years ago and are thus shared by all human populations.

At present there are more than 475 million validated SNVs, most of which
are rare. Many (roughly half) of these SNVs are “singletons”; that is, they are
observed in only one individual in a sample (Taliun et al., 2021). Although
most SNVs are rare (i.e., not SNPs), most (>95%) of the SNVs in an individual
genome are common (are SNPs) (Taliun et al., 2021; Telenti et al., 2016). In
total, there are ∼10–20 million SNPs in the human genome, with variation
because of how one defines “common” (The 1000 Genomes Project
Consortium, 2015).

Most SNVs are bi-allelic (come in two forms), but some are tri-allelic or
quad-allelic. Bi-allelic SNPs are the form of variation examined in most
GWASs and used in the creation of PGSs.

A.2.1.2 (Short) insertion–deletions (indels)
A second class of variants comprises short insertions and deletions (indels),
which includes duplications, deletions, or insertions up to 50 bp. (Short)

copy number variants (CNVs) (including those which have a variable number
of tandem unit repeats (or VNTRs), such as a sequence TTACTGC repeated
4–8 times), are included as “indels” or “delins” here as in genome-sequencing
projects.

Indels are relatively common (account for ∼13% of human sequence var-
iation) and have multiple alleles leading to significant genetic heterogeneity
(which is why short-sequence repeats are useful in forensic DNA testing).
Indels are rarely measured in GWASs (Tam et al., 2019).

A.2.1.3 Structural variants
The remaining class of genetic variation, structural variants (SVs), is DNA
rearrangements (deletions, duplications, or inversions) involving more than
50 bp. In the past SVs were defined as larger sequence changes typically up
to 1 kb, but now are defined as smaller changes and include CNVs larger
than 50 bp (Strachan & Read, 2018).

Although SVs are relatively uncommon (accounting for only ∼0.15% of
the variants, which translates to about 7,500 per genome), they account for
more (nearly 2× more) overall nucleotide (sequence) differences than the
two other variant types combined given their size (Collins et al., 2020;
Sudmant et al., 2015). Notably, measuring SVs is much more difficult and
less common given that the short-read, efficient sequencing technology that
predominates does not measure SVs well (Shendure et al., 2017; Shendure,
Porreca, & Church, 2008). Long-read sequencing suggests that there may be
several-fold more SVs that are hidden because of systematic biases in detection
(Sudmant et al., 2015).

A.3 Effects of genetic variants

Notably, most of our variants lie outside of coding regions with no known (or
expected) functional impact (i.e., [putatively] “nonfunctional variants”). That
said, a recent deep sequencing study observed that one-third of human
protein-coding genes show some variation among individuals in the amino
acid sequences they encode (Taliun et al., 2021). As discussed in the text, func-
tional variants either alter gene product (e.g., the protein produced) or gene
dosage (e.g., the amount of protein produced).

SNVs are classified by their functional effects in coding regions.
“Synonymous” SNVs are non-functional base changes that do not alter the
amino acid and protein product, whereas “non-synonymous” SNVs are
those that change the amino acid sequence. There are three types of non-
synonymous SNVs: missense, nonsense, and read-through variants.
Missense variants change the amino acid (e.g., CCU→ACU would
change the amino acid from proline to threonine) and can have significant
to no noticeable effect on the protein and its efficacy (think switching
sugar with pepper in a recipe vs. switching onion powder with garlic
powder). Nonsense mutations cause a premature stop codon (e.g., GGA
[glycine]→UGA [stop]). These effects tend to be more significant than
missense changes, much like a recipe that just ended randomly early.
Finally, read-through or nonstop mutations change a stop codon to an
amino acid codon, causing the polypeptide to be longer than it should be
(e.g., UGA [stop]→GGA [glycine]), akin to just adding more ingredients to
a recipe.

Unlike SNVs, indels and SVs affect more than 1 base pair and thus pro-
duce differences in the lengths of DNA sequences across people. These vari-
ants can have significant functional consequences given they alter more
sequences and can result in coding frameshifts, which refer to shifts in
the entire coding sequence which can markedly alter the composition of the
resulting polypeptide product. A useful analogy to frameshift effects is
the removal of a few letters from a sentence. For example, deleting a few
letters in the first sentence in the statement: “I am going to the store tomorrow.
Is that okay?” makes the sentence gobbledygook: “I am gothe st oreto
morrowistha.”

A.4 Meaning of downward and upward causation in a
genetic context

As, I discuss in the main text, the counterfactual “variant substitution effect”
model underlying GWASs and PGSs cannot distinguish between authentic

Burt: Challenging the utility of polygenic scores for social science 19

https://doi.org/10.1017/S0140525X22001145 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22001145


genetic associations and artificial ones representing downward causation. In
GWASs and thus PGSs, both signals are identified as causal.

Authentic genetic variants are those that act in biological pathways shaping
traits or diseases, such as variants affecting age-related macular degeneration
or Huntington’s disease. In these cases, variants causally influence phenotypes
through biological pathways (e.g., via non-synonymous substitutions causing
amino acid replacement). By contrast, downward causation refers to the
situation where socio-environmental forces are the causal forces driving a
genotype–phenotype association. Downward causation is “downward” because
social forces are acting (down) on traits or other differences, which are shaped
by genetic differences (thereby generating observed genetic associations).
In these cases, identified genetic differences are not causally involved in the
biology of trait or behavior differences; the signals are artificial because they
reflect social not genetic processes.

For a real-world example of downward causation, African Americans were
excluded from many educational institutions before and during Jim Crow on
the basis of their race (and of course differentially admitted even after Jim
Crow due to persisting discrimination). In this case, (racist) social structures
acted upon ‘racialized’ genetic differences, such as alleles related to skin
pigmentation, to exclude or restrict individuals for reasons biologically
unrelated to educational attainment. In a GWAS,25 such alleles would be
identified as causing differences in educational attainment, but these
association signals would, of course, be artificial.

Notably, downward causation is distinct from (causal) conditional genetic
effects, in which genetic differences influence phenotypes (through biological
pathways) only in some context. Conditional genetic effects are causally bio-
logically involved in trait differences, whereas genetic variants reflecting down-
ward causation are not.

Finally, the distinction between downward causation and an authentic
genetic influence is not normative one. The distinction reflects the direction
of causality and the relevance of the genetic difference to the biology of the
trait, whether or not we think such differences are fair or just.
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Abstract

In her target article, Burt revives a by now ancient debate on
nature and nurture, and the ways to measure, disentangle, and
ultimately trust one or the other of these forces.
Unfortunately, she largely dismisses recent advances in behavior
genetics and its huge potential in contributing to a better predic-
tion and understanding of complex traits in social sciences.

In the light of mean heritability estimates of 49% across 17,804
traits that derive from 14,558,903 twin pairs of different cultures
(Polderman et al., 2015), we argue that the question is not whether
but rather how to integrate genetic data to advance our under-
standing of human psychology. Owing to the unprecedented
advances of massive parallel sequencing, large-scale genome-wide
association studies (GWASs) have become increasingly accessible
and affordable in social sciences. Accordingly, the predictive
power of polygenic scores (PGSs) is steadily rising proportional
to the GWAS sample size (Mitchell et al., 2021) and can already
explain a substantial amount of variance in complex phenotypes
such as educational attainment (∼12–16%, Okbay et al., 2022)
or externalizing traits (∼10%, Karlsson Linnér et al., 2021).
Moreover, studies applying a multi-PGS approach suggest that
predictive accuracy for a given outcome can be further improved
by combining PGSs of different traits (Allegrini et al., 2019;
Krapohl et al., 2018). Effect sizes of some single, well-performing
PGSs are already comparable to those achieved by conventional
measures used in social sciences such as family characteristics
(Derzon, 2010) and neighborhood disadvantage (Winslow &
Shaw, 2007). This upward trend is expected to continue because
of the steady progress in discovering rare genetic variants under-
lying complex trait heritability that are still insufficiently tagged
by current GWASs (Dou et al., 2021). Estimates from large whole-
genome sequencing data sets identified rare variants as a major
source of the discrepancy between single-nucleotide polymor-
phism (SNP)-based and pedigree estimates of heritability for
complex, polygenic traits such as height (Wainschtein et al.,
2022). In contrast, the frequently discussed concern that PGSs
of complex traits are doomed to miss a substantial amount of
non-additive variance is currently not well supported. Instead,
average estimates from large samples of unrelated individuals sug-
gest that dominance effects explain at most a very small amount
of variance in complex traits (Hivert et al., 2021; Okbay et al.,
2022). Consequently, it is only legitimate to assume that PGSs
are just about to unfold their full predictive potential.

Burt is further concerned that PGSs are inevitably compro-
mised by environmental confounding, whereas others argue that
traditional environmental measures, for example childhood mal-
treatment, are also confounded by substantial heritable compo-
nents (Dalvie et al., 2020; Hart, Little, & van Bergen, 2021;
Warrier et al., 2021). As Burt rightly cautions, quantifying the
extent by which the predictive power of PGSs results from geno-
type–environment correlation (rGE) is challenging, but indeed
essential for their adequate interpretation. Large within-family
studies (e.g., using parent–offspring trios) have significantly con-
tributed to more precise estimates of rGE (Chen et al., 2022) and
could be further advanced through developmental approaches
starting from infancy when environmental variance is still
reduced (Falck-Ytter et al., 2021). Importantly, however, disentan-
gling direct from indirect genetic effect of PGS is less relevant
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whenever the primary goal is to improve (risk) prediction accu-
racy, given that rGE does not undermine a PGS’s predictive
capacities (see Plomin & von Stumm, 2022). Moreover, even
those PGSs where a relatively large amount of predictive power
is not derived from direct genetic effects (e.g., educational attain-
ment, Okbay et al., 2022) still capture variance that is substantially
independent of and thus incremental to the effects of traditional
environmental measures, like socioeconomic status (Judd et al.,
2020). Consequently, algorithms that jointly model the effects of
PGSs and environmental measures are performing significantly
better in predicting, for example, health outcomes (Adeyemo
et al., 2021; Martikainen et al., 2021; Østergaard et al., 2020)
and cognitive functioning (von Stumm et al., 2020) compared
to those that include traditional non-genetic measures only. The
potential to improve prediction by combining genetic and envi-
ronmental data even translates down to epigenetic modifications,
which are increasingly recognized in social science studies as a
potential mechanism of how life events get under the skin.
Epigenome-wide analyses across independent cohorts revealed
that variation in DNA methylation is best explained by additive
effects and the interaction of genes and environmental forces,
but almost never by environmental adversity alone (Czamara
et al., 2021).

Beyond our defense of the immediate practical utility of PGSs
for maximizing trait prediction, we also do not share Burt’s skep-
ticism regarding the limited potential of PGSs for advancing our
etiological understanding of complex traits. The growing number
of studies combining PGSs with neuroimaging, proteomic, or
other multi-omic data have already provided unique insights
into specific mechanisms through which polygenic predisposi-
tions exert their effects on complex phenotypes. Exemplary find-
ings from neuroimaging studies include the identification of
structural brain changes associated with PGSs for neuroticism
(Opel et al., 2020) and educational attainment (Elliott et al.,
2019), that, in the latter example, partly mediated the association
between participants’ PGS and their cognitive test performance.
Moreover, PGSs have already been successfully applied to
study the causal biology of complex traits, for example, in terms
of identifying specific proteins underlying cardiometabolic
diseases (Ritchie et al., 2021). Another promising new method
to advance etiological understanding of complex traits is to
construct PGSs based on gene transcription profiles targeting
specific biological systems, including PGSs capturing neurotrans-
mitter signaling pathways (Miguel et al., 2019; Restrepo-Lozano
et al., 2022), immuno-metabolic markers (Kappelmann et al.,
2021), or cellular stress responses (Arloth et al., 2015). For exam-
ple, a recent study reported that a PGS based on corticolimbic-
specific DCC gene co-expression, which modulates maturation
of dopamine networks, is a better predictor of impulsivity-related
phenotypes than conventional PGSs (Restrepo-Lozano et al.,
2022).

To conclude, we argue that despite their indisputable limita-
tions, PGSs hold great potential for both better prediction and
understanding of complex traits in social science. Raw SNP data
from genome-wide arrays can now be generated for only ∼US
$35 per individual test with an excellent accuracy that outcom-
petes those of most environmental measures (genotype concor-
dance >98%, Hong et al., 2012). Once obtained, SNP data allow
for an automated generation and flexible adaption of multiple
PGSs at any time in life because of their inherent intraindividual
stability. The initial struggle of identifying causal genetic variants

for complex traits should not discourage us from embracing the
remarkable achievements recently made in molecular behavior
genetics.
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Abstract

“Challenging the utility of polygenic scores for social science” is
a compelling but limited critique. Phenotypic development is
sensitive to both initial conditions and all subsequent states –
from conception to senescence. Thus, gene-centric analyses are
misleading (and often meaningless) because gene products are
transformed, and their phenotypic ‘effects’ combined and atten-
uated with successive propagations from molecular and cellular
contexts to organismal and social environments.

“Challenging the utility of polygenic scores for social science” is
an erudite and compelling critique. Yet despite the analytic
rigor, Burt failed to capture the fundamental flaws that render
‘gene-centric’ analyses misleading and polygenic scores
(PGSs) meaningless outside of highly controlled environments.

The conflation of “inherited” with “genetic”

The functional unit in biology, biological inheritance, and phe-
notypic development is the cell – not DNA molecules. To be
precise, humans develop from a single inherited cell – in
which the genome is but one of many components.
Moreover, because each cell’s idiosyncratic nature and spatio-
temporal context determine gene expression, the genome is
merely an “organ” (McClintock, 1984, p. 800) or “tool” of the
cell (Archer, 2015a, 2015b, 2015c). This fact renders the dis-
tinction between non-genetic (cellular) inheritance and the
two forms of genetic inheritance (nuclear and mitochondrial)
critical to analyses of phenotypic development. Nevertheless,
gene-centric analyses ignore the distinction between cellular,
nuclear, and mitochondrial inheritance, and the fact that
intra- and extra-cellular environments determine both gene
products and their ‘effects.’

For example, the fundamental difference between monozygotic
(identical) and dizygotic (fraternal) twins is inherent in the
nomenclature – identical twins develop from a single cell (a fertil-
ized egg) with a single placenta (usually); whereas fraternal twins
develop from two different cells (two fertilized eggs) with two dif-
ferent placentas (always). Thus, fraternal twins differ in cellular
and genetic inheritance, and their intrauterine environments,
whereas identical twins do not.

Therefore, the greater phenotypic variability of fraternal
twins is due to differences in gene expression engendered by dif-
ferent cells (eggs) acting in concert with inter-twin differences in
both genotype and prenatal environments. Yet despite the
extreme variability in the developmental competence (oocyte
quality; e.g., mitochondrial content) of every female’s popula-
tion of eggs (Santos, El Shourbagy, & St John, 2006; Wang &
Moley, 2010; Zhang et al., 2020; Zhou et al., 2020) and the irre-
versible impact of the intrauterine environment on development
(Archer, 2015a, 2015b, 2015c, 2015d; Archer & Lavie, 2022;
Archer, Lavie, Dobersek, & Hill, 2023), the functional distinc-
tion between cellular, genetic, and environmental (in utero)
inheritance is absent in ‘twin-studies,’ heritability statistics,
and polygenic scores (PGSs).

Thus, gene-centrism obscures the totality of biologic inheri-
tance by conflating “genetic” with “inherited” – and therefore,
the complexity of physiologic, psychological, and social pheno-
typic development remains unexamined.
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Nonlinearity and development

Organismal development is a complex process that extends far
beyond the linear amino acid sequence determined by the genetic
code. For example, there are cellular, organismal, and environ-
mental processes that lead to “one-to-many,” “many-to-one,”
and “many-to-many” genotype–protein and genotype–phenotype
relations. These processes include maternal and grandmaternal
effects, phenotypic accommodation, alternative splicing, RNA
editing, chimeric transcripts, protein multifunctionality, epistatic
variance, the metabolic regulation of transcription, and post-
translational modifications (Archer, Lavie, & Hill, 2018).

Therefore, because the genome does not have linear, predic-
tive, or clear causal relations at the molecular level (e.g., protein
species and function [Smith et al., 2021]), it is illogical to posit
that it has these relations with physiologic and psychosocial phe-
notypes. Yet without these relations heritability statistics and
PGSs are meaningless numbers.

Causality and non-genetic inheritance

Phenotypic trajectories are sensitive to initial conditions and all
subsequent states – from conception to senescence. At each
stage of development, extra-cellular environments alter intra-
cellular environments – which then alter gene expression in a
recursive process. Thus, because humans inherit molecules,
cells, and their biologic, physical, and social environments from
their parents, no single level of analysis (e.g., molecular, cellular,
organismal, geographic, or societal) can be considered ‘causal’
unless the phenotypic changes at ‘lower’ levels of biologic organi-
zation can be shown to persist at ‘higher’ levels.

For example, the “egg” (primary oocyte) from which a human
develops was initially created in the mother when she was a fetus
developing in the grandmother’s uterus. In other words, every
“egg” that a female has was created prior to her birth. Thus, the
physical and social environments in which a grandmother is
immersed alter the intrauterine environment in which her off-
spring and the eggs of her female offspring develop. As such,
physiologic, physical, and social environments impact the pheno-
typic development of at least three generations – the grand-
mother, her children, and her children’s children – independent
of the matrilineal genome.

These non-genetic processes of inheritance and evolution are
known as “maternal and grandmaternal effects” and are well-
established across species (Bateson et al., 2004; Gluckman,
Hanson, Cooper, & Thornburg, 2008; Maestripieri & Mateo,
2009). For example, stunting and pediatric obesity are caused by
adverse intrauterine environments – independent of genotype
(Archer, 2015a, 2015b, 2015c, 2015d; Archer et al., 2023; Archer
& Lavie, 2022; Archer & McDonald, 2017; Archer et al., 2018).
In other words, starve any pregnant mammal and she will
abort, or bear stunted offspring – independent of her genome.

Maternal effects and social outcomes

Importantly, disparities in egg (oocyte) quality and intrauterine
environments can be caused by exposure to adverse physical
and social environments (McQueen, Schufreider, Lee, Feinberg,
& Uhler, 2015; Navot et al., 1991; Zhou et al., 2020). For example,
low educational attainment, racism, sexism, and spousal abuse
often lead to unremitting stress, poor nutrition, and alcohol,
tobacco, or drug use that damage egg quality and the prenatal

environments in which eggs develop. Thus, the environments
and behaviors of past generations irreversibly alter the physiologic
and behavioral phenotypes of current and future generations –
independent of genotype.

Yet because the anatomic, physiologic, and psychological
effects of prenatal insults are present at birth (inherited), persist
into adulthood, and affect multiple generations, they are also inex-
tricably linked to the matrilineal genome. Thus, gene-centric
analyses that ignore maternal and grandmaternal effects will be
misleading because of strong but demonstrably specious correla-
tions between genotype and phenotype.

Given these facts, disparities in IQ, educational attainment,
obesity, diabetes, physical activity, poverty, and criminal behavior
in today’s children are caused by the biologic, physical, and social
environments in which their grandmothers and mothers were
immersed from conception to senescence – independent of
genomes and current environments. Thus, the adverse environ-
ments (and public policies) of yesteryear – not DNA – are causing
disparities in health, wealth, and happiness today, and will con-
tinue to do so tomorrow.

Summary and conclusion

A great deal of biology – both established and undiscovered – links
cellular and genetic inheritance (and the expression of that
inheritance) with phenotypic development. Thus, estimates of
genetic heritability and PGSs are often meaningless statistical
abstractions derived from attempts to impose artificial dichotomies
(nature vs. nurture and genes vs. environment) on demonstrably
non-dichotomous developmental processes (Archer et al., 2018).

In closing, we agree with Burt’s compelling critique and argue
that an understanding of the etiology of physiologic, psychologi-
cal, and social phenotypes “will not be found in the genome”
(Archer, 2015a).
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Abstract

Although Burt clearly explains how modern genomic tech-
niques work, and describes their limitations, her conclusion
that they are therefore not valuable additions to understand-
ing social outcomes is unwarranted. Understanding the causes
of complex social outcomes depends on understanding how
social, individual, and genetic factors complexly interact
with each other. None can be understood without reference
to the others.

Burt does an outstanding job of clearly describing, at just the right
level of necessary detail, how modern genomic techniques work,
and clearly articulates the many limitations associated with draw-
ing strong inferences about the role played by genes in

determining any particular behavioral or social outcome. She
also acknowledges that most researchers who use these techniques
(even the “enthusiasts”) are aware of these limitations, and typi-
cally do what they can to mitigate them. The crux of her argument
is that these attempts are inadequate (maybe even unavoidably
so), and so continued efforts in that direction are a waste of lim-
ited resources, and potentially dangerous, because they might be
“obscuring social–structural and physical environmental influ-
ences and promoting the individualization of social problems”
(target article, sect. 8, para. 4). These perceived potential dangers
reveal a laudable (but perhaps misguided) political motivation for
discouraging continued research into genetic influences, but Burt
is explicit about the fact that she is not arguing from a political
perspective, but a scientific one. From a scientific perspective,
deliberately ignoring genetic influences on even the most complex
and apparently purely “social” phenomena is a straightforward
mistake.

One reason for rejecting Burt’s proposal on scientific
grounds is that it rules out the possibility of understanding
the evolutionary origin of complex social phenomena, which,
of course, depends on explicating the role genes might play in
such effects. The reason this is important is because the evolu-
tionary selected consequences of a gene’s actions are its effects.
Burt uses Jenks’ (1972) classic thought experiment about dis-
crimination based on hair color to bolster her argument for
purely social factors creating what look like genetic influences
on a social outcome. The thought experiment asks to imagine
a world in which red-haired children are barred from school.
Under such conditions, there would be a strong relationship
between genes (those responsible for pheomelanin production;
Valverde, Healy, Jackson, Rees, & Thody, 1995) and educational
attainment, but Burt’s argument is that this relationship would
be spurious, because the genes themselves do not “code” for
anything directly related to an individual-level propensity to
acquire an education (e.g., intelligence, or perseverance, or care-
fulness). Although it is intended to illustrate the opposite point,
this thought experiment can be used to exemplify the funda-
mental premise of evolution; that genes only have selective con-
sequences in environments – this interaction underpins all
selection. This example makes it obvious that the selective con-
sequences of the gene need not be direct. Indeed, as genes only
make proteins (or regulate the genes that make proteins), it can
never be direct. From an evolutionary perspective, if school-
level education increased reproductive success (increased “fit-
ness” in evolutionary biology), for whatever reason, then the
genes for red hair would be selected against, because they
reduced educational opportunities. This is one of the gene’s
consequences in that environment, and so there is a real
sense in which this is one of its effects, despite being indirect.
The only reason this looks like a spurious association is because
we know that the hypothetical educational barrier is artificially
constructed. We rarely have that insight for most genes and
their real effects, but understanding all evolution depends on
understanding the effects of genes in environments. For exam-
ple, imagine a world in which rather than red-heads being
barred from school, they were considered more attractive, and
so more easily attracted mating partners. Again, whether this
preference was because of a sexually selected “genetic” prefer-
ence (Endler & Basolo, 1998) or an entirely arbitrary socially
determined preference (if such a thing could exist), the posses-
sion of the genes for making red hair would have evolutionary
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consequences, and those consequences would be one of its
effects.

A major theme of Burt’s critique is that modern genomic tech-
niques are guilty of neglecting the kind of developmental interac-
tionism described above, and have a tendency to ignore the fact
that such findings are therefore context- and population-specific.
Although this criticism may be true of the most ardent enthusi-
asts, the vast majority of researchers in this field clearly demon-
strate awareness of these issues by trying to factor them in (or
out) in their analyses. The irony of this criticism is that Burt
cites a host of social factors that are presented as causes of social
outcomes without any direct evidence of their casual efficacy and
without any acknowledgement that those factors can only have
their effects via interacting with genes. It is true, as Burt points
out, that there is no meaningful way we can identify social-con-
text-independent genetic “potential” for a particular social out-
come (like educational attainment), but it is equally true that
there is no meaningful way to identify gene-independent social
“potential” for any social outcome. No matter what socially deter-
mined education-relevant advantages (or disadvantages) a person
has, that can only possibly translate into actual educational attain-
ment via a long, complicated interaction between their genes and
those social factors. Part of the problem here is that “social” var-
iables are discussed as causes and outcomes, without a complete
fleshing out of the individual-level causal mechanisms involved
in linking them. It is individuals who attain certain levels of edu-
cation, or have same-sex sex, or who play golf, to use some of
Burt’s examples, and so we need to understand how genes and
environments dynamically interact to understand why individuals
behave in certain ways in certain environments. Two obvious
individual-level factors that influence many of these outcomes
are personality and intelligence, and both of those are traits that
are a consequence of complex gene–environment interactions.
For any outcome we might be interested in understanding, all
of these factors (social, individual, and genetic) complexly inter-
act, and so there are logistical barriers to identifying “the role”
played by any one factor, and logical reasons to avoid any such
approach. We need good data on all of the factors involved,
and so discouraging any approach is counterproductive.
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Abstract

In discussing the relationship between genetically influenced dif-
ferences and educational attainment (EA), Burt employs the
concept of downward causation. I note the similarities between
Burt’s concept of downward causation and the sociogenomics
concept of vertical pleiotropy and argue that her discussion of
downward causation introduces an unnecessary normative com-
ponent. The core problem concerns not the appropriateness of
phenotypes that influence EA but mistaken assumptions about
which phenotypes are being predicted.

Based on Burt’s definition of downward causation, phenotypes A
and B exhibit downward causation when risk alleles for phenotype
A predict phenotype B. A’s risk alleles predict B neither because B is
a biological consequence of A (e.g., kidney disease can be a biolog-
ical consequence of diabetes) nor because A and B share risk alleles
(e.g., multiple risk loci are shared between autoimmune diseases).
Instead, the causal connection between A and B is because of socio-
environmental forces (norms, practices, institutions). In addition, as
the example of educational attainment (EA) shows, B may be a
wholly social construct without its own risk alleles.

Thus characterized, downward causation is equivalent to what
sociogenomicists misleadingly refer to as “vertical pleiotropy” (van
Rheenen, Peyrot, Schork, Lee, & Wray, 2019). Pleiotropy occurs
when a single gene plays a causal role in two or more distinct phe-
notypes. Despite its name, vertical pleiotropy is not a form of plei-
otropy at all because phenotypes A and B do not share any causal
alleles. Hill and Davis, for example, treat genetic variants that osten-
sibly predict income as an example of vertical pleiotropy, noting that
(2019, p. 19), “genetic variants do not act directly on income;
instead, genetic variants are associated with partly heritable traits
(such as intelligence, conscientiousness, health, etc.), which have
their own complex gene-to-phenotype paths (including neural var-
iables) and are ultimately associated with income.” They also com-
ment that any correlation between a given attribute (e.g., intelligence
or health) and income is determined by social institutions: Income
could just as well depend on service to the party, and different polit-
ical policies could alter, if not eliminate, the degree of correlation
between, for example, income and health.

As with income, most sociogenomicists would agree there are no
alleles for EA per se. Rather, there are alleles for attributes that caus-
ally affect EA and it is the socially constructed nature of the educa-
tional system that determines what attributes of persons are relevant
and rewarded (which may include features of persons that are
socially valued, such as attractiveness and height, but not knowingly
made criterion of EA). Perhaps in one society, obedience is valued
more than critical thinking and rewarded accordingly. Under the
assumption that cognitive performance is “strongly” genetically
influenced and that socially it exerts a decisive causal influence on
EA, sociogenomicists typically treat EA as a “proxy variable” for
cognitive performance (Rietveld et al., 2014, p. 13791).

Burt implies that in addition to the properties mentioned above,
downward causation is characterized by phenotype A being an inap-
propriate socially mediated cause of EA. All the examples she pre-
sents for phenotype A – ethnicity, skin color, attractiveness,
height, weight – are examples in which most would agree that it
is indeed inappropriate, if not a grave social injustice, that A has a
causal effect on EA. Burt notes of such phenotypes, “In a GWAS,
such alleles [alleles associated with skin pigmentation of African
Americans, but also attractiveness, height, weight, etc.] would be
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identified as causing differences in educational attainment, but these
association signals would, of course, be artificial.” However, the sig-
nals would be no less “artificial” if the alleles identified as causing
differences in EA were associated with intelligence. Although
many would consider this an “appropriate” cause of differences in
EA, as noted above, to the extent that it is a cause is because of con-
tingent social and institutional practices and norms.

Normative objections in this context makes one vulnerable to
the charge (common enough) that one’s objection is not scientific.
Such an invocation is unnecessary because Burt herself has
already convincingly demonstrated the problem with downward
causation in the context of EA (and most other social attributes
such as income). The problem lies with the assumption that EA
is a proxy variable for intelligence, that is, that in measuring EA,
sociogenomicists are measuring intelligence. The error is scien-
tific, not normative, to the extent that this assumption is wrong.

First, as Burt shows, to whatever extent intelligence has genetic
influences, the realization of intelligence as a phenotype is so
intertwined with so many socio-environmental variables that it
is impossible to separate “the genetic influence on intelligence”
as some pre-existing, isolated, potential force. Moreover, one of
these influences on intelligence may well be education itself. In
place of the assumed unidirectional causal pathway from intelli-
gence to EA, EA itself may influence intelligence, resulting in
reciprocal or bidirectional causation (Hegelund et al., 2020).

Second, as Burt also shows, there are strong reasons to believe
that polygenic EA scores predict not intelligence but ancestry.
Population stratification itself is an example of downward causa-
tion/vertical pleiotropy. Genetic ancestry bears a socially deter-
mined association with any number of social attributes, EA and
income being two noteworthy examples. In the latest in a long
series of studies showing the enduring impact of population strat-
ification on genome-wide association studies (GWASs) of com-
plex traits, the authors note that “controlling for geographic
regions significantly decreased the heritability for socioeconomic
status (SES)-related traits, most strongly for educational attain-
ment and income” (Abdellaoui, Dolan, Verweiji, & Nivard, 2022).

A final word concerning sociogenomicists’ repeated assertion
that in addition to the heritability of intelligence (and whatever
other attributes are considered to have an association with EA),
EA is itself heritable (the same is said of income). How can EA
be said to be heritable if there are no genetic variants that act
directly on it? One might object that nothing in the concept of
heritability requires that a trait deemed heritable be influenced
by the transmission of parental risk alleles for that trait. It is suf-
ficient that heritable trait A stands in a (socially mediated) causal
relationship to trait B. However, if we accept this, we would have
no grounds to claim, to use an example of population stratifica-
tion cited by Burt, that chopstick use is not heritable. Rather,
we could say that it is an example of vertical pleiotropy. Being
of East Asian descent (phenotype A) is a heritable attribute,
and because of social practices (norms, conventions) it is causally
associated with chopstick use (phenotype B).
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Abstract

The problems with polygenic scores (PGSs) have been under-
stated. The fact that they are ancestry-specific means that biases
related to sociodemographic factors would be impossible to
avoid. Additionally, the requirement to obtain DNA would
have profound impacts on study design and required resources,
as well as likely introducing recruitment bias. PGSs are unhelpful
for social science research.

Burt does an excellent job of debunking some of the hype attach-
ing to sociogenomics and the field of polygenic scores (PGSs) in
general. Although she concludes that PGSs may be not very useful
for social science, in fact there are good reasons to regard them as
perhaps being worse than useless.

Why should social scientists feel quite comfortable not incor-
porating PGSs into their research? There is no doubt that genetic
factors can have substantial effects on relevant outcomes. For
example, countless variants in DNA sequence have been identi-
fied which lead to profound intellectual disability, effectively
reducing educational attainment to zero (Ilyas, Mir, Efthymiou,
& Houlden, 2020). Likewise, it is not up for debate that the effect
of some genetic variation will be moderated by environment.
Genetic factors increasing athletic ability will be expected to be
associated with increased educational attainment if colleges
recruit students on sports scholarships and less so if admission
is based only on intellectual capability. So the issue is not that
genetic factors do not impact outcomes of interest but rather, as
Burt explains, that PGSs are so poor at capturing the genetic var-
iation which is biologically relevant while at the same time being
profoundly influenced by exactly the kind of confounders social
scientists do not want contaminating their research, such as
race, socioeconomic status, and parental characteristics.

Although Burt does touch on many of the relevant issues, I
would argue that the situation is even more problematic than
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she presents it to be. In my view, what she refers to as population
stratification produces effects of such magnitude and malignancy
as to render the proposal to routinely incorporate PGSs as covar-
iates in social science research a complete non-starter. There are
two related phenomena. One is that the absolute magnitude of
PGSs varies with ancestry and the other is that the strength of
the association between a PGS and the trait it is supposed to pre-
dict also varies with ancestry (Martin et al., 2019). These are not
small effects. The PGS for schizophrenia is much more strongly
associated with ancestry than it is with schizophrenia (Curtis,
2018). Researchers working with PGSs now routinely use
ancestry-specific PGSs produced by carrying out genome-wide
association studies (GWASs) in relevant cohorts. A PGS for
white Europeans will need to be derived from a GWAS of an
exclusively white European cohort; a PGS for Asians will be
derived from a GWAS of an exclusively Asian cohort (Ho et al.,
2022). And so on, except that because Africans have more genetic
diversity than other populations a PGS derived from a GWAS of
an African cohort will always perform less well than its counter-
parts for other ancestries.

Given these now well-recognised properties of PGSs it is truly
challenging to see how one could consider incorporating a PGS as
a covariate in a social science research project. The value of a sub-
ject’s PGS would be profoundly influenced by their ancestry. If
one went down the route of attempting to use an ancestry-specific
PGS then a prerequisite would be that a GWAS of the trait in
question should have been performed on every relevant ancestry
group. Knowing which one to use would require determining
the ancestry of each subject. For subjects of mixed ancestry, an
attempt would need to be made to combine PGSs (Marnetto
et al., 2020). For subjects with African ancestry the PGS would
capture less of the genetic risk than for other subjects. Thus,
the PGS represents a variable which not only performs badly in
terms of measuring genetic risk but also performs more badly
for some subjects than others. Such an obvious source of system-
atic bias would make it difficult or impossible to draw useful con-
clusions from studies which incorporated it.

There is another way in which Burt’s treatment is too kind to
PGSs. She has not presented a full account of the difficulties of
obtaining them for participants in a social science research pro-
ject. Once one has obtained single-nucleotide polymorphism
(SNP) genotypes then producing a PGS is a trivial exercise.
But obtaining SNP genotypes cannot be done by having the sub-
ject fill out a questionnaire or go through a structured interview
– they have to actually donate a DNA sample and it has to be
processed by a laboratory. Incorporating a PGS into social sci-
ence research involves adding a whole new biological dimension
with a very substantial impact on the overall shape of the project.
It also requires that subjects voluntarily provide a DNA sample.
Although some may be happy to do this, it is unarguably the
case that a DNA sample represents a large quantity of personal
information which is potentially sensitive in a number of ways
(Alsaffar, Hasan, McStay, & Sedky, 2022). An individual’s
genetic profile provides at least some information about their
risk of a large number of health conditions. It could potentially
be of use to police and security forces who might seek to identify
the perpetrator of a crime, or at least one of their relatives.
Although safeguards may be in place which attempt to prevent
the misuse of genetic data some individuals may feel reluctant
to provide DNA for reasons which are not wholly irrational.
Of especial concern is that one might well expect that factors

influencing an individual’s enthusiasm for donating DNA
would include a number of factors which might be of interest
to social scientists, such as education, race, health, substance
misuse, and criminality. Thus, introducing DNA sampling as a
routine aspect of social science research seems certain to intro-
duce systematic bias into recruitment. And as far as research
involving children is concerned, I would argue that the privacy
concerns about possible misuse of genetic data would mean
that it could not be ethical to obtain DNA even if their parents
consented.

The inclusion of PGSs into social science research is impracti-
cal and highly likely to introduce bias. For these reasons and oth-
ers, I believe that PGSs have a negative utility.
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Abstract

This commentary seeks to briefly outline a clear-eyed middle
ground between Burt’s claims that the inclusion of polygenic
scores (PGSs) is essentially useless for social science and propo-
nents’ vast overstatements and over-interpretations of these
scores. Current practice of including PGSs in social science is
often wrong but sometimes useful.
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Burt’s goal is to challenge arguments about the value of including
genetic measurements in social science research. The author
focuses on a subset of “genetics” – the use of polygenic scores
(PGSs) and lists four key “limitations of PGS that undermine
their utility for social science.” I’ll summarize these as (1) they
are not “purely” genetics and are thus confounded (2) the causal
mechanism is unclear; in cases where the mechanism is environ-
mental, this is a labeled “downward causation” which is said to
produce “artificial” genetic signals (3) they are incomplete mea-
sures of genetic variation and (4) their interpretation is context-
dependent. On their face, these four limitations would seemingly
apply to, essentially, all variables used in social science research –
and this is a key double-edged sword of exploring the use of
“genetics” in social science: To on the one hand treat them as spe-
cial and on the other treat them as “regular” variables. Proponents
want them to be treated as regular when evaluating their general
use and special when interpreting their effects and opponents
want the opposite. Like other commenters, Burt’s arguments are
too unfocused and often imprecise, in my view; focusing on the
dissonance of opponent’s treatment of these variables
without acknowledging the dissonance in her own arguments.
The arguments lack the specificity that is needed and conflates
issues of interpretation of the PGS in an empirical application
with the net-scientific-value of including the PGS at all. Instead,
I believe the two key features of using PGSs are its utility in the
specific application and a need to under-, rather than over-, inter-
pret the PGS as “genetic” effects1 at all. Like models, PGS inclu-
sion can be wrong but useful. Unfortunately, many proponents
want to leverage the “wrong” to strengthen arguments of the
importance of genetics more broadly and put less emphasis on
the “useful.”

Burt is absolutely correct that the ambiguous nature of a
PGS’s interpretation has led far too many investigators to over-
interpret and narrowly label a PGS as “genetic,” often to elevate
the perceived importance of “genetics” in contributing to social
science outcomes.2 For example, many investigators aspire to
specifically distinguish a “genetic” effect from an effect stem-
ming from a broader “family background” source. At present,
I believe this effort is a fool’s errand and research that attempts
such a separation should be understood as over-stepping and
over interpreting and largely dismissed as such (Fletcher, Wu,
Li, & Lu, 2021).

However, let’s return to some purported uses of PGSs that
may shed light rather than only muddying the waters. In
many investigations of whether an environmental exposure
affects an outcome, researchers are worried that some “third fac-
tor” might cause both the environment and outcomes. In many
such analyses, a standard and reasonable question is whether
genetics and/or family background is the “third factor.” A very
standard approach to partially address this specific concern is
to compare siblings (i.e., hold constant shared family back-
ground and shared genetics). This approach is useful but imper-
fect (e.g., Boardman & Fletcher, 2015). In some circumstances it
can provide useful, directional evidence of the importance of this
particular third factor source. As an alternative – in a situation
without sibling data, for example – researchers could instead
control for PGS, perhaps in conjunction with a more formal sen-
sitivity analysis of the original results (Oster, 2019). If the
researchers do not attempt to interpret the effect of this third
factor on the outcome (i.e., “genetic effects”), which follows
standard practice in interpretations of an included potential

third factor, then I believe the inclusion of PGS can be quite use-
ful in standard social science analysis. A second use is, essen-
tially, imputation of variables the researcher does not have in
the data. Again, the focus is not on interpreting the “effects”
of the PGS, but using them as signals for where to collect social
science data in the future. Burt describes cases where a
researcher has data on both a trait of interest and a relevant
PGS and chooses to use the PGS (e.g., school grades) in a down-
stream analysis of, say, predicting high school graduation. But
what about the case where school grades are not measured? Or
when school grades are only measured post-treatment (e.g., for
an early-life intervention)? In these cases a PGS – and even bet-
ter, many different PGSs – could be used for hypothesis gener-
ation for future analysis. For example, an early (or in utero)
intervention that is shown to interact differentially with PGS
for cognition, PGS for ADHD, PGS for risk tolerance, and so
on in predicting high school graduation could be both wrong
(if we try to interpret the “genetic effects” directly) but useful
(if we do not).

Overall, Burt’s paper summarizes a useful set of issues around
the inclusion of PGS measures in social science research. I believe
the issues raised are mostly correct when focusing on the broad
misinterpretation of PGSs as representing “genetic effects” in
the emerging literature. However, I believe these misinterpreta-
tions can be challenged and corrected directly without the need
to abandon the inclusion of PGSs is a limited and focused role
in social science research.
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Notes

1. As Boardman and Fletcher (2021) state “…even if each of the genetic var-
iant effects that are added together were causal effects, the resulting summary
measure [(i.e. PGS)] would not have a clear interpretation. Many researchers
have used vague terms, such as genetic endowment, genetic risk, or genetic pre-
disposition, in labeling these constructs… the fact that many of the genetic var-
iant effects are not causal further challenges the interpretation – so much so
that it is not clear that they can be called ‘genetic’ effects at all…”
2. As described in more detail in Fletcher (2022a, 2022b), Harden (2021) is a par-
ticularly poignant case of over-stating current knowledge and methods. Likewise,
the new chapter by Madole and Harden (2023) overstates and oversells.
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Abstract

Polygenic scores (PGSs) have several limitations. They are con-
founded with environmental effects on behavior and cannot
be used to study how mutations affect brain function and behav-
ior. For this, mutations with large effects, which often arise in
only one geographical population are needed. Genome-wide
association studies (GWASs), commonly used for identifying
mutations, have difficulty detecting these mutations. A strategy
that overcomes this challenge is discussed.

Proponents of sociogenomics argue polygenic scores (PGSs)
should be incorporated into social science research. PGSs are
derived from many variants (up to thousands) of very small effect
size (common variants) that are associated with measures of a
social behavior trait as determined by genome-wide association
studies (GWASs; Pain et al., 2021). As Burt described, although
PGSs are suggested to be measures of genetic influence or propen-
sity for complex traits, several factors make it difficult or impos-
sible to distinguish genetic and environmental effects on such
traits. Thus, PGSs are unlikely to be strictly genetic predictors
of the propensity to exhibit a trait. Moreover, PGSs do not typi-
cally identify alleles or variants responsible for a phenotype
(Astle et al., 2016). This is unfortunate because identifying a del-
eterious mutation would permit its biological activity to be stud-
ied. The information obtained could provide the knowledge
needed to repair or counteract the deleterious effects of the muta-
tion. This limitation of PGSs is exemplary of a broader issue as
GWASs have identified thousands of strong associations with
complex diseases and traits, but in very few instances has the
actual risk variant been identified (Chorley et al., 2008), or have
they been successfully translated into clinical use (Bomba,
Walter, & Soranzo, 2017). Identifying causal common variants
in GWASs has been difficult because they usually map to regula-
tory regions (Astle et al., 2016), where they influence gene expres-
sion, including processes involved in execution of gene expression
such as splicing (Lalonde et al., 2011).

In contrast to common variants of small effect size, rare vari-
ants that have large effects on phenotypes have been identified.
These variants are often associated with the protein-coding por-
tion of a gene. As proteins are important for structural and phys-
iological functions of cells, mutations that affect them can
produce these large effects. An explanation for the rarity of

these variants based on evolutionary theory proposes that the det-
rimental effect of disease on fitness results in selection against
variants that promote disease (Gibson, 2012).

Rare variants are often identified by quantitative trait locus
(QTL) analysis, which looks for correlations between variants
and measures of continuous phenotypic traits (Bloom et al.,
2019). The goal is to uncover the locations in the genome impor-
tant for these traits. A variation of this analysis that has identified
rare variants of large effect size used individuals that displayed the
trait of interest and individuals that did not display it from mul-
tiple generations of families or isolated populations. Rare variants
might be found at higher frequencies in isolated populations
because of previous bottleneck events, genetic drift or adaptation,
and selection (Moltke et al., 2014). This increases the power to
detect associations between rare variants and phenotypes
(Colonna et al., 2013). In these studies that sample from families
or isolated populations, variants that are closely linked to the
mutation or causative allele are present in individuals that exhibit
the trait at higher frequency than in individuals that do not dis-
play the trait. The locations of these variants indicate the chromo-
some region likely to contain the mutation. Positional cloning
within this region can be used to identify the mutated gene and
then comparison of this gene’s DNA sequence in subjects with
and without the trait can identify the causative mutation. Even
though this mutation might only be present in a family or isolated
population, the ability to study how any mutation alters the brain
to influence a complex behavioral trait would be a breakthrough.
An example of a study with success using this strategy focused on
Canadian families of Celtic descent with multiple relatives in up to
three generations diagnosed for schizophrenia (Brzustowicz,
Hodgkinson, Chow, Honer, & Bassett, 2000). A highly significant
association between schizophrenia and a locus on chromosome
1q21–q22 was found. Then additional variants within this region
were used to pinpoint the nitric oxide synthase 1 adaptor gene
(Brzustowicz et al., 2004). This gene is overexpressed in the frontal
cortex of people with schizophrenia, and it is involved in synaptic
function and cortical neuron development, effects that could
contribute to schizophrenia (Carrel et al., 2015; Hernandez et al.,
2016).

In contrast, GWASs, and thus PGSs, do not typically detect
QTLs or rare variants of large effect size because these variants
are rare in the total population sampled by GWASs. The power
to detect a variant of any effect size decreases with the frequency
of the variant because fewer individuals in the sample carry a less-
frequent variant (Zuk et al., 2014). Put another way, because
GWASs calculate the average effects of alleles across thousands
of individuals, they cannot capture heterogeneity of effect sizes
at the family level (Gibson, 2012).

Can approaches that detect rare variants be useful for socioge-
nomics? It could be argued that some measures of interest in soci-
ogenomics, for example, level of educational attainment, could
not be accounted for by one or a few rare variants. However,
the contrast between what GWASs and PGSs identify
best (common variants of small effect size) versus what QTL
and related approaches identify best (rare variants of large
effect size) suggests QTL and related approaches could have sig-
nificant relevance for sociogenomics. As discussed above, by
studying the right population it may be possible to identify asso-
ciations of a complex behavioral trait with rare variants of large
effect and ultimately identify one or more causative alleles.
Social behaviors are complex and depend on multiple interacting
neural systems as illustrated in a recent review on neural encoding
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of social valence (Padilla-Coreano, Tye, & Zelikowsky, 2022).
Social attributes, social memory, social rank, and social isolation
were proposed to influence valence assignment to social stimuli,
which in turn influences social interactions. Also, the separate
neural circuits that control each of these influences were
described, noting some overlap of these circuits. Interestingly,
they suggest that across psychiatric disorders, brain regions that
contribute to encoding of valence and social functions exhibit
abnormal activity during emotional processing (e.g., Laviolette,
2007). Thus, if a mutation disrupts one or more of the neural sys-
tems that influences valence assignment, this might lead to abnor-
mal social interactions and a search might identify causal variants,
including rare ones of large effect size.
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Abstract

This commentary is a call to action for researchers to create and
use genome-wide association studies (GWASs) with previously
missed age groups (e.g., infancy, elderly), which will improve
our ability to ask important developmental questions using
genetic data to trace pathways across the lifespan.

In the target article, Burt challenges the “sociogenomics revolu-
tion,” which is thriving because of the incorporation of poly-
genic scores (PGSs) into social science research. The ease of
using PGSs is tempting; however, a source of risk exists in the
confounding of genetic and environmental influences because
of a variety of biological and statistical reasons. Here, we
argue that there is another important confound to PGS work
that was overlooked by the author: The lack of consideration
of genome-wide association studies (GWASs) in the context of
development. Currently, most GWASs with large sample sizes
have focused on identifying risk alleles associated with outcomes
in adulthood. A consequence of the lack of developmental work
in this area, together with the fact that a person’s genes do not
change over the course of their lifetime, is the assumption that
adult GWASs can and must be used to infer outcomes across
the lifespan (Harden & Koellinger, 2020). This assumption
becomes especially problematic when studying developmental
traits, because the manifestation of underlying characteristics
changes over the lifespan (Martin, Ressler, Binder, &
Nemeroff, 2009).

One example of a disorder that can change in symptoms and
forms across the lifespan is anxiety. Specific phobias often pre-
dominate in childhood, social anxiety increases in adolescence,
panic disorder becomes more common in adulthood, and worry
disorders often occur in older adults (Lenze & Wetherell, 2022).
Although anxiety disorders are often comorbid and there are
transdiagnostic traits shared across these anxiety disorders, there
are also characteristics that are unique to each different disorder.
The dynamic sets of symptoms associated with psychopathologies
such as anxiety can lead to a variety of outcomes after an individual
receives a diagnosis, with the associated behaviors becoming more
extensive and chronic or the attenuation of symptoms leading to no
longer meeting criteria for the disorder (Bystritsky, Khalsa,
Cameron, & Schiffman, 2013). These diverging trajectories of
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psychological disorders may be because of a variety of genetic and
environmental factors. As a result, evidence from multiple longitu-
dinal studies in this area supports a “developmental dynamic pat-
tern” in which there is heterogeneity in developmental
trajectories of symptoms and phenotypes across the life span
(Martin et al., 2009). Using this model, as opposed to the “develop-
mental stablemodel” in which genetics is thought to bemediated by
one unchanging set of risk factors (Martin et al., 2009), is essential to
accurately contextualize PGS studies.

The notion of dynamic genetic patterns is changing the way
we approach studies of developmental traits, and this approach
has been highlighted in studies on attention-deficit/hyperactiv-
ity disorder (ADHD) (Rovira et al., 2020), body mass index
(BMI) (Couto Alves et al., 2019), and asthma (Pividori,
Schoettler, Nicolae, Ober, & Im, 2019). Each of these studies
calculated PGSs to investigate the genetic architecture underly-
ing the trajectory of certain risk factors using data from infancy
and childhood and found that the genes underlying these
outcomes differed over time. More specifically, ADHD pos-
sesses a different set of genes that predict the onset and persis-
tence of the disorder (Faraone & Larsson, 2019); BMI possesses
heterogeneity at the LEPR/LEPROT gene, revealing longitudinal
variation in BMI for infants versus children (Couto Alves et al.,
2019); and asthma shows age-related changes across multiple
points in the genome (23 genes were childhood-onset specific,
one was adult-onset specific, and 37 were related to both
childhood- and adult-onset asthma) (Pividori et al., 2019).
These findings highlight the importance of the inclusion of
wider age populations in this line of work to gain a holistic
understanding of the biology underlying developmental out-
comes (Couto Alves et al., 2019; Pividori et al., 2019; Rovira
et al., 2020). By including age as a covariate, we can map the
pathways by which genetic risk manifests across development,
and thus study more effectively how various environments
and interventions moderate early behavioral manifestations of
risk across developmental stages (Dick et al., 2018).

Moreover, the lack of developmental work and provision of
age metadata within GWASs (similar to what is being done for
sex assigned at birth; Liu, Schaub, Sirota, & Butte, 2012) repre-
sents a missed opportunity to ask important questions related
to stability and change in biological underpinnings of disorders
over time. Other related metadata features can be similarly
explored to answer major questions in the developmental
field. Using developmentally informed PGSs allows us to ask
important questions related to differential susceptibility, such
as exploring how the interaction between low socioeconomic
status and polygenic risk predicts mental health outcomes or
enhancing our understanding of the effects of prenatal supple-
ments on children’s mental development (Colombo et al., 2004;
Morgan, Shaw, & Olino, 2012). Deepening our understanding
of previously well-established biological connections and
other developmentally dynamic processes, such as epigenetics,
holds promise as an illuminating direction for the field
(Shulman & Elkon, 2021). In practice, this can help inform
the development of interventions and treatments for individu-
als with genetic disorders or genetic risk factors (Dick et al.,
2018). This work is a call to action for researchers to create
and use GWASs with previously missed populations (e.g.,
early and late in life), which will improve our ability to ask
important developmental questions and have a better under-
standing of how and why certain phenotypes change across
the lifespan.
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Abstract

We generally agree with Burt’s thesis. However, we note that the
author did not discuss epigenetics, the study of how the environ-
ment can alter gene structure and function. Given epigenetic
mechanisms, the utility of polygenic risk scores (PRS) is limited
in studies of development and mental illness. Finally, in this
commentary we expand upon the risks of reliance upon PRSs.

Burt’s target article had many strengths, including acknowledg-
ment of the challenges associated with reliance upon polygenic
risk scores (PRSs). We concur that sociogenomics cannot and
should not occur without consideration of the environment.
Although Burt raises the importance of the environment, she
did not mention epigenetics. Indeed, epigenetics, the study of
how the environment can alter gene structure and function, is
important to acknowledge. Epigenetic processes involve any change
to chromatin without necessarily changing the underlying DNA
code (Auger & Auger, 2011, 2013; Cuarenta et al., 2021).
Epigenetic modifications typically occur through DNA methylation,
histone modification, or through regulation by noncoding RNA.

One can think of DNA methylation as making a mark,
whereas DNA demethylation is removing a mark (see Fig. 1A;
Auger & Auger, 2013). These processes can be modified by envi-
ronmental cues across development. Importantly, early life stress/
adversity can have lasting consequences on DNA methylation,
histone modifications, and noncoding RNA that can have a subtle
or dramatic impact on an organism’s health or behavior (Fig. 1B).
Such a modification might occur early in life but not affect gene
expression until later in life (Auger & Auger, 2017).

Another, more recent, mechanism for epigenetic modifications
is via altered retrotransposon activity. Retrotransposons are
autonomous elements capable of self-replication; long inter-
spersed element 1 (LINE 1) is a retrotransposon present and pre-
sumably nonactive in humans, nonhuman primates, and rodents
(Cuarenta et al., 2021). Using rats, Cuarenta et al. (2021) demon-
strated that exposure to early life stress (i.e., predator odor expo-
sure) altered LINE 1 levels and copy number within a brain region
critical for juvenile social play. This suggests that early life stress
can actually result in changes to DNA sequences within the
brain. Converging evidence from rodent and human postmortem
studies indicates that an organism’s experience can not only
reshape the structure and function of DNA via epigenetic modi-
fications, but can also result in changes to DNA sequences. The
regulation of DNA sequences, structure, and function by our per-
sonal or social experiences across our lifespan is generally ignored
in PRSs (Fig. 1C).

PRSs are calculated by adding up the cumulative effects of each
risk allele (multiplied by the effect size of each variant) to provide
an index of genetic risk for a given disease (Burt, target article;
Palk, Dalvie, de Vries, Martin, & Stein, 2019; Torkamani,
Wineinger, & Topol, 2018). PRSs may have limited utility if
they are unable to allow for epigenetic changes, in addition to
the types of gene–environment interplay exemplified by gene–
environment interactions (G × E).

That is, epigenetic mechanisms could influence the human
neuroepigenome across time and/or at different stages across an
individual’s lifespan. Because of epigenetics, there is greater
plasticity within our genome via alterations to the underlying
DNA sequence itself in response to environmental challenges
during development. There are stable epigenetic events (e.g.,

X inactivation and imprinting) as well as plastic epigenetic events
(e.g., gene regulation). PRSs do not consider either type of event.
PRSs are limited in accounting for the ways by which experience
may induce variations in the genome sequence, such as gene ×
environment × time interactions, which are especially important
in brain development (Auger & Auger, 2013).

It is also important to consider the use of PRSs in psychia-
try. When considering risks for psychiatric disorders, it is
imperative that we also consider the developmental stage of
the organism (Gooding & Iacono, 1995). Moreover, sex

Figure 1. (Gooding and Auger). Schematic representation of how epigenetic modifi-
cations regulate gene expression. (A) Plastic and stable epigenetic changes.
Environmental signals can alter DNA methylation patterns (e.g., methylation of cyto-
sine or adenine; 5 mC and 6mA, respectively), as well as modifications to histone
(e.g., acetylation of histone tails; Ac) to impact gene expression. Generally, methyla-
tion of DNA decreases gene expression by tightening up chromatin making it inacces-
sible to transcription factors; whereas acetylation of histones changes the charge of
histone–DNA interactions, loosening chromatin to allow DNA more assessable to
transcription factors. These epigenetic modifications impacting gene expression
can last hours, months, years, or be somewhat permanent. (B) Adversity creates
genetic diversity. Cartoon depicting how adverse events can epigenetically modify
chromatin, resulting in the activation and mobilization of the retrotransposable ele-
ment, LINE 1. Once LINE 1 becomes active, it results in transcription of LINE 1 RNA,
which produces critical proteins that aid its insertion back into the genome some-
place else. These insertions result in increased genetic copy number of LINE 1
throughout the genome disrupting and altering gene expression in somewhat perma-
nent ways impacting mental health and behavior. (C) Relatively stable polygenic risk
scores (PRSs). This figure depicts how the individual variations in gene sequences are
relatively stable, that is, not generally altered by changes in social or other environ-
mental events even though health and behavioral consequences can be observed at
individual or population levels because of modifications to the epigenome.
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differences in epigenetic mechanisms may underlie observed
gender differences in prevalence, age of onset, and course of
disorders such as schizophrenia and depression. PRS predic-
tion may remain useful at the population level yet be unhelpful
for assisting individuals in making predictions and prognoses.
Below we use the example of schizophrenia, an exemplar of an
epigenetic disorder (Gottesman, 1991; Gottesman, Shields, &
Hanson, 1982).

Schizophrenia is a genetically mediated neurodevelopmental
disorder characterized by etiological and phenomenological
heterogeneity (Gooding, 2022; Tandon, Nasrallah, & Keshavan,
2009). Changes in LINE 1 DNA copy number have been implicated
in schizophrenia (Bedrosian, Quayle, Novaresi, & Gage, 2018;
Doyle et al., 2017; Jahangir, Li, Zhou, Lang, & Wang, 2022; Li
et al., 2018). Studies of offspring of schizophrenia patients (e.g.,
Dworkin, Lewis, Cornblatt, & Erlenmeyer-Kimling, 1994; Glatt,
Stone, Faraone, Seidan, & Tsuang, 2006; Gooding, Zahn-Waxler,
Light, Kestenbaum, & Erlenmeyer-Kimling, 2018; Schiffman
et al., 2004) suggest that impaired social functioning and emotional
withdrawal in mid-childhood are predictors of schizophrenia.
Recall that LINE 1 perturbations are associated with reduced social

play in juvenile rodents. At present, family history (i.e., having a
first-degree relative with schizophrenia) remains a more powerful
predictor than a PRS (Sandstrom, Sahiti, Pavlova, & Uher, 2019).

We also recognize the potential scientific costs of reliance
upon PRSs given the limited ancestral data upon which genome-
wide association studies (GWASs) are based. To date, the majority
of GWASs are based upon populations of European ancestry.
Environmental stressors may affect different ancestral groups dif-
ferentially. The disproportionate representation of European
ancestry groups limits the extent to which findings can be extrap-
olated, as genetic prediction accuracy is substantially lower for
groups of non-European ancestry. Reliance on prediction scores
that are less informative in already underrepresented groups
such as those of African-descent only serves to further health
and healthcare disparities (Martin et al., 2019; Palk et al., 2019;
Torkamani et al., 2018). Furthermore, evidence suggests that
effects of environmental stressors may cause epigenetic changes
that are inherited ancestrally, that is, adverse stimuli may directly
affect the organism, their offspring prenatally, and future genera-
tions through epigenetic modification of the germ line (Auger &
Auger, 2017; Yehuda & Lehrner, 2018; see Fig. 2). If epigenetic

Figure 2. (Gooding and Auger). Intergenerational epigenetic changes impacting mental and physical health. A cartoon depicting how different experiences can
impact the epigenome of an individual but also how these experiences can impact the epigenome of future generations. If the exposed individual (F0) is pregnant,
the developing fetus (F1) is also exposed to the same events. Less considered is that in the developing F1 fetus, the germline (F2) for the subsequence generation is
most likely formed and thereby is also exposed to the same perturbations. Thereby large-scale societal or individual events that impact our behavior are likely to
persist in the epigenome for generations.
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mechanisms are involved in DNA perturbations that occur across
generations, PRSs would be rendered less accurate.

In summary, we agree with Burt’s conclusion that PRSs do not
add much to our understanding of behavior in a social context.
Although PRSs have some utility on a population level for pre-
dicting some health risks, we assert that reliance upon biomark-
ers, which can be accurately measured and reassessed following
intervention, would be a more prudent guide for clinical, per-
sonal, or family decision making.
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Abstract

Burt’s target article oddly misses the important intellectual con-
tribution of sociogenomics to our understanding of genetic evo-
lution in contemporary human populations. Although social
scientists’ immediate research agendas are often not evolutionary
in nature, I call for a better appreciation of the role of socioge-
nomics in answering important evolutionary questions.

“Sociogenomics” has recently become a “buzzword” in the social
sciences that traditionally ignored the contribution of genetic fac-
tors in human behavior and social phenomena. As Burt noted,
there have been prominent proposals to incorporate genomic
methods into social scientists’ toolkit and better appreciate the
insights generated by genetic data (Mills & Tropf, 2020).
Although I am sympathetic to Burt’s call for more caution in
including genetic considerations in social science research,
I argue that Burt ignores one important aspect to which
genetic data may greatly and uniquely contribute, and that is
the study of genetic evolution in contemporary societies (I am dis-
heartened that Burt’s article does not mention “evolution” a single
time).

It may be worth pointing out that the term “sociogenomics”
was first proposed in evolutionary biology where researchers
were deeply concerned with how the genetic basis of social behav-
ior affects evolution (Robinson, 1999; Robinson, Grozinger, &
Whitfield, 2005). Of course, sociologists’ focus on contemporary
social issues often makes genetic evolution, which could take con-
siderable time, seem irrelevant, but this impression is false. In fact,
natural selection is very much still operating in contemporary
human populations (Milot et al., 2011; Nettle & Pollet, 2008;
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Stearns, Byars, Govindaraju, & Ewbank, 2010), and some of the
most influential papers on the sociogenomics of educational
attainment (e.g., Beauchamp, 2016; Kong et al., 2017) are very
explicit in the use of polygenic scores to understand natural selec-
tion in contemporary human populations. Beauchamp (2016), for
example, shows that natural selection has been slowly favoring
lower educational attainment among individuals of European
ancestry in a representative US sample. Kong et al. (2017) present
similar findings in a large Icelandic sample. These findings make
perfect sense given the robust negative association between fertil-
ity and educational attainment (Ní Bhrolcháin & Beaujouan,
2012; Soares, 2005): The fact that individuals with higher
educational attainment tend to produce fewer children means
that the genetic component will decline as long as the heritability
is not exhausted (though this association is sometimes mediated
by socioeconomic status; see Hugh-Jones & Abdellaoui, 2022).
Empirical data in the form of heritability estimates and
polygenic scores thus nicely confirm our intuition and give us a
sense of the rate of natural selection (regarding the genetic
component) for specific traits. As such, sociogenomics is no
different in principle from nonsocial genomics which has made
tremendous progress in understanding how our physical and
physiological traits have responded to natural selection (Guo
et al., 2018).

In general, knowing the genetic architecture of a trait (includ-
ing psychological and behavioral ones) that is significantly associ-
ated with fertility is indispensable for understanding how various
evolutionary forces may act on the trait, the potential genetic
response, and how the phenotypic expression of the trait may
change in the future. In this respect, empirical studies in socioge-
nomics could offer crucial guidance for theoretical and simulation
models. Inspired by Beauchamp and Kong et al.’s work, I have
modeled the on-going natural selection of educational attainment
in contemporary societies where I show that depending on how
the trait is determined by genetics and environment, we may
expect rather different short-term evolutionary trajectories of
both the genotype and phenotype (Hong, 2020). This type of
work is necessarily provocative in the current socio-political cli-
mate, but I suggest that the genetic and cultural evolution of
human behavior are both meaningful and worthy scientific
endeavors, and the fact that psychological and behavioral traits
are the result of complex interactions between genes and environ-
ment should not scare researchers away; rather, in the age of drastic
cultural change and demographic shift (Colleran, 2016; Jensen &
Levin, 2007), it is more pressing than ever to leverage insights
from different disciplines to understand how fertility is associated
with various traits as well as the genetic and cultural consequences,
and social scientists and geneticists alike should better appreciate
the value of GWASs and polygenic scores in answering important
evolutionary questions.
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Abstract

Influences on social traits involve a tangled interplay of genetic,
social, and environmental factors. Moreover, there is increasing
awareness that gene–environment correlations are real and
potentially measurable. Such gene–environment correlations
can mislead if they are uncontrolled and genetic associations
are interpreted as being purely because of direct genetic effects.
This complexity is cause for more and better investigation, not a
reason to refrain from researching one of the potentially impor-
tant factors (genetics) influencing trait variation.
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Burt casts doubt on the utility of polygenic scores (PGSs) in social
science research. I applaud her attempt to avoid ad hominem
attacks and straw man arguments. Although she largely succeeds
at the former, I argue below that she sometimes fails at the latter.
And although many of the limitations she describes are valid, her
conclusion – that these represent fatal flaws in the use of PGSs in
social science research – is not.

Burt begins and ends her paper by drawing an analogy
between the excitement previously generated by the candidate
gene approach and that surrounding the use of PGSs in social
and behavioral genetics research. I do not believe this analogy
holds. The candidate gene era laid bare the fallibility of the scien-
tific process as currently practiced: It is likely that the many thou-
sands of positive candidate gene findings on psychiatric and
behavioral traits reported in the literature are predominated by
false positives (Border et al., 2019). However, research findings
on PGSs are very different. PGS findings are largely replicable
and PGSs estimate true quantities. The issue at hand is how
PGSs should be used and how their results should be interpreted.
This is a much different and much more interesting place to be.

A core problem with Burt’s critique of PGSs is that she mis-
construes the state of thinking in the field, and then proceeds to
argue against her own misconstruction. For example, what Burt
calls “downward causation” refers to the context dependence of
genetic associations, which, she argues, makes genetic associations
for social behaviors “unavoidably confounded.” Yet no behavioral
geneticist (I hope) believes that genetic effects exist in a vacuum,
independent from any potential environmental context. Alleles
that influence smoking may often have different effects depending
on public policy and availability of tobacco, and alleles that influ-
ence skin pigmentation probably have different influences on
vitamin D sufficiency in societies that differ in average sun expo-
sure, because of clothing or climate. This does not make these
genetic effects “artificial” – it simply means they are mediated
by environmental factors – nor does it make them “unavoidably
confounded” – mediation and confounding are conceptually dis-
tinct. Such mediation makes PGSs more, not less, interesting, and
would reduce enthusiasm for studying PGSs only if one expects
that “true” genetic effects should be invariant across context.
(Whether genetic effects differ across extant environmental differ-
ences is, of course, an empirical question.)

Similarly, Burt points out that simplifying assumptions made
in genome-wide association studies (GWASs) (e.g., that single-
nucleotide polymorphisms [SNPs] have only additive effects) or
in construction of some PGSs (e.g., that all SNPs are causal) are
wrong, or that the approach (e.g., only estimating effects at com-
mon variants) ignores important information. She uses these
observations to imply that these approaches are therefore naïve
or produce untrustworthy results. However, models are not
meant mirror reality – to be so would not only be impossible
but would render them incomprehensible. Models intentionally
simplify to be understandable and/or to allow parameter estima-
tion. Contrary to Burt’s black-or-white thinking on this, at issue is
the degree to which results are biased and whether this bias mat-
ters with respect to the question being investigated. It is well
understood that PGSs underestimate total trait heritability, mostly
because of the finite sizes of GWAS discovery samples (Wray
et al., 2013). Depending on the question at hand, the underesti-
mation may often be irrelevant (e.g., a hypothesis test of whether
a depression PGS predictive ability is moderated by stressful life
events; Colodro-Conde et al., 2018) or be corrected for in the
model (e.g., using structural equation modeling on PGSs within

families to estimate parental influences; Balbona, Kim, & Keller,
2021). The imperfect predictive ability of PGSs has no necessary
relationship to their utility.

More centrally, Burt argues that PGSs of social traits are likely
to be biased because of indirect genetic effects (e.g., passive gene–
environment correlation or assortative mating) or because of con-
founding with environmental differences (e.g., as a result of
uncontrolled population stratification). This arguably may not
matter much if the goal of the PGS is purely to predict (Plomin
& von Stumm, 2022), but it certainly matters if the goal is expla-
nation. Again, however, this is problematic only to the extent that
(a) the confounding effects exist and have not been corrected
(which will inevitably occur to some degree, depending on the
trait and design), and (b) that the results are interpreted as
being solely because of direct genetic influences. It should be
noted that the issues Burt raises regarding the interpretation of
PGS results apply equally to the interpretation of GWAS effect
sizes, SNP-heritability, and SNP-correlation estimates. So should
these approaches be used “sparingly” when studying social or
behavioral outcomes, as Burt argues? I think not. Many of the
interpretational issues Burt raises are real, but they are inherent
to the topics of study. Understanding the causes of individual dif-
ferences in, say, educational attainment is complicated business,
and must involve a tangled interplay of genetic, social, and envi-
ronmental factors, all mediated through multiple different chan-
nels, but this is cause for more and better investigation, not a
reason to refrain from researching one of the potentially impor-
tant factors (genetics) influencing educational attainment.

Burt has identified several core issues regarding the difficulty
in interpreting molecular genetic estimates, but these are neither
unique to PGSs nor to social/behavioral traits. How should the
field move forward in light of these issues? In agreement with
Burt, there should be greater care in interpreting and describing
PGS results, for example, as the relationship between a trait and
“PGS estimates” rather than “genetic propensity.” There is
increasing awareness in the field that gene–environment correla-
tions are real and can mislead if interpreted as being purely
because of direct genetic effects – driven largely by findings
from sociogenomics researchers (Abdellaoui, Dolan, Verweij, &
Nivard, 2022; Berg et al., 2019; Howe et al., 2022; Kong et al.,
2018; Young et al., 2018). An alternative tack is to use new designs
and/or data types that allow disambiguation of environmental
and genetic effects. One obvious approach is to oversample
close relatives in future collections of biobank style datasets.
Such within-family estimates may not provide perfect estimates
of direct genetic effects, but they do control for the vast majority
of potentially confounding environmental influences (Howe et al.,
2022).

In summary, I have a much more optimistic view of the future
of PGS research in social science than does Burt, even with its
imperfections and challenges. The challenges make the topic all
the more worthy of careful and innovative investigation.
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Abstract

This commentary expands on Burt’s concept of downward cau-
sation to include any association between genomic variants and
a given outcome that is forged through social practices rather
than biochemical pathways. It proposes the social stratification
of population, through which endogamy over a period of gener-
ations produces allele frequency differences between socioeco-
nomic strata, as a mechanism of downward causation.

In “Challenging the utility of polygenic scores for social science:
Environmental confounding, downward causation, and unknown
biology,” sociologist and criminologist Burt demonstrates that
genome-wide association studies (GWASs) and polygenic scores
(PGSs) for such social outcomes as educational attainment do
not live up to the promises made by their enthusiasts. GWASs
capture only a small portion of potential genetic influences, and
PGSs are irremediably confounded by environmental factors.
One often-overlooked confound is “downward causation,”
which Burt defines as “sociocultural forces that sort and select
individuals based on genetically influenced traits, such as skin
pigmentation and height, into different environments and expo-
sures that influence social outcomes.” Sociocultural sorting and

selection create what Burt describes as “artificial genetic associa-
tions,” or “environmental influences masquerading as genetic
influences in GWAS.” In this commentary, I expand the concept
of downward causation to include any association between geno-
mic variants and a given outcome that is forged through social
practices rather than biochemical pathways. This expanded defini-
tion does not require discrimination or privilege on the basis of
physiological traits; rather, it recognizes that social stratification
produces population stratification, or what we might call the social
stratification of population. Because of space limitations, the argu-
ment is necessarily stylized and speculative, and should be under-
stood as suggestive rather than demonstrative.

Geneticists define population stratification as “the situation
that arises when a study population contains two or more ethnic
or racial subgroups that have different allele frequencies and, just
coincidentally, different levels of a particular phenotype” (Hamer,
2000). Recognizing the possibility that population stratification
can produce spurious associations in GWASs, geneticists usually
limit GWASs to a single ancestry group, European in the case
of educational attainment. However, recent studies have demon-
strated that population stratification also occurs within ancestry
groups (Haworth et al., 2019). Geneticists typically attribute this
population sub-structure to micro-geographic differentials in
allele frequencies. Social scientists, however, should recognize
that population sub-structure may also result from social stratifi-
cation: Systems of hierarchy operating within societies in which
some people or groups have more status, power, and resources
than others.

Although social scientists investigating epigenetics recognize
that the social world can shape cellular processes (Massey et al.,
2018), those using GWASs and PGSs to identify sources of indi-
vidual differences in educational attainment typically assume that
causality operates only in the upward direction: Genetic differ-
ences generate social hierarchy, with status, power, and resources
accruing to those with genomic variants that make them more
capable of success (Harden, 2021). To be sure, an individual’s
DNA is set at birth, and no life experience – short of high levels
of toxic exposure – will change it. On the scale of historical time,
however, decades of sociological research suggest the possibility of
downward causation: That social hierarchy across generations can
shape individual DNA. This is because, in European and
Europe-descended societies, children are typically born into the
same social position occupied by their parents, and a variety of
institutions make mobility difficult. One such institution is
endogamy – within-group marriage – which members of high-
status groups use as a strategy for maintaining social hierarchy
and preserving their position within it (Kalmijn, 1991; van
Leeuwen, Maas, & Miles, 2005). The existence of a tightly
bounded “marriage market” in the highest strata of European
and American societies is so well-established and well-known as
to provide the plot for an entire genre of nineteenth-century nov-
els and such recent television shows as Bridgerton and The Gilded
Age. Through several generations of endogamy, social stratifica-
tion likely also contributed to the development of population sub-
structure within European and Europe-descended societies.

In her article, Burt cites the now-classic “chopsticks problem”
as an example of population stratification. An analogue for the
social stratification of population would be the salad-fork problem.
A GWAS conducted 100 years ago for the number of forks used
per meal, even if limited to individuals of European ancestry,
would likely find hits because the social groups that used the
most forks per meal as a symbol of their status also had a long
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history of using endogamy to perpetuate their status. Over gener-
ations, founder effects and genetic drift likely produced different
allele frequencies between multiple-fork users and single-fork
users within societies. The same variants that predicted salad-fork
usage 100 years ago might also have predicted the number of ser-
vants employed or the value of property owned. Today, those
same variants probably correlate with educational attainment.
In the United Kingdom, it is well-known that a person’s class
status directly produces or precludes educational opportunities
(Jackson & Marsden, 2012). Access to secondary education is
more equitable in the United States, but the majority of
Americans do not attend college. In the United States, the rate of
high school completion grew substantially around the turn of the
twentieth century. At the same time, children of the elite increas-
ingly attended college in order to maintain and justify their status
(Groeger, 2021). Because of the social stratification of population,
this growing group of college graduates was likely genomically dis-
tinct from those who did not attend. As higher education expanded
further over the course of the twentieth century, college graduates
tended to marry one another and the college admissions process
tended to privilege those whose parents graduated from college
(Domingue, Fletcher, Conley, & Boardman, 2014; Neidhöfer &
Stockhausen, 2019; Schwartz & Mare, 2005), further perpetuating
the downward causation of single-nucleotide polymorphism
(SNP)–education correlations.

Over the past 5 years, researchers in social genomics have real-
ized that GWASs for educational attainment pick up much more
than just direct genetic effects. Scientists have begun to use the
term “dynastic effects” to refer to the correlation between a
parent’s genotype and a child’s phenotype (Morris, Davies,
Hemani, & Smith, 2020). This term, however, remains under-
theorized and underexplored, and is often assumed to describe
the direct genetic effect of the parents’ genotypes on their parent-
ing (Brumpton et al., 2020). The concept of social stratification of
population, however, suggests that the PGS for educational attain-
ment includes dynastic effects in the original sense of the term
“dynasty” – a high-status lineage – reflecting the social capital
marshaled by an individual’s extended family.

Competing interest. None.
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Abstract

Polygenic scores cannot elucidate the mechanisms that produce
behavioral phenotypes (including “intelligence”). Therefore, they
are unlikely to yield helpful interventions. Moreover, they are
poor predictors of individuals’ developmental outcomes. Burt’s
critique is well-supported by the details of molecular biology.
Specifically, experiences affect epigenetic factors that influence
phenotypes via how the genome functions, a fact that lends sup-
port to Burt’s conclusions.

Polygenic scores (PGSs) have excited biomedical researchers for
years, but they have recently received increasing attention from
social scientists interested in normal psychological variation
(Harden, 2021). PGSs have been touted as a way to study “the
causes and consequences” of even complex behavioral phenotypes
like intelligence (Plomin & von Stumm, 2018, p. 148). However,
their utility remains as controversial as that of the genome-wide
association studies (GWASs) from which they derive (Charney,
2022). Burt’s target article provides a potentially devastating cri-
tique of the value of these scores.

Burt correctly notes that all serious scientists accept that
genetic differences “influence – in some complex, context-
dependent way – developmental differences.” Genetic variation
is associated with phenotypic variation in part because DNA is
used in the causal chain of events that builds phenotypes. Even
so, this acknowledgment does not mean PGSs can offer useful
predictions about individual outcomes, let alone causal insights
about how to helpfully affect developmental processes.

AsTurkheimer (2012) has observed, the statistical tools employed
bysocial scientistsworkingwithgenomic datahave “not succeeded in
discriminating actual causal processes from spurious correlations
and non-causal associations” (p. 51). As a result, genomic social sci-
ence can be “causally refractory… no one is about to use polygenic
scores to figure out why children excel or fail in school or become
addicted to drugs” (Turkheimer, 2019, p. 46). Understanding causa-
tion inways that permit beneficial intervention requires experimental
studies that are entirely unlike the correlational research that gener-
ates PGSs.

In fact, even if a researcher’s goal is to predict rather than to
elucidate causation, the correlations that yield many PGSs
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cannot be trusted. For example, the enormity of the data set
used by Lee et al. (2018) – which involved a sample of 1.1 mil-
lion individuals and produced one of the most highly regarded
social science PGSs to date – ensured that some arbitrary corre-
lations would inevitably appear to be “significant” (see
Richardson & Jones [2019] for this argument). Consequently,
it is unsurprising that Morris, Davies, and Smith (2020) found
educational-outcome PGSs to have predictive accuracy that is
“poor…at the individual level [and] … . inferior to [that associ-
ated with] parental socioeconomic factors. [These scores] failed
to accurately predict later achievement…[and] currently have
limited use for accurately predicting individual educational per-
formance” (p. 1). Likewise, Harden and Koellinger (2020) wrote
“even the best currently available PGS for behavioural outcomes
cannot make accurate predictions for the outcome of any spe-
cific individual” (p. 570).

Clearly, PGSs cannot be appropriately used for predicting indi-
vidual outcomes. But making predictions is the best that correla-
tional studies like GWASs can offer; because correlation does not
indicate causation, GWASs cannot deliver effective treatments for
behavioral challenges, either. If PGSs cannot be used to accurately
predict individual outcomes and if the GWAS that gives rise to
them cannot inspire effective interventions, these approaches
should be understood to be of negligible value.

If the intended purpose of PGSs is to reveal something about
individuals’ “genetic propensities” (Harden et al., 2020, pp. 1, 2,
5), this negative assessment of their value does not merely reflect
an immature state of the art. Instead, it is unlikely that PGSs will
ever be of much value. This is because DNA segments are used
differently in different contexts (Lickliter, 2017; Moore, 2001;
Noble, 2006, 2012; Pan, Shai, Lee, Frey, & Blencowe, 2008;
Waddington, 1957, 1968). As all phenotypes can be influenced
by variable non-genetic factors, there can be no absolute “genetic
propensity” for any phenotype, as a “propensity” in one context
could very well not be a “propensity” in another context.
Ultimately, the notion of “genetic potential” is unfounded, because
genetic factors specify a norm of reaction, not a restricted range of
reaction (Gottlieb, 1995); because phenotypic outcomes are not
constrained by genomes that operate in context-independent
ways, it will always be impossible to identify context-independent
“genetic propensities.” Remember, our developmental contexts
are not fixed – after all, humans throughout history have continually
invented new modes of education that have exposed children to
never-before-experienced contexts – so a genotype that contributes
to a below average phenotype in many contexts could nonetheless
contribute to an above average phenotype in other not-yet-explored
contexts (Lewontin, 2000). As Burt stated, “the context-specificity
of PGSs… precludes their use as ‘genetic potential’ in general.” I
agree: Future refinement of PGSs will still not allow them to
accurately characterize individuals’ “genetic propensities.”

Contexts are crucial in phenotypic development in part
because they affect the epigenetic states of genomes, thereby alter-
ing how those genomes work (Moore, 2017). Burt’s article draws
appropriately critical conclusions regarding PGSs, but it omits
mention of this important phenomenon. Although one’s
genetic sequence is thought to remain unchanged across the
lifespan – which PGS proponents consider to be a strength of
these scores – it is now clear that identical genomes can function
differently depending on the experiential histories of the individ-
ual twins containing those genomes (Fraga et al., 2005; Morgan,
Sutherland, Martin, & Whitelaw, 1999). As a result, sequence
data alone cannot lead to accurate predictions about

developmental outcomes; the mere presence, in a cell, of a
DNA segment with a particular sequence will have no functional
consequences if that segment has been dramatically down-
regulated via epigenetic mechanisms such as DNA methylation
or histone modification (Moore, 2013, 2015, 2016). And because
experiential factors like social status (Tung et al., 2012), diet
(Morgan et al., 1999), and maternal deprivation (Provencal
et al., 2012), for example, have been experimentally shown to epi-
genetically change genomic activity and phenotypic outcomes in
mammals, the idea that evaluating a genome at conception could
provide accurate insights into much-later-developing phenotypes
should be recognized as fundamentally flawed.

Twenty-first century instantiations of behavioral genetics –
including GWASs and the PGSs they generate – remain targets
of valid criticism (Charney, 2022; Richardson & Jones, 2019;
Turkheimer, 2012). Given molecular biologists’ understanding
that DNA, epigenetic processes, and contextual factors work
together in interdependent ways to produce phenotypes that are
in no way pre-specified in the genome, these latest attempts to
predict behavioral outcomes from DNA sequence information
alone are bound to fail.
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Abstract

We sympathize with many of the points Burt makes in challeng-
ing the value of genetics to advance our understanding of social
science. Here, we discuss how recent reflections on epistemic
validity in the behavioral sciences can further contribute to a
reappraisal of the role of sociogenomics to explain and predict
human traits, aptitudes, and achievement.

In a detailed and compelling synthesis, Burt questions the validity
of genomics to gain knowledge about social science issues. Burt’s
cautionary note is a much-needed reminder of the limitations of
sociogenomics, a field that has seen a fair amount of hype in the
last few years. Here, we wish to comment on a central argument
Burt makes – that because they are already well-measured behav-
iorally, constructs like academic achievement or cognitive apti-
tudes have little to benefit from the tools of sociogenomics. In
our view, this argument potentially disregards the serious chal-
lenges psychologists face in measuring these constructs, no matter
how well-defined they may seem behaviorally.

Psychological constructs are not pure, assumption-free opera-
tionalizations of the underlying traits or abilities they are meant to
represent. Rather, the way constructs are validated and refined
over time follows a process whereby convergent validity dictates
the empirical instantiations – in the form of tests, tasks, or mea-
sures – that are hypothesized to probe the same constructs, and
those that in contrast are understood to tap different ones. As a
result, constructs are heavily influenced by initial operationaliza-
tions, in a process that is biased toward convergence at the risk
of failing to explore valid – or sometimes better – alternatives
(Moreau & Wiebels, 2022).

In this context, we should be cautious about uncritically
ascribing validity to psychological constructs on the basis of
psychometric convergence or divergence with one another.
No matter how objective they might seem, behaviorally assessed
constructs remain subjective and far from assumption-free. It
does not follow that genomics is necessarily the answer to
help refine our understanding of psychological constructs, but
we should refrain from thinking that the measurement of con-
structs in the behavioral sciences is as good as it can be, or that
only improvements in psychometric properties will lead to bet-
ter, more valid assessments. Sociogenomics may or may not be
the solution, but epistemic validity remains a challenge in the
field.

Not all fields to which genomic tools are applied suffer equally
from this limitation. For example, this bias is arguably less prob-
lematic when genomics is applied to medicine, where it has led to
major advances in our understanding of cancer, heritable disor-
ders, or infectious disease outbreaks (McCarthy, McLeod, &
Ginsburg, 2013). Success in the clinical domain remains highly
heterogeneous, however, with most significant advances having
been achieved for conditions within which constructs of interest
(e.g., diagnosis) are well defined and fairly objective, often because
they are based on the presence or absence of biological features. In
contexts where diagnosis is more subjective and constructs of
interest less well defined – for example with psychiatric disorders
diagnosed primarily from the presence of behaviors or related
symptoms – genomic-based advances have been less prominent,
for the same reasons they have been of somewhat limited benefit
in psychology thus far.

So what could sociogenomics contribute to our understanding
of aptitudes and achievement that current behavioral measures do
not? The potential is wide-ranging and multifaceted, but one
application that stands out is with respect to behavioral interven-
tions designed to improve cognitive performance or abilities
(Madole & Harden, 2023). Recent attempts to improve cognitive
abilities have suffered from major setbacks, with strong initial
claims failing to stand up to scrutiny (Moreau, 2022; Moreau,
Macnamara, & Hambrick, 2019; Sala & Gobet, 2019). One of
the main issues that has been identified is the lack of mechanistic
understanding for the behavioral dynamics elicited by interven-
tions, especially given the important heterogeneity in individual
responses (Moreau, 2021). Some individuals show promising
improvements post-interventions, whereas others do not appear
to benefit at all, and current models provide little insight into
the determinants of individual differences (Moreau, 2022).
Together with efforts to improve and refine measurement in the
context of interventions (Moreau & Wiebels, 2021), the field of
genomics has the potential to shed light on the complex interac-
tions at play to determine – and eventually predict – individual
responses in a personalized manner. To be successful, such behav-
ioral interventions are likely to require precision regimens,
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whereby individual characteristics – potentially including geno-
mic information – are leveraged to establish responder profiles
and thereby determine the optimal blend for a particular person
at a particular time.

Despite the potential for sociogenomics in this space, tangi-
ble progress remains dependent on addressing current limita-
tions in the use of polygenic scores, especially issues such as
confounding and stratification. Although these limitations
might be alleviated in the context of interventions because of
the controlled nature of these designs, they generally remain
issues that the field of sociogenomics will need to grapple
with. In addition, when genetic data are incorporated into inter-
vention designs and individual response predictions, researchers
should explicitly specify in what ways they can lead to qualitative
improvements, and the potential downsides. Polygenic scores
remain probabilistic, and as such include wide individual differ-
ences in the target trait at all levels (Plomin, DeFries, Knopik, &
Neiderhiser, 2016); fair and accurate assessments of what socio-
genomics can and cannot contribute at this time are to the ben-
efit of all.

Finally, efforts to incorporate sociogenomics within behavioral
interventions should not divert from attempts to address the
structural scarcity and inequality inherent to systems and institu-
tions. In particular, the notion that success is primarily driven by
aptitudes or abilities that can be targeted by interventions has
been shown to be problematic or even dangerous in some
instances (Moreau, 2022; Nathan, 2017). When unchallenged,
this view can prevent the implementation of institutional reforms
that are known to effectively reduce systemic inequalities
(Furnham, 2003). Addressing inequalities is an endeavor that
often requires collective action on multiple fronts, and gaining a
better understanding of individual differences via genomics is,
albeit promising, only one of the many facets that can be lever-
aged to make progress in this direction.
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Abstract

Burt’s critique of using polygenic scores in social science con-
flates the “scientific costs” of sociogenomics with “sociopolitical
and ethical” concerns. Furthermore, she paradoxically enlists
recent advances in controlling for environmental confounding
to argue such confounding is scientifically “intractable.”
Disinterested social scientists should support ongoing efforts
to improve this technology rather than obstructing progress
and excusing genetically confounded research.

Burt promises her readers a dispassionate essay challenging the
“value of polygenic scores [(PGS)]… for social science.” She states
she will do this “not by questioning the ethical or sociopolitical
implications of this work…but by scrutinizing the science,” and
on this basis will conclude that the “scientific costs outweigh
[the] meager benefits.” But the “scientific costs” she enumerates
– “obscuring environmental influences, perpetuating a flawed
concept of genetic potential…and wasting resources” – are not
scientific critiques at all but precisely the “sociopolitical and eth-
ical concerns” she disavows.

Were this a disinterested critique focused on scientific accu-
racy, Burt would be as concerned about exaggerating the effects
of “structural disadvantages and cultural influences” as “obscur-
ing” them. Instead, she admits to “holding sociogenomic methods
to higher standards than standard social science methodologies,”
excusing this double-standard on the basis of the “social risks” she
pledged to leave aside. Similarly, she argues the “scientific costs”
of “promoting PGS as ‘genetic potential’…include…promoting
the individualization of social problems.” These are ideological
objections, not scientific ones.

Burt cautions against “wasting finite resources searching for
‘genes for educational attainment’” – that is, by performing
genome-wide association studies (GWASs) that identify genetic
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variants associated with individual differences in social science
outcomes. But a substantial share of the funding for GWASs
comes from private and philanthropic sources who disagree
with Burt’s assessment. As for the remainder, what could be
more “sociopolitical” than the question of how taxpayer dollars
should be directed by the government and its agencies? Besides,
this puts sociogenomics in a Catch-22: Should we fund research
to address some of the limitations of PGSs that Burt raises in
her essay, or should we give up in despair? Burt counsels despair:
“the production of environmentally confounded genetic associa-
tions with complex social outcomes is not simply a tractable
empirical problem to be addressed with more sophisticated meth-
ods. Rather, such confounding is inevitable.”

However, Burt’s four substantive criticisms of using PGSs for
behavioral outcomes – “relatedness confounding, downward cau-
sation, limited coverage of genetic influences, and context-
specificity” – are scientifically tractable issues that have substan-
tially been addressed. Within-family studies that use parent or sib-
ling PGS as control variables largely address issues of population
stratification and familial confounding, as Burt essentially
acknowledges. Furthermore, constructing PGSs from within-
family GWASs can remove confounding biases from the PGS.
In addition, if the genetic variants associated with behavioral out-
comes are principally expressed in the brain rather than in the
skin, hair, or musculoskeletal system (e.g., Lee et al., 2018) this
constrains the possibility that reported associations are con-
founded by “downward causation,” that is, by “social selection
on attractiveness, height, weight, [or] colorism.” Conducting
GWASs in large samples with whole-exome or whole-genome
sequencing can increase the fraction of genetic influences covered
by PGSs by capturing the effects of rarer variants and shed light
on the basic biology underlying behavioral differences (Chen
et al., 2022). Finally, extending GWASs to more historically, geo-
graphically, and culturally diverse samples will help to quantify
the effects of different social contexts on the strength and direc-
tion of genetic associations.

The Catch-22 is, however, inescapable: “Even if the problems
with environmental confounding could be solved,” Burt insists,
“the justification for incorporating PGS into social science is lack-
ing.” This is because, according to Burt, we know the answers to
all the important questions already. We don’t need PGSs “to dem-
onstrate that supportive, stimulating parenting is associated with
child educational attainment” because “we can observe and mea-
sure different …background factors and assess how these affect
student progressions through educational systems.” But Burt
blurs the distinction between the language of association and
the language of causation (“affect”). Environmental causation is
precisely what genetically controlled designs help establish in
observational research. And although we might not need PGSs
to recognize “that children who experience childhood disadvan-
tage are not able to fully realize their educational potential,”
they can help us more accurately quantify the extent to which var-
ious environmental disadvantages account for observed differ-
ences in social outcomes and measure how much these effects
differ across contexts and conditions. Burt is keen to emphasize
the context-specificity of genetic and environmental influences
on social outcomes but, as one psychologist forcefully put it,
using this as a pretext for “abandoning quantitative estimates is
practically and theoretically bankrupt” (Rowe, 1994, p. 24).

The upshot of Burt’s critique seems to be that social scientists
can safely ignore genetics so long as they include a boilerplate dis-
claimer that “genetic differences… matter in a complex, context-

sensitive way.” But the extent of genetic confounding is not mys-
terious or unquantifiable. Although Burt is correct that using cur-
rent PGSs to control for genetic influences is partial at best, a
well-established literature going back to the 1970s has used genet-
ically sensitive study designs to investigate social science out-
comes. These not only include conventional twin studies (which
consistently show genetic differences account for a substantial
share of the observed individual differences in social science out-
comes, e.g., Frisell, Pawitan, Långström, & Lichtenstein, 2012;
Hyytinen, Ilmakunnas, Johansson, & Toivanen, 2019;
Silventoinen et al., 2020) but also a panoply of other genetically
sensitive designs, such as adoption designs, extended twin
designs, sibling difference designs, and more (Baier, Eilertsen,
Ystrom, Zambrana, & Lyngstad, 2022; Björklund & Salvanes,
2011; Holmlund, Lindahl, & Plug, 2011; Sariaslan et al., 2021;
Wolfram & Morris, 2022). These various designs show substan-
tially attenuated statistical associations between predictor
and outcome after controlling for genetic confounds and some-
times remove the original association altogether. Burt insists
her article is a broadside against “the scientific value of adding
genetics to social science” generally, and not just an argument
“about the value of PGS for social science,” yet she neglects to
explain why these older, kinship-based designs can be safely
ignored.

Burt is correct that social scientists should include appropriate
caveats when incorporating PGSs into their work and take efforts
to control for environmental confounding. But for the reasons
outlined above, they should also support ongoing scientific
endeavors to improve this technology. They should not – as
Burt does – use tractable limitations of research incorporating
PGSs as a pretext to obstruct progress or to excuse genetic con-
founding in social science research.
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Abstract

Genetic studies in the social sciences could be augmented
through the additional consideration of functional (transcrip-
tome, methylome, metabolome) and/or multimodal genetic
data when attempting to understand the genetics of social phe-
nomena. Understanding the biological pathways linking genetics
and the environment will allow scientists to better evaluate the
functional importance of polygenic scores.

The article by Burt is timely in that it raises the importance of
needing “dialogue between social and behavioral scientists about
the scientific value of adding genetics to social science at the cur-
rent state of knowledge.” We agree with many of the issues raised
and the complications of incorporating polygenic scores (PGSs)
and genetics into models without fully understanding “the scien-
tific costs.” It is clear that PGSs need to be controlled for “popu-
lation stratification, familial confounding, and downward
(socio-environmental) causation” and the exposome of an indi-
vidual but treating these solely as environmental confounders
neglects the important impact of biology.

For example, though exposure to adversity at a particular time-
point increases the risk for emotional and behavioral symptoms
and stress-related disorders, not everyone exposed develops
these symptoms. Individuals respond to environments in different

ways, and we now have methods which can provide insight into
this previously “unknown biology.” Although we agree that
PGSs might not capture this biological risk across different studies
because of many of the important points raised in this article, it
does not mean that it is not valuable. PGSs and how they relate
to social science need to be presented with the appropriate limi-
tations or with additional, more functional assessments of genetic
context.

Genetic studies in the social sciences could be augmented
through the additional consideration of functional (transcrip-
tome, methylome, metabolome) and/or multimodal genetic data
when attempting to understand the genetics of social phenomena.
PGSs should be embedded within multiple omics approaches,
which could be further augmented with specific measures of
physiological effectors such as functional neuroimaging or endo-
crine assays. Understanding the biological pathways potentially
linking genetics and the environment will allow scientists to better
evaluate the functional importance of PGSs.

Methylome studies have identified changes in DNA methyla-
tion as markers of overall brain health (Gadd et al., 2022).
More direct epigenetic research has demonstrated links between
DNA methylation and educational attainment, indicating that
the methylome of lower-educated people was suggestive of expo-
sure to pollution (van Dongen et al., 2018). DNA methylation has
also been linked to chronic cannabis use with associated changes
in cognitive performance (Wiedmann et al., 2022). Additional
inclusion and considering of epigenetic data in PGS studies
may enhance our understanding of how the environment, espe-
cially during early life, impacts our genome to induce lasting
effects, allowing us to progress from environmental confounding
to environmental mediation and/or modulation.

Transcriptome data have provided valuable insight into how
genes play a role in complex traits and disease (Hatcher, Relton,
Gaunt, & Richardson, 2019). Neuroimaging-based research has
yielded associations between transcriptome-wide genes for brain
structures and complex traits in different domains (Zhao et al.,
2021). Cortical transcriptome changes have been specifically
linked with educational attainment (Bartrés-Faz et al., 2019).
Combining transcriptome data with PGSs can provide a clearer
picture of which specific genes are having the most significant
effects on social factors at discrete points in time. However,
there are substantial challenges with transcriptome data because
of tissue and temporally specific gene expression that limit its
application.

The metabolome has been a topic of expanding interest in how
genes affect change. Studies examining the metabolome have
highlighted social-to-biological processes resulting in heath
inequalities (Karimi et al., 2019). Using metabolic profiles, other
investigations have revealed that social and economic factors
have measurable impact on human physiology (Robinson et al.,
2021). Metabolic impairment has been associated with the apoli-
poprotein E4 and insulin resistance in type 2 diabetes, which is
often mediated by socioeconomic factors and is a major risk fac-
tor for late onset of Alzheimer’s disease. These results could guide
development of socioeconomic-based preventive measures and
therapies for cognitive decline (Johnson et al., 2017). Similar to
transcriptome data, metabolome information could provide cru-
cial temporally specific functional insight into how environmental
and social factors interact with the genome to induce change.

There is a critical need to go beyond simple PGSs and institute
more comprehensive social and genetic data collection (which is
becoming more readily available) to strengthen associations and
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improve causal conclusions on how genes and environment inter-
act to affect behavior. As has been observed with both genome-
and brain-wide association studies, bigger is not always better,
and an increased focus on smaller, more thoroughly characterized
populations with functional genetic data will lead to stronger con-
clusions. A critical factor that needs to be considered in all studies
is the growing awareness of the plasticity of genetic mechanisms
of behavior, particularly the role of epigenetics.

The line between what was traditionally seen as genetic and
environmental effects is increasingly blurred. Rather than envi-
ronmental confounding, these may be epigenetic effects, and the
discussion of PGSs in social science would be informed by a
greater understanding of and appreciation for animal studies
of behavioral genetics, where the bar for causal conclusions
may be much higher. This is an especially important consider-
ation in discussions of using PGSs, or any other type of genetic
data, to control for genetic effects and focus on environmental
factors. This is a problematic notion at the very least. Even if
other types of genetic data are beyond the primary focus of
the target article, we argue that consideration of functional
genetic outputs is critical for future genetic studies in the social
sciences, whether or not these data are collected in a particular
PGS study.
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Abstract

The critique of the genetics of complex social outcomes is partly
well-founded, insofar as social outcomes sometimes have unreli-
able relations with cognitive traits. But the correct conclusion is
not to dismiss the entire field altogether. Rather, the implication
is to redirect geneticists’ attention to the stable cognitive pheno-
types that are natural candidates for genetic analysis.

Burt’s point that heritability estimates and polygenic scores are
context- and population-dependent is well-taken and widely
appreciated. However, it should not be overstated as implying
that all genetic analyses are irremediably socially contingent, vary-
ing widely depending on period, culture, and context, thereby
shunning any hope of identifying stable, meaningful genetic
associations.

One can of course tell stories about education being something
very different in a remote hunter–gather society or in the distant
future, but this should not obscure the fact that the notion of edu-
cational achievement in the twenty-first century that is the current
focus of genetic analysis is a well-defined and circumscribed con-
cept that is essentially the same all over the world except for some
extremely isolated cultures where schools don’t exist. Even if it is
true that the personality traits that were likely to attract a young
woman to higher education in the 1870s and in the 2020s
United States may differ to some extent, the cognitive traits
(detailed further below) that would have been important for her
to succeed at university in 1870 are very likely to be the same
as those important in 2020, and they are also the same in the
United States, in Saudi Arabia, or in Thailand, thus providing a
stable basis for the genetic analysis of educational achievement.
When some of these factors differ between countries or periods,
this should not be cause for despair or rejection of genetic
approaches, as the issue is perfectly empirically tractable: This
should rather be welcomed as an opportunity to describe interest-
ing gene–environment interactions.

Nevertheless, Burt’s critique has the merit of highlighting the
potential gaps between the social outcomes that are currently sub-
jected to genetic analysis, and their cognitive basis. One should
recall that social outcomes such as educational achievement or
income have been genetically studied mainly because they were
conveniently available in very large databases. In every genetics
project, every participant answers one question about their high-
est obtained degree, regardless of the initial goal of the research.
Thus, pooling across many projects has enabled researchers to
gather the millions of participants required to compute reliable
educational achievement polygenic scores (Okbay et al., 2022).

But to the cognitive scientist, this may seem a temporary dis-
traction: These complex social outcomes are not phenotypes that
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are under direct natural selection and that should naturally be the
focus of genetic analysis. The phenotypes of interest for genetic
analysis are situated at the cognitive level, where stable traits
can be defined and can be the target of selection. For educational
achievement, these are specific cognitive abilities: Not just general
intelligence (which is itself a complex emerging property; Ramus,
2017), but its underlying components: Verbal ability, abstract rea-
soning, working memory, and also more specific cognitive skills
such as phonological awareness (which contributes to reading
acquisition) or number sense. One should not forget the popular
but ill-named “noncognitive skills” (Ramus, 2022) such as consci-
entiousness, self-control, intrinsic motivation, grit, which do
explain part of the educational achievement variance and which
are also genetically influenced (Demange et al., 2021). These traits
reliably underlie educational achievement regardless of time, cul-
ture, and gender of the learner, and there is every reason to think
that they have a stable neural and genetic basis, which may be to a
large extent similar in all populations.

Similarly, the answer to the question “have you ever had sex
with someone of the same sex? Yes/No” has never been a valid
phenotype for genetic analysis, but it is the one that was available
for UK Biobank and 23andMe participants (Ganna et al., 2019).
These authors are of course well aware that the stable cognitive
trait of interest is sexual orientation, that it is continuous (e.g.,
as on the Kinsey scale), and that its relationship with actual sexual
behaviour is imperfect, subject to social norms, to opportunities,
and to many life circumstances. Genome-wide research on the
genetics of sexual orientation will have to wait until an appropri-
ate scale is rated by a sufficiently large number of participants.

An additional difficulty that may be less widely appreciated is
that the cognitive functions that are under genetic influence are
latent, unobservable variables, that cannot simply be equated
with performance in one behavioural test. This is because any
test, no matter how elementary it seems, inevitably recruits several
cognitive functions. For instance, even the simplest reaction
time test involves not only processing speed but also vision (or
audition, to perceive the signal), sustained attention, language
skills (to understand instructions), and motor skills (to produce
a response). Therefore, there never is a one-to-one mapping
between cognitive functions and behavioural tests. Any cognitive
function can only be inferred by triangulating across several
behavioural tests involving it in different ways.

This implies that research into the genetics of cognitive func-
tions is going to be much more difficult than running a genome-
wide association study (GWAS) on an answer to a single question
or on a single test score. It will require administering well-
designed, comprehensive test batteries to very large populations.

The conclusion is that the critique of the genetics of complex
social outcomes is partly well-founded, insofar as social outcomes
sometimes have unsystematic relations with cognitive traits. But
the correct conclusion is not to dismiss the entire field altogether.
Rather, the implication of this critique is to redirect geneticists’
attention to the stable cognitive phenotypes that are natural can-
didates for genetic analysis. Unfortunately, studying the genetics
of specific cognitive functions will take greater efforts and a longer
time until the necessary test results are collected in sufficiently
large genotyped populations.
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Abstract

This commentary emphasizes two problem areas mentioned by
Burt. First, that within-family designs do not eradicate stratifica-
tion confounds. Second, that the linear/additive model of genetic
causes of form and variation is not supported by recent progress
in molecular biology. It concludes with an appeal for a (biolog-
ically and psychologically) more realistic model of such causes.

Behavior geneticists tend to think that their field is unfairly con-
troversial because of past associations with racism and eugenics.
But there’s more to it than that. Over the history of BG many
scholars have commented on its seeming existence in a parallel
universe, demanding relaxed scientific standards, building castles
in the air with much reliance on “promissory notes,” as Burt puts
it. Regarding BG’s grounding in unlikely assumptions,
Kempthorne (1978, p. 18) asked “How naive can you get?” An
illustration is how variations in cognition, educational attainment
(EA), height, weight, and so on, are considered to be equally
“complex,” with similar causal patterns of form and variation,
as if eons of evolution and gulfs of biological necessity had
never happened.

Another example, of course, is how genome-wide association
studies/polygenic scores (GWASs/PGSs) appeal to vague “pheno-
types,” using poorly validated measures, “surrogates” and “prox-
ies,” inferring causes from mountains of correlations that largely
wash-out over time (Richardson & Norgate, 2015). Noting such
thin evidential gruel Fletcher (2021, p. 256) refers to the “sleights
of hand and folk wisdom from behavioral genetics.” Burt expertly
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exposes such problems in BG’s contemporary search for valida-
tion at the molecular level. This commentary enlarges on two
aspects.

Population stratification within-families

Burt rightly notes that the problem of population stratification
haunts all interpretations of GWASs/PGSs and cannot be easily
eliminated. BG researchers, however, seem to agree with Zaidi
and Mathieson (cited by Burt) that “family-based studies are
immune to stratification,” and present the equivalent of a ran-
domized controlled trial (RCT; Harden, 2021). However, children
are not merely passive vehicles of additive G and E effects. They
actively constructive perceptions of their worlds and creatively
react to them.

Burt (target article, sect. 5.1.2, para. 7) mentions family
dynamics that create “micro-stratification” within families.
However, such dynamics also interact with wider social contexts
to further generate spurious SNP–trait correlations in GWASs/
PGSs. Facial appearance; height; weight; body shape; subclinical
medical conditions such as myopia; hair form; and skin color
(e.g., Hall, 2017), are all subject to positive/negative feedback
from peers and teachers, as well as siblings and parents, acting
to cultural norms. They create unequal psychological effects and
reactions that course through individuals’ school and occupa-
tional careers (Kraft, Kraft, Hagen, & Espeseth, 2022; Wilkinson
& Pickett, 2018). Yet all will involve hundreds or thousands of
SNPs covarying non-causally with psychological traits, and pro-
ducing spurious GWAS/PGS results. They completely confound
the preconditions for an RCT that Harden (2021) and others
recommend.

Genetic causes

Burt says that “no serious scientist can suggest that genetic differ-
ences do not influence – in some complex, context-dependent
way – developmental differences” (target article, sect. 6, para.
6). But we need to be clear that “influence” is not necessarily trac-
table as prediction. Unfortunately, prediction in BG is still dom-
inated by the Galton/Fisher model. Despite acknowledging roles
for the “environment,” “interactions,” and so on, mere attenua-
tion of linear/additive genetic effects is assumed. So we get
genomes described as “blueprints” (Plomin, 2019); or even as
“cookbooks” (Harden, 2021); whereas Madole and Harden
(2023) assert that PGSs reveal an individual’s “genetic propensity
for a trait” (Madole & Harden, 2023; sect. 3.1, para. 4); and that
“the parental genotype causes an increase in their education”
(Madole & Harden, 2023; note 4). Burt (e.g., target article, sect.
6, para. 6) reveals the fallacies, and the dangers, in such logic.

But so do waves of recent research in molecular biology. The
creative, anticipatory dynamics mentioned above, at the socio-
cognitive level, have evolutionary precursors in learning/cognitive
functions in cells, physiology, brain, and behavior (Lyon, Keijzer,
Arendt, & Levin, 2021; Richardson, 2020; Shapiro, 2020).
Development of form and variation does not start with gene tran-
scription. DNA can do nothing until activated by the organism.
That arises from vast signaling and metabolic networks monitor-
ing the dynamic complexity and changeability of most natural
environments. Their precursors in cytoplasm are inherited with
genes, and their developmental fates are best described as emer-
gent intelligent systems in which statistical patterns predict

impending states by assimilating the covariance structures of
the past and present (Richardson, 2021; Shapiro, 2020).

That fundamental, multi-level, intelligence is seen in the
context-dependent recruitment of transcription factors, cofactors,
enhancers, promoters, and so on (Isbel, Grand, & Schübeler,
2022). Alternative splicing produces a diversity of proteins from
the same gene (Wright, Smith, & Jiggins, 2022). A single gene
can be associated with the development of a variety of structures
and functions (Watanabe et al., 2019). And multiple alternative
pathways to desirable structural/functional endpoints are con-
structed in spite of genetic variation (Biddle, Martinez-Corral,
Wong, & Gunawardena, 2021; Wagner & Wright, 2007).

Not even mutations comprise the random genetic lottery that
Harden (2021) imagines (Monroe et al., 2022). There are also pro-
cesses – what Shapiro calls natural genetic engineering (NGE) –
through which intelligent cells can themselves change genetic
information: “NGE is shorthand to summarize all the biochemical
mechanisms cells have to cut, splice, copy, polymerize and other-
wise manipulate the structure of internal DNA molecules…
Totally novel sequences can result from de novo untemplated
polymerization or reverse transcription of processed RNA mole-
cules” (Shapiro, 2013, p. 287).

In other words, genes are best described as intermediary
resource-providers for the organism as a whole: Servants to intel-
ligent systems, not autonomous instructors. With the exception of
relatively rare disorders or single-gene (Mendelian) variations,
there are no independent “effects” of genomes. This is why
Noble (2016) says we’ve had things the wrong way around in
our descriptions of genetic causes. Baverstock (2021) uses the
analogy of genes as the merchants that provide the necessary
materials to build a house, but are neither the architect nor the
builder. He calls for a “Copernican revolution” in our geno-
centric view of living things.

Help or hindrance?

Burt asks if PGSs will ever be useful and urges caution.
Fundamentally, though, it’s the scientific framework – the
Galton/Fisher model of heredity – that is the root of the problem.
It persists, attracts funding and research effort, in spite of the log-
ical, epistemological, and statistical errors described by
Kempthorne (1978) and others, because it affirms prior socioeco-
nomic structures. Until that model is replaced by a more biolog-
ically realistic one it will be more of a hindrance to the
advancement of knowledge than a help.
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Abstract

Burt formulates her critique at a general level of abstraction that
highlights the methodological deficiencies of sociogenomics
without also calling attention to precisely the same deficiencies
in the social science model she seeks to defend against its
encroachments. What might have been a methodological bul-
wark against the excesses of sociogenomics is instead a one-
sided critique that merely renews its charter.

A useful starting point for recognizing the foundational flaws of
Burt’s critique is the fact that her methodological case against
the utility of sociogenomics research rests on a self-refuting thesis
about the environmental confounding of polygenic score (PGS)

associations with complex social traits. If, as Burt correctly argues,
sophisticated statistical methodologies are incapable of distin-
guishing genetic from environmental causes of these traits, on
what authority is she asserting—matter-of-factly, repeatedly, and
without explanation—that “environmental effects masquerade as
genetic influences” in PGS studies? How, then, can Burt know
that the problem isn’t instead that genetic effects masquerade as
environmental influences in the empirical reports of mainstream
social science? By her silence on this question-begging interpreta-
tion, Burt lays claim to the benefit of doubt where the evidence
casts nothing but shadows of it. Those shadows are difficult to
see at first because Burt formulates her critique at a general
level of abstraction that highlights the methodological deficiencies
of sociogenomics without also calling attention to exactly these
same deficiencies in the social science research she seeks to defend
against its encroachments. The key to recognizing these shadows
and their methodological significance lies just beneath the surface
of Burt’s vague observation that a person’s social traits “emerge
from a complex interplay of environmental and genetic influences.”
What Burt doesn’t tell us here is that the human brain is a master-
piece of complex biological design, that the functioning parameters
of its psychological structures and processes are genetically under-
determined, shaped by natural selection pressures to continue
evolving somatically (i.e., non-genetically) across individual life-
spans in response to the adaptive demands and contingencies of
everyday life (Dalton & Bergenn, 2007; Edelman & Gally, 2001;
Ingold, 2008; Levin & Aharon, 2011; Mason, 2015; Richters,
1997, 2021; Waddington, 1957; Whitacre, 2010). Nor does Burt
tell us that this underdetermination affords the brain astonishing
sui generis degrees of freedom to make short- and long-term mod-
ifications to the functioning parameters of those capabilities, to
acquire and create new ones, and to flexibly activate, suppress, com-
bine, and leverage endlessly different configurations of these capac-
ities in the service of adaptive needs. To characterize this
jaw-dropping dynamic as merely a “complex interplay” is an under-
statement rivaling Emperor Hirohito’s 1945 post-atomic bomb
radio announcement to the Japanese people that “the war situation
has developed not necessarily to Japan’s advantage” (Frey &
Eichenberger, 1991, p. 76).

Is it an accident that Burt holds back this much stronger genetic
underdetermination card? That she says nothing about how under-
determination renders individuals qualitatively different from one
another in terms of the functioning parameters and response dis-
positions of psychological structures and processes underlying
their behavior? That she fails to mention that psychological hetero-
geneity is a pervasive, ubiquitous, defining characteristic of human
functioning (Bryan, Tipton, & Yeager, 2021; McCaffrey, 2015;
Moeller et al., 2022)? Or does Burt neglect to mention these things
because they would call attention to something else she doesn’t tell
us: Namely, that the social science research she so vigorously cham-
pions but never gets around to describing is predicated on the log-
ically implicit assumption that individuals are instead
psychologically homogeneous, and that quantitative differences
between them with respect to any particular pattern of overt func-
tioning are produced by exactly the same psychological structures
and processes operating in exactly the same ways in all individuals.
Logically implicit is the straightforward sense that psychological
homogeneity functions as the logically indispensable load-bearing
support beam for a scaffolding of interdependent corollaries on
which the coherence of all variable-oriented, sample-based research
strategies and statistical modeling approaches to causal-theoretical
inference rests, and without which they are unintelligible and
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incoherent (Holland, 1986; Molenaar, 2004, 2015; Richters, 1997,
2021; Xie, 2011).

If the psychological homogeneity assumption and its corollar-
ies were true, it follows that quantitative differences between indi-
viduals would reflect common underlying causes and that
sophisticated statistical modeling techniques would be capable
of identifying those causes in the covariance structures of aggre-
gates. But they can’t be, they don’t, and they aren’t. Nor, because
they are predicated on the same faulty homogeneity assumption,
are so-called statistical control and adjustment procedures capable
of removing unwanted influences of theory-irrelevant nuisance var-
iables from aggregate data, allowing researchers to peer through
those disturbing influences for an unobstructed, as-if-by-experi-
ment view of theory-relevant causes. Which is why the standard
social science methodology Burt tells us nothing about is as intrin-
sically, provably, irredeemably incapable of identifying environ-
mental causes of complex social traits as the sociogenomics
methodology is incapable of distinguishing their genetic causes.

In fairness to Burt, there is no evidence in her critique that she
deliberately side-steps these uncomfortable truths about social sci-
ence methodology to stack the rhetorical deck in her favor. A
more likely and troubling explanation is that Burt, like the vast
majority of social and behavioral scientists, is genuinely unaware
of the homogeneity-based foundational flaws of the standard
social science model. Although easily identified through the
logic of reverse engineering, the psychological homogeneity
assumption is otherwise extraordinarily difficult to recognize
without deliberate effort because it is so seamlessly woven into
the fabric of social science research (Richters, 2021). Seamlessly
enough that psychological homogeneity has flown under the
radar and escaped scrutiny for the past 100 years as the root
cause of psychology’s notoriously slow theoretical progress, repli-
cation failures, and continuing reliance on discredited practices of
null hypothesis significance testing.

Burt is right to be concerned about the overreaches of genetics
enthusiasts. She also provides readers with ample justification for
her concerns about the methodological deficiencies of contempo-
rary sociogenomics. By failing to acknowledge that these legiti-
mate concerns apply with equal force to the social science
research she so vigorously defends but keeps hidden from view,
however, Burt prosecutes her methodological case on an uneven
playing field that belies her stated goal of establishing a founda-
tion for meaningful dialogue about genetic and environmental
influences. Equally troubling is that Burt repeatedly claims to
have set aside her sociopolitical concerns about potential dangers
of genetic influence claims while at the same time arguing that
these dangers far outweigh the meager contribution potential of
sociogenomics research and justify holding it to higher methodo-
logical standards than those of mainstream social science. What
otherwise might have been a methodological bulwark against
the excesses of sociogenomics is instead a question-begging, one-
sided critique with far greater potential for renewing its charter.
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Abstract

Polygenic score (PGS) computations assume an additive model
of gene action because associations between phenotypes and
alleles at different loci are compounded, ignoring interactions
between alleles or loci let alone between genotype and environ-
ment. Consequently, PGSs are subject to the same objections
that invalidated traditional heritability analyses in the 1970s.
Thus, PGSs should not be used in the social sciences.

Burt must be strongly commended for challenging attempts to use
polygenic scores (PGSs) in the social sciences. She is correct to
note and emphasize the problems with any such attempt, especially
those posed by haplotype–environment interactions and the
unknown developmental biology of behaviorally relevant complex
traits, especially in humans. However, the technical problems with
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the construction and interpretation of PGS are much worse than
what she presents.

PGSs are supposed to be indicative of the causal contribution
of genes to phenotypes in individuals (Harden, 2021; Plomin &
von Stumm, 2018). The first problem with PGS is that they are
based on quantitative estimates of associations between alleles
and phenotypes obtained from genome-wide association studies
(GWASs). But these associations are notoriously population
dependent: Even the same physical trait (for instance, skin, iris,
or hair pigmentation in humans [Sarkar, 2021, pp. 140–142]) is
associated with different sets of loci (and alleles at these loci) in
different populations. Consequently, any attempt to construct a
causal account from these associations must provide independent
warrant for causal attributions (Woodward, 2005). None has been
forthcoming even though GWASs have a multi-decade history
(Sarkar, 1998, 2021).

A more important problem is that PGSs are constructed by
compounding these associations between different alleles and a
trait over multiple (often enough thousands of) loci. The simplest
compounding strategy is to use a weighted sum but, as Burt notes,
more complicated statistical compounding techniques are also
routinely used. The trouble is that, although these compounding
methods are designed to eliminate bias arising from non-
representative sampling of genomes, none of them incorporates
the biological mechanisms by which a trait is generated during
organismic development from zygote to adult (in sexual organ-
isms), that is, they ignore the mechanisms that would empirically
indicate which alleles at which loci are causally most relevant.
Moreover, all extant compounding methods rely on adding con-
tributions from different alleles at each implicated locus.

Thus, the calculation of PGSs assumes an underlying linear
model of gene action as did traditional heritability analysis.
Because of that, they inherit all the non-additivity problems
with heritability estimates that were recognized in the 1970s
(Sarkar, 1998). The context then was the attempt to establish a
causal connection between race and intelligence by figures such
as Jensen (1969). Critics not only challenged Jensen’s conclusions
but also the methodology of heritability analysis on the grounds
of illegitimate assumptions about the additivity of gene action
that ignored interactions between alleles within loci (dominance),
between loci (epistasis), and between genotype and environment.
The names of these critics read like a “Who’s Who” of theoretical
population and quantitative genetics of the 1970s: Feldman and
Lewontin (1975), Jacquard (1983), Kempthorne (1978), and
Lewontin (1974).

Most importantly, Layzer (1974) analyzed in detail a causal
model with the phenotype (P) being described as a mathematical
function of genotype (G) and environment (E): P = f(G, E) with
no constraint on the functional form (f). This very general
assumption is enough to show that the phenotypic variance can-
not be modeled as a sum only of variances (e.g., the genotypic
variance, the environmental variance, and a gene–environment
interaction variance). Rather the phenotypic variance must
include a large number of covariances between variables. Thus
no additive model, however enhanced (as is supposedly the case
for PGSs), can capture the variability of phenotypes, let alone
the phenotypic values in individuals. (Additionally, in humans,
the required covariances are impossible to estimate from accessi-
ble empirical data.)

Together, these results showed that: (i) heritability estimates do
not allow causal inferences because of the additivity of variance

problem; (ii) dependence of heritability estimates on the geno-
typic composition of population (which changes every genera-
tion); (iii) dependence of heritability estimates on limitations in
the environments to which a population have been exposed;
and (iv) dependence on interaction mechanisms such as domi-
nance and epistasis besides those between genotype and environ-
ment. This work was synthesized in Sarkar (1998).

Post-Human Genome Project (HGP), the emergence of
GWASs led to the revival of these criticisms by many prominent
figures including Lander (Zuk, Hechter, Sunyaev, & Lander, 2012)
and Feldman (Feldman & Ramachandran, 2018) in discussions of
the so-called missing heritability problem. It was correctly pointed
out that traditional heritability scores were over-estimates because
of invalid additivity assumptions. Moreover, results (ii) and (ii)
from the previous paragraph explain the population and context
dependence of GWAS association values.

PGSs are touted as having sidestepped these problems
(Plomin & von Stumm, 2018) but such claims are not credible.
As noted earlier, PGS computation assumes an additive model
of gene action that has been discredited by theoretical critiques
of heritability analyses from the 1970s. Of course, this situation
still admits the possibility that PGS values make accurate empir-
ical predictions of phenotype but there has been no evidence
produced for any such claim: Proponents of PGS use have
been remarkably unwilling to make definite quantitative predic-
tion of phenotypic values. Against this background it takes a
very vivid imagination to believe that phenotypes can be deter-
mined according to an additive model of gene action that allows
for no relevant interactions between alleles, loci, genotype, and
environment (Sarkar, 2021). For time being PGS seems to be
more akin to astrology than science: full of calculations based
on no more than pious beliefs such as a commitment to genetic
determinism and reductionism. The social sciences would do
well to ignore PGS entirely.
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Abstract

Although Burt provides a valuable critique of the scientific value
of integrating genetic data into social science research, she rein-
forces rather than disrupts the age-old horserace between genetic
effects and environmental effects. We must move past this false
dichotomy to create a new ontology that recognizes the ways in
which genetic and environmental processes are inextricably
intertwined.

Burt thoughtfully challenges the practical value of integrating
molecular genetic data into social science research. In doing so,
she provides a vital form of dissent that is uncommon to social
and behavioral genomics – the field’s critics (DOM included)
more often demur the ethical and societal implications of the
work. Her critique highlights the statistical and scientific limita-
tions of current polygenic scores. She correctly emphasizes the
scores’ contextual and confounded nature, undermining their
use as clean measures of genetic propensity (Meyer, Turley, &
Benjamin, 2020; Murray, 2020) and complicating efforts to
identify gene–environment interactions (Domingue, Trejo,
Armstrong-Carter, & Tucker-Drob, 2020). Nonetheless, Burt
makes a conceptual error when defining a genetic effect, conflat-
ing environmental mediation with environmental confounding,
which ultimately leads her to an unproductive and age-old horse-
race between genes and the environment.

Specifically, Burt decomposes the effect of genes, as defined
under the potential outcomes (or counterfactual) framework
(Holland, 1986), into “upward” and “downward” sources of cau-
sation. She defines upward genetic causation as when genetic dif-
ferences shape trait differences via biological pathways. For
instance, she argues that the DNA related to Huntington’s disease
has an (upward) genetic effect on a person via their biology. In
contrast, she defines downward genetic causation as when socio-
cultural forces act upon genetically influenced individual differ-
ences. For example, Burt argues that the areas of our genome
related to skin color have only “artificial” (downward) effects on
a one’s life that operate through the sociocultural environment:
Consider a dark-skinned girl who experiences more racial animus
than her lighter complected sister and, in turn, experiences
increased depressive symptoms (Laidley, Domingue, Sinsub,
Harris, & Conley, 2019).

Burt is correct to point out that counterfactual thinking, the
key conceptual toolkit for establishing causation (rather than
mere correlation) in the social and biomedical sciences, does
not distinguish between the effects of genes that do and do not

operate through sociocultural pathways. However, Burt’s desire
to separate out genuine genetic effects from so-called artificial
ones is itself built on: (1) The flawed and historically burdened
idea that true effects of genes are straightforward, homogenous,
and strictly biological; and (2) the misguided belief that it is pos-
sible to meaningfully distinguish between causal pathways that
are, in general, proximal versus distal, or direct versus deeply
mediated.

Burt’s division of upward and downward genetic causation is
well-intentioned and may be aimed at combating poor genomics
communication that reinforces oversimplified and deterministic
conceptions of genetic effects (Heine, 2017). For instance, con-
sider a recent study that used a sibling design to estimate “direct
individual genetic effects” on a range of traits, including depres-
sion, education, and body mass index (Howe et al., 2021).
Because the effects of genes on social and behavioral traits
often operate through complex causal chains that include group-
level sociocultural processes, like discrimination, referring to
them as “direct” or “individual” is misleading. The term “genetic
effect,” at present, refers to any causal pathway that begins with
a genetic difference, allowing genes to linguistically trump any
number of environmental mediators. We need new language
to replace the entrenched gene–environment binary, as genetic
determinist ideologies have helped establish and legitimize a
wide range of social inequalities (Martschenko, Trejo, &
Domingue, 2019).

However, in labeling the way genetic influences on skin
color ultimately impact mental well-being as merely “artificial
genetic associations,” Burt makes the opposite mistake. She
argues that colorism – the way in which our society discriminates
based on a person’s skin tone – is actually “the difference that
makes a difference.” Yet both colorism and genes related to
skin color make a difference! In a world without colorism,
inheriting different genes that influence skin tone wouldn’t in
turn affect a person’s mental health. However, in a world with
no variation in skin tone across individuals, eliminating the
explicit and implicit biases that produce colorism wouldn’t
change depression rates.

Under the potential outcomes framework, the effects of a
genetic variant and sociocultural processes are not mutually
exclusive – each effect is defined by its own unique thought exper-
iment which compares exactly two counterfactuals. One aspect of
the world, the “treatment,” is changed, and everything else is held
the same. To say that there is a causal effect of a genetic variant on
depression is to say that, in a world where a person was to inherit
different alleles but everything else is held constant (including the
way society “does” race), a person’s likelihood of developing
depression would change. Similarly, to say that there is a causal
effect of colorism on depression is to say that, in a hypothetical
world without the acute racism in our current world but identical
in every other way (including the genetic characteristics of every-
one within it), we would expect a change in the population prev-
alence of depression.

The effects of one’s genes and one’s sociocultural environment
are hopelessly intertwined – indeed, each effect is defined only
for particular states of the other. Even for Huntington’s
disease, how a persons’ DNA ultimately affects their life is a
function of environmental features, like access to long-term care
and medications that help manage the symptoms. For this
reason, Burt is wrong to claim that genetic sibling designs are
confounded (i.e., lacking internal validity) by sociocultural
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influences like colorism; instead, the example of skin tone and
colorism highlights that such research designs identify contextual
causal processes which often operate through the sociocultural
features of our world (and therefore may have low external
validity). We agree with her point that GWAS “cannot disentangle
genetic from environmental,” but the limitations are not only
practical – they are conceptual. Burt’s distinction between
upward and downward genetic causation privileges socio-
cultural processes as somehow ontologically and causally prior
to genetic factors, which is equally mistaken as viewing
genetic factors as ontologically and causally prior to environ-
ments. Ironically, in attempting to wrest some of the counter-
factual effects of genes back into the environmental fold, Burt
thrusts the conversation again into a phony horserace between
genes and environments, wherein opposing sides engage in a
bean-counting exercise over how much outcome variation
counts as genetic. We’ve been there before; it’s an intellectual
dead end.
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Abstract

It is a hotly contested issue whether polygenic scores should play
a major role in the social sciences. Here, we defend a methodo-
logically pluralist stance in which sociogenomics should aban-
don its hype and recognize that it suffers from all the
methodological difficulties of the social sciences, yet nevertheless
maintain an optimistic stance toward a more cautious use.

It is a hotly contested issue whether polygenic scores (PGSs) and
genome-wide association studies (GWASs) should play a major
role in the social sciences. As described in the target article,
what we see is both (over)hype and a staunch opposition, with
harsh accusations thrown around, straw man arguments, and ad
hominem attacks. All this makes it difficult to not only evaluate
the positions, but even to ask important methodological questions
about the potential uses of these genetic tools within the social
sciences.

Here, Burt offers an elegant methodological target article with
the aim of addressing just this problem. In it, Burt objectively crit-
icizes the hype that has often accompanied heritability research,
without committing any of the above sins, drawing attention to
the methodological limits and challenges of adding genetics
research to the social sciences. Although we agree with many of
Burt’s points, however, we can’t help but feel that she ends up
overstating her conclusions and overplaying the differences
between sociogenomics and traditional research within the social
sciences.

In her conclusion, Burt states that “GWASs and PGSs may be
powerful tools for identifying genetic associations, but they are
not the right tools for understanding complex social traits” (target
article, sect. 9, para. 3). Naturally, we wholeheartedly agree.
However, our reasons for accepting this claim aren’t a belief
that these tools cannot at all help us to understand genetic influ-
ences or social outcomes, but rather that there is no such thing as
the right tools for understanding complex social traits. That is, we
do not think that there is some kind of unique or privileged com-
bination of scientific tools for investigation of whatever complex
social trait we are interested in, whether that is poverty, educa-
tional attainment, or criminal behavior. Let us elaborate.

As philosophers of science (and in particular, philosophers of
the social sciences) have long recognized, complex phenomena
are not to be understood through the competition of various
methods with the aim of finding the ideal one, but rather
through use of a broad range of tools that complement each
other in various ways (Mitchell, 2009; Veit, 2019, 2021;
Wimsatt, 2007; Ylikoski & Aydinonat, 2014). Although there
are often conflicts within scientific disciplines regarding what
sets of methods, models, experiments, and the like should be
employed, these often appear to be driven by “indoctrination”
into the methodology of a lab and ideological disputes over
the correct methods. As the saying goes: If all you learn is
how to swing a hammer, all problems will start to look like
nails. But from a higher-level perspective, it is precisely because
of the pluralism of different methods that science has flourished.
And this conclusion, we think, likewise applies to the use of
GWASs and PGSs.

These methods should not act as a replacement for standard
social science tools, nor should they be seen as competitors to
randomized controlled trials (RCTs) that investigate environmental
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factors. Instead, we argue that they can provide us with a useful
complement for research into the main targets of the social sci-
ences, that is: complex causal systems with great heterogeneity
and no strong generalizations. Just as the study of genome-wide
associations bears the danger of falsely attributing causality to
observed correlations, so too does standard social science. Burt
is right in her criticism of the hype around PGSs: That they are
often seen as deterministic, fail to control for a wide range of
potential confounds, risk reviving the unfortunate gene-culture
war, and so forth. But it is possible to arrive at such a critical
stance by highlighting that sociogenomics will of course suffer
from all the methodological difficulties of the social sciences –
causal indeterminacy, the complexity of the social world, looping
effects, and so forth. Within such an alternative picture, however,
sociogenomics could still play a valuable role, within its own
limited sphere.

Rather than simplifying the complexity of social phenomena,
we argue that sociogenomics can help us to highlight how com-
plex and causally interdependent social phenomena truly are.
That is, we can buy into the main criticisms of the usefulness
of PGSs in the social sciences, without being led to the strong con-
clusion that sociogenomics is methodologically doomed. Rather
than returning to old and unhelpful discussions of social versus
genetic causes, we think that sociogenomics might in fact help
us toward a recognition of the complexity of our social traits
and their myriad bases. This is how one should understand the
argument that PGSs may improve RCTs by finding further vari-
ables to be controlled for (Harden, 2021). It’s an embrace of a
supplementary and pluralistic stance in the face of complexity.
Rather than eliminating sociogenomics, or buying into the mis-
taken hype that it is going to replace and revolutionize standard
social science, we can see its role instead as a complementary
method to be added to the vast toolkit of the social sciences.
Burt rightly points out that the methods as they are currently
used too often fail to appreciate their own limitations, but this
can be used as a starting-point, with these careful criticisms form-
ing the basis for refining and strengthening the methods to better
fit the contexts of use.

We therefore think that neither the majority of advocates nor
the majority of critics of PGSs hold an adequate epistemic stance
toward their use in the social sciences. Instead, we have here advo-
cated for something of a mid-level approach, in which proponents
of sociogenomics are urged to recognize the methodological diffi-
culties of social science research and familiarize themselves with
the philosophy of the social sciences in order to improve their
own methods. Once the hype dies down, what remains will be
better science, one practiced with adequate attention paid to the
current problems and limitations of the methods. At the moment,
without knowing exactly how this will unfold, we would like to
avoid making any firm predictions regarding the likely payoffs
of sociogenomics; however, we hold a (cautiously) optimistic
stance regarding its future use.
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Abstract

We contend that social science variables are the product of mul-
tiple partly heritable traits. Genetic associations with socioeco-
nomic status (SES) may differ across populations, but this is a
consequence of the intermediary traits associated with SES dif-
ferences also varying. Furthermore, genetic data allow social sci-
entists to make causal statements regarding the aetiology and
consequences of SES.

Burt describes the signal captured by a polygenic score (PGS)
derived from a genome-wide association study (GWAS) on
social science traits such as education as being “artificial” and
a product of social differences rather than genetic processes.
As an example of downward causation, Burt provides the
thought experiment posed by Jencks et al. (1972) where, in a
hypothetical scenario, red-headed individuals are denied access
to an education.

We argue that, just as a PGS captures the aggregate effect of
each individual single-nucleotide polymorphism (SNP) used in
its construction, each SNP from a GWAS conducted on education
captures the aggregate effect of each heritable trait associated with
differences in education. This process, referred to as vertical plei-
otropy (also known a mediator variable) describes incidences
where phenotype A (e.g., intelligence) is associated with pheno-
type B (education) and so a genetic variant found to be associated
with phenotype A will also be associated with phenotype B
(Fig. 1).

In Burt’s hypothetical example, red hair would emerge as an
intermediary phenotype between genetic inheritance and phe-
notypic consequence but in real data, childhood intelligence
(rg = 0.72, SE = 0.09) (Hill, Davies, Liewald, McIntosh, &
Deary, 2016), health (rg = 0.56, SE = 0.03) (Hill et al., 2019b),
attention-deficit/hyperactivity disorder (ADHD) (rg = −0.54,
SE = 0.03) (Hill et al., 2019b), and neuroticism (rg = −0.23, SE
= 0.02) (Hill et al., 2020) show consistent and substantial genetic
correlations with education and give an indication as to what

*Both authors contributed equally.
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heritable traits may contribute towards educational attainment.
In a multivariate analysis examining the traits that contribute
towards education in children, Krapohl et al. (2014) found
that intelligence, self-efficacy, school environment, home envi-
ronment, personality, wellbeing, behavioural problems, and
health, collectively explained 75% of the heritability of
education.

Vertical pleiotropy also illustrates why some PGSs are popula-
tion specific. When applied to education, a PGS would be popu-
lation specific insofar as the heritable traits underlying
educational attainment are not universal. An example of this
was provided by Rimfeld et al. (2018) who showed that a PGS pre-
dicted 6.1% of education in post-Soviet Estonia compared with
2.1% in Soviet era Estonia. Furthermore, the total heritability of
education in post-Soviet Estonia was estimated to be 37%

compared to the Soviet era estimate of 17%. Height was used as
a control variable and no significant differences between the her-
itability estimates were found. These differences were attributed to
the rise of a more meritocratic society following the fall of the
Soviet Union where individual differences in hard work and abil-
ity, which are partly genetically mediated, became the traits pre-
dictive of educational success rather than environmentally
driven privilege or discrimination.

Some of the heritable traits underlying differences in education
may indeed be population specific, as indicated by
population-specific genetic effects on education (Rimfeld et al.,
2018; Tropf et al., 2017). However, meta-analyses of GWASs of
education do facilitate loci discovery, which is indicative that
some of the association signal is replicated across samples and
is consistent with the idea that similar heritable traits underlie

Figure 1 (Xia and Hill). Simplified illustration of vertical pleiotropy showing a subset of the possible intermediary phenotypes between genetic variation and phe-
notypic differences in social science variables. Illustrated is a schematic describing that when a genome-wide association study (GWAS) is performed on, or a poly-
genic score (PGS) is derived to predict differences in, education, genetic variation is linked to education (panel A). However, the means by which an association
occurs is that, in part, a number of partly heritable traits are themselves associated with education as part of a phenotype pathway starting with genetic inher-
itance and ending with phenotypic consequences for education (panel B). Light blue boxes indicate sources of genetic variation whereas light blue arrows show the
association between genetic and trait variation measured using GWAS or PGS. Dark blue boxes show sources of environmental variation with dark blue arrows
indicating environmental associations with a trait. Pale blue boxes indicate education as an example of a social science variable. The blue/grey boxes in panel
B show possible intermediary heritable phenotypes.
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education differences across, predominantly European, countries
and cultures.

Finally, Burt asks what the added value is of including genetics
in a social science study. Mendelian randomisation (MR) is a
technique that, at its heart, uses vertical pleiotropy to examine
if two traits (such as, e.g., health and education) are causally con-
nected. This is achieved by using genetic variants (such as single
or multiple SNPs from a GWAS) as instrumental variables for risk
factors that affect the health of a population. As genetic variants
are fixed at conception their use as instrumental variables can
overcome some types of confounding.

Applied to social science variables, MR has helped to under-
stand the causes and consequences of socioeconomic status
(SES) differences where intelligence has been putatively
shown to be a causal factor for income (Hill et al., 2019a)
and education (Anderson et al., 2020; Davies et al., 2019),
where bi-directional casual effects exist in the case of educa-
tion. When applied in a multivariable analysis, MR has indi-
cated that education, and not the highly correlated trait of
intelligence, is a causal factor in smoking (Sanderson, Davey
Smith, Bowden, & Munafò, 2019). Conversely, higher intelli-
gence, and not education, has been indicated to be a causal pro-
tective factor against Alzheimer’s disease (Anderson et al.,
2020). Using a within-family design an increase in BMI was
identified as causally associated with lower levels of education
(Howe et al., 2022).

In conclusion, PGS and GWAS conducted on social science
traits capture the partly heritable traits that likely contribute to
some of the variance of SES. Such associations are as authentic
as those that act in biological pathways influencing disease traits,
the difference being that, for social science traits, SNP associations
are at the start of a phenotypic pathway beginning at molecular
genetic inheritance and ending at phenotypic consequence. This
pathway can differ between populations, but it is a strength of
the molecular genetic design that MR can be applied to examine
which heritable traits are causally linked to SES differences across
and between cultures.
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Abstract

Burt’s argument relies on a motte-and-bailey fallacy. Burt aims
to argue against the value of genetics for social science; instead
she argues against certain interpretations of a specific kind of
genetics tool, polygenic scores (PGSs). The limitations, previ-
ously identified by behavioural geneticists including ourselves,
do not negate the value of PGSs, let alone genetics in general,
for social science.
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A motte-and-bailey is a fallacious argument in which an easy to
defend position (motte) is conflated with a difficult to defend
position (a bailey) – the latter is claimed but only the former is
actually defended. Burt’s article comprises such an argument.
The bailey is that genetics in general is not valuable to social sci-
ence. From the abstract: “Here, I challenge arguments about the
value of genetics for social science,” and later: “My explicit aim
is to challenge the claim that genomics has much to offer social
science, so much so that social science sans genetics is fatally
flawed, scientifically indefensible, and possibly even morally sus-
pect.” But her actual arguments are about the limitations of one
particular genetics tool, the polygenic score (PGS), and against
“the claimed necessity of incorporating PGSs into social science
models as measures of genetic influences.” So Burt’s motte is
that PGSs are imperfect and should be used cautiously in social
science – a position of which we know no opponents. By demon-
strating this truism, she implies she has defended a much less ten-
able position against the value to social science of genetics in
general.

First, let’s establish why critics argue, and we agree, “that social
science research that neglects genetics is, at best, partial and
potentially flawed and misleading” (target article, sect. 1, para.
4). The fact that human behavioural traits are ubiquitously heri-
table (Polderman et al., 2015) – which Burt does not dispute –
creates an enormous problem for social science research that
ignores that fact. It means that a substantial source of individual
differences remains unobserved, potentially leading to biased esti-
mations and wrong conclusions. Any associations among differ-
ent behaviours, or associations between the behaviour of parents
and their children, or associations between children’s behaviour
and any variable influenced by parental behaviour, are likely con-
founded by genetic effects. Ignoring this confounding, which
much social science does, renders inferences about causes of
these associations invalid. For example, we might interpret the
observation that children growing up with a home library have
more intellectual skills as adults as a causal effect of the presence
of books (Sikora, Evans, & Kelley, 2019). Or we might interpret an
association between the warmth of the parent–offspring relation-
ship during adolescence and the quality of the offspring’s roman-
tic attachments 60 years later as evidence of “the far-reaching
influence of childhood environment on well-being in adulthood”
(Waldinger & Schulz, 2016). The unacknowledged genetic con-
founds do not rule out the hypothesised causal effects, but they
invalidate the evidence proffered for these effects (Sherlock &
Zietsch, 2018).

It can therefore be vital to account for genetic confounds. PGSs
are one avenue for integrating genetics into social science, but we
agree with many of Burt’s concerns about the usefulness and mis-
interpretation of PGSs, several points of which derive from our own
work. We are especially concerned about the use of PGSs for “get-
ting genetics out of the way” (target article, sect. 4.1) – that is,
including a PGS in an attempt to control for genetic confounding.
Isungset et al. (2022) did this in claiming to demonstrate a causal
effect of parents’ education on their children’s school performance.
They concluded that “parental educational advantage is attenuated
only to a small degree when accounting for genetics.” But they
accounted for a PGS for educational attainment, which captures
only a minority of the total genetic variance in school test scores
– therefore, it is inevitable that this will only attenuate the par-
ent–child correlation a small amount. It is invalid to infer, as the
authors do, that the remaining parent–child correlation is because
of a social–environmental effect of parents’ education.

But this inappropriate use and interpretation of PGSs does not
support Burt’s argument against the value of genetics for social
science. Ignoring genetics would only worsen the issue. There
are various possibilities for integrating genetics into social science
so as to identify, minimise, or account for genetic confounds,
for example, by testing hypotheses using twin/pedigree datasets,
large genetically informed (biobank) datasets, or summary-level
genome-wide genetic data. Another possibility would be to adjust
for the weakness of the PGS – for example, in the aforementioned
Isungset et al. (2022) study the educational attainment PGS
accounted for 6.3% of the variance in school test scores, whereas
twin studies estimate that genetic variance accounts for ∼55% of
variance (Bartels, Rietveld, Van Baal, & Boomsma, 2012). Given
that even accounting for this weak PGS already reduces the par-
ent–child correlation by 14–18%, this could be consistent with
complete genetic confounding of the parent–child correlation.

It might seem that there is a symmetry in Burt’s arguments
and ours: Burt is concerned about environmental confounding
of genetic effects, whereas we are concerned about genetic con-
founding of environmental effects. But this leaves out important
asymmetries that make Burt’s overall argument unreasonable
and untenable. First, while Burt argues against the value of
genetics for social science, we argue it is important to account
for both genetics and environmental effects, and to disentangle
them where possible. Second, Burt acknowledges the great efforts
that are made in genetics research to minimise the kind of
environmental confounding she warns of; but on Burt’s side of
the debate, without taking into account genetics social science
cannot minimise or even recognise genetic confounding.
Third, the fixed nature of genes and well-understood process of
inheritance provide natural experiments (e.g., identical and non-
identical twins, Mendelian randomisation of alleles) that form
the bedrock of genetics research and enable detection of genetic
(and environmental) variance in traits using different analytic
methodologies with different assumptions, as well as allowing
cautious causal inferences. In contrast, observational/correlational
research in non-genetic social science has no such avenues for
establishing causality, leaving associations hopelessly confounded
and making it difficult to make inferences about environmental
effects.

In conclusion, Burt’s argument against the value of genetics for
social science is fallacious and counterproductive. The goal of
understanding humans and society is best served by making the
most of all available methods; accordingly, efforts should be
made to integrate genetics into empirical approaches. Articles
like Burt’s only impede such integration.
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Abstract

In this response, I focus on clarifying my arguments, highlight-
ing consensus, and addressing competing views about the utility
of polygenic scores (PGSs) for social science. I also discuss an
assortment of expansions to my arguments and suggest alterna-
tive approaches. I conclude by reiterating the need for caution
and appropriate scientific skepticism.

In my target article, I scrutinized polygenic scores (PGSs) for
social science applications. Arguing that the increased uptake of
PGSs in social science requires greater awareness of what PGSs
are, what they measure, and how this affects their interpretation
and utility, I provided an overview of PGSs with a focus on
their complexities and limitations. My goal was to raise awareness
of PGSs’ challenges and uncertainties and promote a dialogue to
foster better (social) science. I am thus grateful to the diverse
group of distinguished scholars who have engaged with my article
as per my aims. In 24 commentaries, scholars enriched my dis-
cussions, expanded my critiques, and/or contested my conclu-
sions, and in so doing, raised important issues and points for
fruitful debate.

The coverage in my target article coheres into two broad
themes. The first concerns the challenges with PGSs I outlined,
namely environmental confounding, low-resolution, and context-
specificity. The second theme is the limited utility of PGSs given
these challenges. I argued that the claims made by some propo-
nents about the significant utility of PGSs for social science are
overstated, even misleading. I made several recommendations,
perhaps most notably that PGSs be used in social science “spar-
ingly and cautiously with caveats placed front and center.”

Commentaries largely concurred with my arguments about the
limitations of PGSs. No commentator disputed my point that

PGSs are not appropriately interpreted as “genetic influences”
on complex social traits, as they often are. Commentators also
largely agreed with my concern that PGSs are being misinter-
preted or misused in some – but by no means all – sociogenomics
research.1 For example, Keller writes: “there should be greater
care in interpreting and describing PGS results, e.g., as the rela-
tionship between a trait and ‘PGS estimates’ rather than ‘genetic
propensity’.” Similarly, Zietsch, Abdellaoui, & Verweij (Zietsch
et al.) note: “we agree with many of Burt’s concerns about the
usefulness and misinterpretation of PGSs, several points of
which derive from our own work” (which I cited in the target arti-
cle). Fletcher writes that “the ambiguous nature of a PGS’s inter-
pretation has led far too many investigators to over-interpret and
narrowly label a PGS as ‘genetic,’ often to elevate the perceived
importance of ‘genetics’ in contributing to social science out-
comes.” Overall, there was general consensus that researchers
should not depict PGSs as reflecting “genetic influences,” implic-
itly or explicitly.

Similarly, my explicating that the low-resolution
tag-single-nucleotide polymorphism (SNP) approach of genome-
wide association studies (GWASs) and PGSs, which makes them
feasible, impedes their utility for gleaning biological insights
was largely undisputed (but see Alexander, Illius, Feyerabend,
Wacker, & Liszkowski [Alexander et al.]). Furthermore, no com-
mentary challenged my argument that the context-specificity of
genetic associations precludes the use of PGSs as “genetic poten-
tial” in general, and comparisons across context and condition as
a means of assessing the magnitude of “genetic influences,” in
particular.

In contrast, my arguments about the utility of PGSs given their
limitations provoked considerable debate. Some of this apparent
disagreement is based on misunderstandings of either my
intended arguments and recommendations or my assumptions
and motivations. Importantly, genuine disagreement also exists
around the tractability of the limitations and the utility of PGSs.
Some commentators contend that the problems are worse that I
outline and render PGSs useless, even having “negative utility”
for social science (Curtis). Conversely, several commentators
claim that the limitations with PGSs I outline are tractable and
the challenges with PGSs are not as severe as I suggest.

This unique forum provides authors with the rare, valuable
opportunity to immediately clarify arguments that were misun-
derstood and directly respond to objections. I thus devote the
bulk of my comment to that end. This response is organized as
follows. In section R.1, I focus on clarifying misinterpretations
of my intended arguments. In section R.2, I address genuine dis-
agreements about facts and/or their implications. Section R.3 is
devoted to an assortment of commentaries that express agreement
with key claims in my target article and expand my arguments in
various ways. I conclude by highlighting the value of caution and
appropriate scientific skepticism.

R1. Ostensible disagreements and clarifications

Several commentaries critiqued claims that I did not intend to
make but that were inferred from my target article. Several of
these critiques resemble or echo disputes that tend to reoccur in
debates about genetics in social science and lead to tangential
or misleading discussions. Thus, addressing these misunderstand-
ings, which tend to persist, is valuable. Here, I aim to correct mis-
conceptions that led to ostensible disagreements that do not
actually exist. For clarification, I was not:
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1.1 Opposing the use of genetics in social science, in general, or
sociogenomics as a field.

1.2 Endorsing a model of psychological homogeneity or genetic
sameness.

1.3 Arguing that PGSs are completely useless for social science.
1.4 Contending that all purported genetic effects on complex

social traits are “artificial.”
1.5 Expressing a “desire” to separate genetic from environmental

influences on complex traits.
1.6 Claiming that we know all the answers to the important social

science questions already.
1.7 “Vigorously defending” or “championing” social science

research or measures.
1.8 Contending that a chief limitation with PGSs is that their

interpretation is context dependent.
1.9 Challenging the use of PGSs as “genetic influences” on ideo-

logical grounds.

Assuming that these misunderstandings arose from a lack of clar-
ity in my arguments, I address these points below. Readers who
do not need this clarification may opt to skip to section R.2.

R1.1. A critique of PGSs not genetics for social science, in
general

Several commentators perceived my article to be a critique of soci-
ogenomics as a field or the incorporation of genetics into social
science in any form (Burke; Keller; Moreau & Wiebels;
Richters; Zietsch et al.). Rather than sociogenomics in general,
my target article was “focus[ed] on the utility of PGSs for social
science and the key premises underlying their use as measures
of ‘genetic propensities’ for behavioral differences,” as the title
also announced. To be sure, I should have better worded a few
sentences to reflect my specific focus on PGSs for social science;
thus, I take responsibility for inadvertently encouraging this inter-
pretation. Even so, my coverage throughout, including my key
recommendations, concentrated on PGSs. This is why – to
address Morris, Ritchie, & Young’s (Morris et al.) critique –
other methods of incorporating genetics into social science were
not discussed. This is also why – to address Zietsch et al.’s pri-
mary critique – my article does not reflect “a fallacious
motte-and-bailey argument” (see Shackel, 2005). My focus,
which Fletcher aptly described as being “on a subset of ‘genetics’
[for social science] – the use of polygenic scores” was not a
stand-in or “motte” for general opposition to genetics in social
science.

Some commentaries interpret my article as implying it is
acceptable to “deliberately ignor[e] genetic influences” on social
phenomenon (Burke, also Zietsch et al.). Although I do not con-
cede that genetics is relevant to the explanation of all social phe-
nomenon (e.g., the association between being American and
driving on right and being British and driving on left), my cri-
tique of PGSs was not a call for social scientists to “deliberately
ignore genetics” but to recognize that however relevant genetics
are to our development and social traits, PGSs do not capture
“genetic (vs. environmental) influences” on social traits. By anal-
ogy, my air quality indicator is unable to accurately differentiate
between carbon dioxide and volatile organic compounds
(VOCs). I do not recommend you use it to measure VOCs for
that reason, but from that it does not follow that I think VOCs
are not important to measure, much less that they be deliberately
ignored.

Similarly, Keller depicts me as holding a “black-and-white”
position that we “should refrain from researching one of the impor-
tant factors (genetics) influencing trait variation.” He further
implies that my arguments rest on the naïve position that models
need to be perfect to be useful. Neither are positions I hold or
espoused in the target article. The challenges of PGSs for social sci-
ence are not merely that they are imperfect as all methods are, but
rather that PGSs have specific limitations that vitiate their utility for
social science research. As Curtis writes, articulately precising my
arguments: “PGSs are so poor at capturing the genetic variation
which is biologically relevant while at the same time being pro-
foundly influenced by exactly the kind of confounders social scien-
tists do not want contaminating their research such as race,
socioeconomic status and parental characteristics.”

R1.2. Not assuming psychological homogeneity

In a response familiar to critics of behavior genetics, Richters
alleges that I, likely ignorantly, endorse a model of “psychological
homogeneity” (see, Harden [2021] for an analogous “genetic same-
ness” argument). I do not (e.g., Burt, 2020; Simons & Burt, 2011).
My scrutinizing methodological tool, PGSs, as a measure of
“genetic influences” or as being useful for enhancing understanding
is not the same thing as denying genetic differences or assuming a
blank slate view of human psychology. The critique that I assume
psychological homogeneity is both wrong and irrelevant. Indeed,
we agree that individuals differ genetically and psychologically in
a manner that shapes development and social outcomes. The key
question at issue, which Richters avoids, is whether PGSs have util-
ity for enhancing understanding of these differences.

R1.3. Recommendation: Use PGSs sparingly and cautiously
given limitations

A few commentators interpreted my argument as being that PGSs
are useless and should never be used in social science. For exam-
ple, in their otherwise concurring response, Veit & Browning
argue that I overstate my conclusion, which they interpret as
being that “sociogenomics is methodologically doomed” and
that PGSs are useless for all social science purposes no exceptions.
This ostensible disagreement is based on misunderstanding. I spe-
cifically recommended that PGSs should be used “sparingly and
cautiously” for social science rather than “not at all.”

Analogously, although agreeing that my critique is “mostly
correct,” Fletcher takes issue with what he perceives to be my
argument that PGSs are worthless and aims to carve out a “clear-
eyed middle ground.”2 Concurring with my arguments, Fletcher
writes that studies representing PGSs as “genetic propensity”
and which are using PGSs as “genetic influences” (vs. environ-
mental ones) are “overstepping” and “a fool’s errand.” Given
that most sociogenomics studies use PGSs in this manner, it fol-
lows that we agree that most studies use PGSs inappropriately.
However, and purportedly disagreeing with my position,
Fletcher suggests that “PGSs can be wrong but useful” “in a lim-
ited and focused role in social science research.” Contra Fletcher, I
did not argue otherwise. The “clear-eyed middle ground” Fletcher
aims to carve out was that carved out in my article.

R1.4. Downward causation as a confounder of PGSs

A few commentators interpreted my discussion of downward cau-
sation as implying that PGSs “only” or “merely” reflect artificial
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(social) causation (Trejo & Martschenko; Xia & Hill). For exam-
ple, Xia & Hill write that I describe “the signal captured by a
PGS…on social science traits such as education as being ‘artificial.’”
This is a misconception with benefits, as it allows them to apply to
my arguments another label familiar to critics of behavior genetics:
environmental determinism (in this case downward determinism).
I am surprised by this interpretation not only because downward
causation is but one of several confounders to PGSs that I describe,
but also because I explicitly rejected an environmentally determinist
approach. In the service of explanation, I employed simplified
examples to illustrate the point that because of downward causation
“genetic associations for many complex social behaviors are
unavoidably environmentally confounded” not determined (empha-
sis added). When I wrote: “As is well known, a person’s social traits
emerge from a complex interplay of environmental and genetic
influences over their lifetime,” I meant it.

To be clear, my claim that PGSs capture artificial genetic asso-
ciations does not imply that PGSs only capture artificial genetic
associations. We agree that an environmentally determinist
approach is untenable.

R1.5. No enthusiasm for the outdated nature versus nurture
debate

In another unanticipated response, several commentators (Trejo
& Martschenko; Alexander et al.; Richters) charge me with “per-
petuating the nature versus nurture debate.” Although sympa-
thetic with some of my critiques, Trejo & Martschenko write
that I “desire to separate nature versus nurture” and my argu-
ments encourage attempts at such separation. Richters claims
that my arguments “renew the charter” of genetic versus environ-
mental separation. In all cases, this critique is asserted but not
explained, and as I do not see how this follows from my argu-
ments, I cannot engage directly with their reasoning.

To clarify, my discussion of environmental confounding was
not meant to encourage efforts to differentiate genetic versus envi-
ronmental influences, which we agree is a futile endeavor (see
Burt, 2015; Burt & Simons, 2014). On the contrary, by illuminat-
ing the fallacy in treating PGSs for complex traits as “genetic
influences,” I was arguing against the interminable effort to sep-
arate nature and nurture in its contemporary form with PGSs as
“nature.” When I wrote that studies using PGSs as genetic influ-
ences are “fundamentally and necessarily wedded to an overly
simplistic and ultimately misleading (environmentally con-
founded and biologically implausible) reductionist genes-versus-
environments approach,” and the problem is not tractable with
advanced statistical methods, as Trejo & Martschenko agree, I
meant that too. We “can no more unbraid genetics and environ-
ments [on complex social traits] than we can unbraid history and
culture, or climate and landscape, or language and thought”
(Feldman & Riskin, 2022).

R1.6. Unknowns and false dilemmas

From my claims that we don’t need PGSs to show well-established
social patterns (e.g., “to demonstrate that supportive, stimulating
parenting is associated with child educational attainment”),
Morris et al. craft a straw man, perhaps for rhetorical effect.
They misrepresent me as holding “that we know the answers to
all the important questions already.” Obviously, we do not.

In a more reasonable objection, Morris et al. write that: “envi-
ronmental causation is precisely what genetically controlled

designs help establish in observational research.” I anticipated
this response, and I refer the reader to sections 5 and 6 of the tar-
get article where I discuss why demonstrating environmental cau-
sation is not a strength of PGSs. Briefly, because, as we all agree,
PGSs do not control for “all genetic differences” and are environ-
mentally confounded, I noted:

even if the inclusion of PGSs markedly altered an environmental estimate,
because PGSs are significantly environmentally confounded, we cannot
say that controlling for “genetics” is the cause of such changes. What is
more, we cannot say that environments matter “net of genetics” because
PGSs only capture a fraction of the ostensible heritability of social out-
comes (see also Fox; Zietsch et al.).

Disappointingly, Morris et al. did not engage with these specific
arguments. Instead, they pose a dilemma: Support PGSs or sup-
port genetically confounded social science research. Fortunately,
this is a false dilemma.

R1.7. Not defending “standard social science model” or social
measurement

Richters objects to my argument because, in his view, I do not
“highlight precisely the same deficiencies in the social science
model [I] seek to defend…”3 Richters’ critique is, however,
based on a misunderstanding; my target article is not a defense,
much less a “vigorous defense,” of social science research. There
is no contradiction in addressing the challenges with PGSs for
social science and holding that social science research, in general,
has many challenges, even deficiencies.

In a similar critique, Morris et al. complain that were I dispas-
sionate and focused on scientific accuracy, I “would be as con-
cerned about exaggerating the effects of ‘structural disadvantages
and cultural influences’ as ‘obscuring them’.” I anticipated this tu
quoque, and I point the reader to section 8 where I attempted to
dispel such unproductive discussions. Manifestly, my target article
was not an overview of “problems with social science” but had a
very specific focus on challenges with PGSs.

Focusing on measurement, Moreau & Wiebels interpret me as
holding that “because they are already well-measured behaviorally,
constructs like academic achievement or cognitive aptitudes have
little to benefit from the tools of sociogenomics.” This is a two-part
claim, and both are misguided. First, I did not argue that constructs
like cognitive aptitudes or psychosocial traits are well-measured.
Indeed, I share their concern about the measurement of social con-
structs (see, e.g., Burt, 2012, 2020) and agree that we “should refrain
from thinking that the measurement of constructs in the behavioral
sciences is as good as it can be.” Second, my critique of the utility of
PGSs in social science is not based on adequacy of social measure-
ment. If anything, my arguments would lend support to the claim
that the inadequacy of measurement of social constructs poses a
challenge to GWASs and PGSs. Although I agree that PGSs will
be more useful for medical phenotypes defined by the “presence
or absence of biological features,” pace Moreau & Wiebels, the
fact that “behaviorally assessed constructs remain subjective and
far from assumption-free” is, in my view, a barrier to genetic anal-
ysis not an argument for its utility.

R1.8. Context-dependency: More than an interpretive problem

In the target article, I discussed the context-dependency of PGSs
and outlined the implications for complex social traits (see sect.
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5.4). In his commentary, Fletcher briefly depicts this significant
challenge as being of a narrower problem: That the “interpreta-
tion [of PGSs] is context-dependent” (emphasis added).
Although Fletcher is correct in that the interpretation of PGSs
themselves – as the aggregate scores – is context-dependent,
this framing of the challenge as an “interpretive” one minimizes
the complications. The issue is not merely that the interpretation
of a PGS effect is context-dependent in the same way that the
interpretation of the label “sick” varies from “good” among a
group of high school skateboarders, to “disgusting” among people
discussing a ghastly crime, to actually “ill,” as traditionally
defined. The challenge is much more complicated as contexts
can shape which and how – that is, the magnitude and even
direction – individual genetic variants matter. This context-
dependent variation is missed in PGSs, which are weighted aggre-
gates of the average effect of a tag-SNP in a specific context esti-
mated from disproportionately European-genetic ancestry
samples that are frequently not representative of the underlying
population (e.g., wealthier and more highly educated; Curtis,
also Burt & Munafò, 2021).

Consider an analogy. If I create a weighted scale of 100,000
individual characteristics associated with success in football (con-
text) and call it “athletic propensity” (PGS), and then I apply this
“athletic propensity” algorithm to different athletic contexts like
soccer, tennis, cycling, and rowing, it will surely perform less ade-
quately in predicting success. The lower predictive ability of this
“athletic propensity” scale does not indicate that athleticism mat-
ters less for soccer or tennis, but rather follows from the fact that
these sports (as contexts) differ and with it the nature and salience
of various skills and capacities associated with success.
Additionally, like an educational-attainment PGS, using an addi-
tive, unidimensional scale of “athletic propensity for football” is
misleading (see also Richardson; Sarkar). A variety of traits
and combinations thereof facilitate success even within the
same context, as even the most cursory comparison of character-
istics of football players at different positions would suggest. So
too for the skills facilitating educational attainment across con-
texts and even for different subjects like fine art and music studies
compared to sociology and psychology or physics and chemistry.
For complex social traits, context is intertwined with almost
everything at the phenotypic level; these contingencies are expo-
nentially more complicated at the genetic level.

I reiterate this important point because the context-specificity
of PGSs continues to be underappreciated and contributes to mis-
use (see citations in the target article, Curtis; Moore; Sarkar). In
particular, existing studies and claims about the potential utility of
PGSs are insufficiently attentive to the implications of the
context- and condition-dependent nature of PGSs (but see
Mostafavi et al., 2020). To reiterate, I was not arguing that this
context-dependency makes PGSs useless. Rather, I was highlight-
ing how this context-dependency undermines their utility for cer-
tain usages – for example, comparing PGSs across contexts to
assess variation in “how much genetics matters.”

R1.9. Mine is a scientific not ethical or sociopolitical critique

Controversies about the ethical and sociopolitical implications of
including genetics in social science are longstanding. Distinguishing
my target article from extant critiques of sociogenomics, I noted
that most existing critical engagement focuses on sociopolitical and
ethical concerns.4 These works address questions such as: Is it ethi-
cally responsible to study the genetics of social outcomes profoundly

shaped by inequality? How should findings from the field of socio-
genomics be used? Who stands to benefit? Who will be harmed
(or will not benefit)? And do these ethical concerns about this
work outweigh the scientific gains?

These are not the questions addressed in my target article. My
article focuses on the scientific challenges with PGSs and the
implications for social science, as several commentators recognize
(e.g., Trejo & Martschenko). Scientific questions I address
include, for example: What do PGSs measure? Do PGSs indicate
“genetic influences” on complex social traits as they are often
used? Given, as I discuss, they do not, what is their scientific util-
ity for enhancing understanding of social behavior?

Nonetheless, some commentators charge me with being moti-
vated by sociopolitical and ethical concerns. Morris et al. allege
that I conflate scientific and ethical concerns, pointing as evidence
to my conclusion that the “scientific costs outweigh the meager
benefits” (emphasis added).5 My purported non-scientific con-
cerns about PGSs they cite include “obscuring environmental
influences,” “perpetuating a flawed concept of genetic potential,”
and “wasting resources.”6 Given the goal of social science of
explaining variation in social behavior, inasmuch as PGSs obscure
environmental influences and perpetuate a flawed concept of
genetic potential (which is my argument), this impedes scientific
advancement (i.e., is a scientific cost). Morris et al. disagree, argu-
ing that the limitations I outline are overstated and/or tractable
and thus my recommendation to use PGSs sparingly and cau-
tiously in social science is not justified. However, our disagree-
ment is scientific not sociopolitical or ethical.

R2. Assorted genuine disagreements

The previous section outlined ostensible disagreements rooted
in misunderstanding. In this section, I address genuine disagree-
ments grounded in disputes about the facts or their implications.

R2.1. PGSs and evolutionary insights

Two commentaries draw upon evolutionary perspectives to cri-
tique or refine my arguments. Focusing on the utility of PGSs,
Hong argues that I overlooked their value for “greatly and
uniquely” contributing to “the study of genetic evolution in con-
temporary societies.” In the target article, I necessarily focused on
key arguments about the utility of PGSs for social science. In my
reading, enhancing understanding of “natural selection in con-
temporary human populations” is not a common or touted use
of PGSs in social science. This is evidenced by the paucity of
such studies and the absence of discussion of the utility of
PGSs for such purposes in salient overview articles (e.g.,
Harden & Koellinger, 2020; Mills & Tropf, 2020). Notably, the
limitations of PGSs I discuss also impede their utility for the
aim of understanding selection in contemporary human popula-
tions (e.g., Berg et al., 2019; Sohail et al., 2019).

As noted in the target article, sociogenomics research tends to
suffer from a deficit of theory, including evolutionary theory. This
manifests in the dearth of theoretically driven models and con-
cepts, including phenotype selection (Boardman & Fletcher,
2021; Burt, 2022, 2023, also Charney). Drawing on evolutionary
theory, Ramus concurs with my argument that complex social
traits, like educational attainment, are not well-suited for
GWASs and PGSs because, in his view, “these complex social out-
comes are not phenotypes that are under direct natural selection.”
The solution, according to Ramus, is “redirecting geneticists’

Response/Burt: Challenging the utility of polygenic scores for social science 59

https://doi.org/10.1017/S0140525X22001145 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22001145


attention to stable traits [that] can be defined and can be the tar-
get of selection.” Focusing on cognitive outcomes, he suggests that
components underlying specific cognitive abilities, such as verbal
ability, working memory, or number sense, as well as character
traits, like self-control, intrinsic motivation, and grit are more
appropriate phenotypes as they are relatively stable and under
direct natural selection.

I concur with Ramus that more narrowly defined, stable traits
that are the target of direct natural selection are more appropriate
traits for genetic analysis than emergent, social achievements like
educational attainment. However, I disagree that the cognitive and
character traits he identifies meet these criteria – that is, are
appropriately viewed as stable traits that are the target of direct
natural selection. Scholarship in evolutionary-developmental
behavioral science undermines the notion that such cognitive
traits are stable or under direct natural selection (as being uni-
formly fitness promoting). After all, we did not evolve to maxi-
mize wealth, educational attainment, happiness, or even health
but to survive and reproduce. Moreover, evolutionary-
developmental models direct theoretical attention away from the
single-“best” traits (e.g., future time orientation, conscientiousness,
working memory, task persistence) and toward context- and
condition-dependent optimal traits (see, e.g., Belsky, Steinberg, &
Draper, 1991; Chisholm, 1999; Ellis et al., 2022; West-Eberhard,
2003). For the intelligence or educational-attainment traits of inter-
est to Ramus, this implies rather than a one-context fits all model of
intelligence, an ecologically contingent notion of “adaptive intelli-
gence” (also “successful intelligence” or “multiple intelligences”)
(Gardner, 2017; Sternberg, 2019).7

Regarding stability, evolutionary-developmental models also
recognize that contexts are constantly changing and the future
is uncertain (Boyce & Ellis, 2005). Given this reality, humans
have evolved neurobiological mechanisms facilitating adaptive
phenotype plasticity in response to external environmental factors
and relative condition (e.g., relative health, status) (Del Giudice,
Ellis, & Shirtcliff, 2011). Consistent with this model, a growing
body of research over the past two decades demonstrates that
rather than being stable, many cognitive and character traits are
malleable8 in response to environmental insults (social and phys-
ical) (Burt, Lei, & Simons, 2017; Pepper & Nettle, 2017; Shonkoff
& Phillips, 2000) and supports, including interventions, training,
and even education (Brinch & Galloway, 2012; Brody et al., 2005;
Harrison et al., 2013; Hegelund et al., 2020; Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008; Kautz, Heckman, Diris, Ter Weel, &
Borghans, 2014), as Charney also notes.

In sum, although Ramus and I agree that several “conveniently
available” social outcomes are not appropriate phenotypes for
genetic analyses, we disagree that the solution is studying specific
cognitive abilities assuming these are relatively context-insensitive
stable traits under direct natural selection.

R2.2. Downward causation = social causation

A few commentators disagree with my arguments about down-
ward causation creating what I call artificial – as socially produced
– genetic associations. Importantly, commentators do not dispute
that PGSs unavoidably capture social forces like discrimination.
What is debated is whether these forces are properly interpreted
as being social (my argument) or as genetic effects (dissenters’
argument). Before tackling this debate, I briefly address an exten-
sion of my discussion of downward causation by two commenta-
tors who agree with my arguments.

In a concurring commentary, Merchant helpfully offers a
more formal definition of artificial genetic associations produced
by downward causation as “any association between genomic var-
iants and a given outcome that is forged through social practices
rather than biochemical pathways.” In a variation of my argu-
ment, both Merchant and Charney suggest that downward causa-
tion is a form of population stratification (PS, i.e., population
substructure produced phenotype stratification) (see sect. 5.1.1).
Traditionally defined, PS reflects random allele frequency differ-
ences between subgroups that are associated with, but usually
irrelevant to, the trait. In contrast, genetic variant – trait associa-
tions reflecting downward causation, which I label artificial
genetic associations, need not be differentiated by population sub-
groups and are relevant to the phenotype, because of (at least in
part) social not genetic causation. An example is an association
between genetic variants associated with height or perceived
attractiveness and income or educational attainment, partly
rooted in the social tendency to favor more attractive and taller
people. Given this, as I note in the target article (and contra
Morris et al.) existing statistical methods designed to mitigate
population stratification confounding (e.g., within-family meth-
ods) are not able to correct for artificial genetic associations
reflecting downward causation. To be sure, the concepts I intro-
duced would benefit from deeper consideration, further revisions,
even new labels, and I hope these issues are addressed in future
work.

Dissenting commentaries argue that what I refer to as artificial
genetic associations are appropriately viewed as genetic causes that
are environmentally mediated (“indirect genetic effects” or “vertical
pleiotropy”) (Keller,9 Xia & Hill, Trejo & Martschenko, Burke).
On their account, again using the example of racial discrimina-
tion/colorism, skin pigmentation alleles cause skin pigmentation
differences, which cause differences in racial discrimination experi-
ences, which cause disparate outcomes. In their view, this makes
the experience of racial discrimination and disparate outcomes
caused (in part) by racial discrimination (e.g., higher allostatic
load, depression, criminal behavior, income, and educational
attainment) caused by and thus “indirect genetic effects” of skin
pigmentation alleles.

I disagree. In my view, the cause of racial discrimination based
(in part) on skin pigmentation is not genetic variants related to
skin pigmentation but social forces (racism/colorism) that act
“downward” on genetically influenced differences such as skin
pigmentation (see, e.g., Burt, 2018; Burt, Simons, & Gibbons,
2012; also Merchant). There is no biological pathway upward
from skin pigmentation alleles to racial animus, discriminatory
treatment, or racial segregation. In my view, this idea that racial
discrimination/colorism is caused by skin pigmentation alleles is
rooted in a misguided gene-centric worldview where causality is
something that only occurs in one direction: Upward from lower-
level parts to higher-level entities. In contrast, I adopt an ontolog-
ically pluralist view, which recognizes that higher-level emergent
phenomena (social structures) can operate causally on lower-level
factors (see, e.g., Burt, 2023; Dupré, 2012).10

Thus, although commentators and I agree that PGSs unavoid-
ably capture social forces like discrimination, we will have to agree
to disagree whether the resulting genetic associations are properly
viewed as artificial (social) or genetic influences. Trejo &
Martschenko submit that we need new language to describe
such relationships. I do not disagree. In the meantime, however,
we likely agree that we would benefit from employing existing
concepts with greater care and accuracy.
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R2.3. (In)tractability of limitations

As noted, commentaries generally concur with the challenges and
limitations that I outline for PGSs as well as the need for appro-
priate interpretation. Disagreement centers on the tractability of
the limitations and my recommendation to use PGSs sparingly
and cautiously. Several commentators argue that PGS limitations
– especially environmental confounding – are adequately miti-
gated with sophisticated methods and do not undermine the util-
ity of PGSs for social science (e.g., Keller; Morris et al.; Zietsch
et al.). As discussed in the target article, although I agree that sev-
eral of these methods substantially mitigate confounding, I dis-
agree that the environmental confounding of PGSs is an issue
that can be overcome with statistical genetic methods.

I shall not repeat my arguments from the target article explaining
why methodological limitations and gene–environment interplay in
development result in unavoidably environmentally confounded
PGSs (see also Archer & Lavie; Charney; Curtis; Moore;
Richardson;Trejo &Martschenko). Nor shall I reiterate, in response
toMorris et al. who suggest these problems are “scientifically tracta-
ble issues that have been substantially addressed,” the limitations,
questionable assumptions, and new challenges accompanying these
novel methods (see Zaidi & Mathieson, 2020; also, Boardman &
Fletcher, 2021; Charney, 2022; Domingue & Fletcher, 2020; Young
et al., 2022). Instead, I point readers to section 5 of the target article,
where I discuss these issues along with section R.2.4.

Conversely, several commentators suggest that the problems
with PGSs are worse than I outline, for example, arguing that
PGSs have “negative utility” and that social scientists should
“steer clear” of them (e.g., Curtis; Richardson; Sarkar). Although
my position is admittedly closer to the “useless” than the “very use-
ful” arguments of some commentators (e.g., Alexander et al.), my
arguments fall in the middle. I neither suggest that PGSs should
never be used or can never be useful in social science. I argued
that their utility is narrow. My position was solidified by advocates’
meager examples of utility given limitations.

Rather than tractable, my view and that of many other commen-
tators is that the various difficulties plaguing PGSs as reflecting
“genetic influences” for complex social traits are insurmountable.
Leaving aside the question of whether disentangling socio-
environmental influences from authentic genetic signals influenc-
ing complex social traits is possible in principle – and I and
many commentators think not – we are nowhere near there yet.
Some commentators admit as much but suggest “this is no reason
for despair” but rather we should continue to try to develop inno-
vative strategies to overcome these limitations (Keller; Morris
et al.). I neither counsel despair nor oppose the development of
innovative strategies, as implied. In fact, I encouraged the use of
more robust, innovative strategies (e.g., sibling difference GWASs)
in the target article. What I oppose is the misuse of PGSs, as, for
example, representing genetic (vs. environmental) influences.

R2.4. Challenges with novel advanced methods

Although scrutinizing various specific methods designed to mitigate
confounding in GWASs and PGSs is impracticable here, I neverthe-
less wish to briefly address Keller’s response to my questioning
strong assumptions underlying a popular contemporary approach
to mitigate confounding in GWASs (LDSC; Bulik-Sullivan et al.,
2015) and PGSs creation (e.g., LDPred; Vilhjálmsson et al., 2015).
I wrote that in all applications of LDPred that I have seen, studies
assume “that all SNPs are causal,” which “is curiously not defended

anywhere to [my] knowledge,” and “not consistent with available
empirical evidence.” Keller implies that my questioning such
assumptions reflects scientific naiveté or unreasonableness, given
that “models are not meant to mirror reality.”11 In his view, at
issue is “the degree to which results are biased and whether this
bias matters.”

I agree. This is why much of my target article was focused on
explaining the degree and, especially, import of these biases for
social outcomes. Although we cannot know the precise amount
of bias, given the nature of development and methodological lim-
itations, the evidence we do have suggests it is both substantial
(e.g., as little as 1/3 of the EA PGS effect is attributable to “direct
genetic effects”; Okbay et al., 2022), insufficiently corrected (e.g.,
Young et al., 2022; Zaidi & Mathieson, 2020), and matters for
understanding (Berg et al., 2019; Haworth et al., 2019; Sohail
et al., 2019). To be clear, my point was not about any one of
the specific dubious assumptions involved in these various meth-
ods, but more broadly on the reliance on assumptions, sometimes
strong, at almost every level of analysis that are questionable,
rarely justified, often obscured, and frequently unknown by non-
experts who apply the products of these techniques in social sci-
ence applications and present the resulting outcomes as being
“corrected for” environmental confounding and other issues.

R2.5. Wrong but useful for prediction?

Several commentators argued that the environmental confounding
of PGSs does not undermine their utility for risk prediction (e.g.,
Keller). On this view, PGSs are valuable as they offer practically use-
ful incremental prediction that is independent of traditional social
measures (Alexander et al.;Moreau &Wiebels). That the prediction
accuracy of PGSs is not undermined by environmental confounding
is, of course, true, with the usual caveats (e.g., context-dependency).
However, that PGSs have actionable utility for predicting individual
risks for complex social traits at the current state of the science is
widely recognized to be misguided (but see Plomin & Von
Stumm, 2022). As noted in the target article, most scholars, includ-
ing ardent supporters of PGSs for social science, “agree that PGSs do
not predict complex social outcomes with any degree of efficacy or
accuracy and, therefore, should not be used for individual predic-
tion” (citations omitted, see also Moore; Turkheimer, 2015, 2019).
Moreover, as noted in the target article, research suggests that the
incremental predictive efficacy of social science PGSs independent
of available or easily attainable phenotypic measures, such as prior
grades or parental educational attainment, is too weak to be of prac-
tical utility (e.g., Morris, Davies, & Smith, 2020).

Furthermore, we still have the “ancestry-specific” “portability
problem” (see sects. 2.3 and 3.1). As Curtis elaborated, because
PGSs are tailored to specific ancestral populations in certain con-
texts, different PGSs would have to be created for different ances-
tries (Martin et al., 2017). Further complicating matters, the
human population cannot be neatly demarcated into different
ancestral groups. “In reality, there is no bright line demarcating
comparisons ‘within’ versus ‘between’ ancestries: there is a giant
family tree of humanity, and people who share more ancestral
paths through it than others, and more similar environments
than others” (Coop & Przeworski, 2022, p. 850).

R2.6. Incautious usage

Although equivocating somewhat, some commentators seem to
suggest that most social science studies use PGSs appropriately
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(Alexander et al.; Morris et al.). Given their position, you might
think that most social science studies eschew depictions of PGSs
as “genetic influences” and adopt rigorous methods to mitigate
confounding. You would be mistaken. I refer the reader to sec-
tions 5 and 6 of the target article where I highlight several mis-
guided applications of PGSs as “genetic propensity,” “genetic
influences,” even “genetic endowment of educational attainment.”
On my reading, most – but certainly not all – current social sci-
ence applications use PGSs as “genetic influences.”

Also noted in the target article, only a paucity of sociogenomics
studies employ PGSs using the most robust available methods
designed to attenuate environmental confounding (including
within-family studies highlighted by Morris et al., Keller, Zietsch
et al., and Madole & Harden, 2023).12 Some studies, cited in the tar-
get article, fail to employ even basic, necessary adjustments in the
creation of PGSs (e.g., LD pruning). In still other cases, studies pro-
vide insufficient detail on PGSs necessary for an evaluation, for
example, saying only that the PGS was “based on the effect sizes
from the most recent GWAS of educational attainment.”

In short, incautious application with insufficient description
and/or corrections, overinterpretation, and misinterpretation of
PGSs as genetic propensity is a significant problem (see also
Fletcher). Often problematic use is accompanied by overinterpre-
tation, hype of weak evidence, and promissory notes. This brings
us to the commentary by Alexander et al. whose views starkly
diverge from mine.

R2.7. Hype and disparate interpretations

In their commentary, Alexander et al. offer a “defence of the
immediate practical utility of PGSs for maximizing trait predic-
tion” and for “advancing etiological understanding” of complex
social traits.13 In my view, their defense epitomizes what I con-
sider to be an incautious hyping of PGSs based on misinterpreta-
tion and which my article is intended to counter. However, I am
grateful for their response, which encourages direct engagement
with opposing claims for the utility of PGSs. Their arguments
sound compelling but are, in my view, partial, misguided, or
based on questionable assumptions or weak evidence.

To the utility of PGSs for prediction, Alexander et al. assert
that: “it is only legitimate to assume that PGSs [for complex social
traits] are just about to unfold their full predictive potential.” For
all the reasons I have discussed, I disagree.

Alexander et al.’s defense of the utility of PGSs for etiologic
understanding crumbles under scrutiny. Space does not permit
a critical citation-by-citation analysis of the support they present
for their perspective, so one example will have to suffice. They
write:

The growing number of studies combining PGSs with neuroimaging, pro-
teomic or other multi-omic data have already provided unique insights
into specific mechanisms through which polygenic predispositions exert
their effects on complex phenotypes. Exemplary findings from neuroimag-
ing studies include the identification of structural brain changes associated
with PGSs for neuroticism (Opel et al., 2020) and educational attainment
(Elliott et al., 2019), that, in the latter example partly mediated the asso-
ciation between participants’ PGS and their cognitive test performance
(emphases added).

This evidence is presented to contradict my claim that PGSs lack
utility for identifying specific biological pathways to social out-
comes. However, Alexander et al. mischaracterize these studies.

Neither study examines “structural brain changes”; both studies
analyze brain measurements at a single time point. For example,
Elliott et al. (2019) test the hypothesis that an educational-
attainment PGS influences individual differences in intelligence
by “contributing to the development of larger brains,” which
could “constitute a biological pathway linking genetic variation
to differences in intelligence and educational attainment”
(p. 3497). Despite what Alexander et al. imply, the results are
not particularly noteworthy. The educational-attainment PGS
explained less than half of 1% of the variance in brain size. Not
surprisingly, the mediation analyses revealed extremely weak indi-
rect effect sizes (b = 0.01), with significant effects observed in only
two of the four samples. Moreover, Elliott et al. did not follow rec-
ommended protocols to mitigate biases in PGSs as discussed in
the target article.14 Given the paltry effect sizes, one might reason-
ably expect that these estimates would be naught if such adjust-
ments for confounding had been implemented.

Leaving aside concerns about methodological limitations, these
cited studies illustratemyconcern thatPGSsarebeingused inamanner
that obscures potentially relevant socio-environmental influences
( pace Morris et al., for scientific not ethical reasons). Alexander
et al., following Elliott et al., assume that the educational-attainment
PGS causes structural brain differences, which cause educational-
attainment differences. However, this causal ordering cannot be
assumed given the significant environmental confounding of PGSs
(see also Coop & Przeworski, 2022). Our brains are co-constructed
from combined genetic and environmental influences in development.
Studies of neuroplasticity in human and rodents demonstrate that a
variety of socio-environmental forces alter the structure and function
of the brain and with it our ability to respond to ongoing challenges
and opportunities (e.g., Glasper & Neigh, 2019; Kokras et al., 2019;
Leuner, Glasper, & Gould, 2010; Sweatt, 2016). We all know the life
experiences of the average person who gets a Ph.D., J.D., or M.D.
and the person who does not graduate high school are very different.
These different experiences and contexts of development, which
include the experience of education itself, areneurobiologicallyembod-
ied. For these reasons, interpretingdifferences in brain structure orcog-
nitive test performances as reflecting causal genetic differences based
on PGS associations is unjustified.

In sum, where Alexander et al. dispute my arguments and
assert that “PGSs hold great potential for both better prediction
and understanding of complex traits in social science” (emphasis
in original), I find their evidence problematic and uncompelling,
and I strongly, albeit respectfully, disagree.

R3. Miscellaneous agreement and extensions

In this section, I consolidate additional extensions, amplifications,
and points for fertile discussion.

R3.1. Downplaying wider social forces

Expanding on a brief critique (see note 10 of the target article),
Merchant argues that so-called “dynastic effects” (or “indirect
genetic effects”) are “undertheorized and underexplored” in
GWAS/PGS studies and “often assumed to describe the direct
genetic effects of the parents’ genotypes on their parenting” (see
sect. 5.1.2; also Coop & Przeworski, 2022; Young et al., 2022).
We agree that the scholarly discourse around this form of envi-
ronmental confounding, often framed as “genetic nurture,” is
overly focused on parenting in a manner that obscures the effect
of wider socio-cultural forces. A rich body of social science
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research highlights the manifold ways that social forces beyond
parenting – for example, schools, neighborhoods, social networks
– influence important life outcomes (see, e.g., Leventhal &
Brooks-Gunn, 2000; Sampson, Raudenbush, & Earls, 1997;
Simons & Burt, 2011). Although several recent studies have use-
fully explicated and empirically demonstrated how PGSs capture
these broader social forces (Abdellaoui, Dolan, Verweij, &
Nivard, 2022; Young, Benonisdottir, Przeworski, & Kong, 2019),
a general tendency to narrowly focus on parenting remains.

R3.2. Broader untenable assumptions

Several commentators expand my critique to highlight broader
questionable assumptions underlying PGS studies, including
those that have long been critiqued. Both Richardson and
Archer & Lavie criticize the oversimplified additivity assumption
and overall “gene-centric approach” underlying much socioge-
nomics work. They emphasize the dynamic responsivity of cells
and organisms to their environments and the role of the genome
as a resource facilitating such responsivity. Both underscore the
need to replace the “gene-centric approach” with a more “biolog-
ically realistic one” (Richardson; also Richardson & Jones, 2019).

In his commentary, Sarkar writes that arguments that PGSs
have sidestepped the invalid assumptions and environmental con-
founding of prior eras of social science genetics “are not credible”;
I concur. Sarkar helpfully points out that social scientists are not
alone in their concerns about the use of GWASs and PGSs for
complex social outcomes. After noting that 1970s critics of heri-
tability studies “read like a ‘Who’s Who’ of theoretical population
and quantitative” geneticists, Sarkar notes that in recent years
prominent geneticists have criticized sociogenomics. This echoes
Bliss’s (2018) observation that although the behavioral scientists
she interviewed “spoke highly of social genomics,” she found an
“almost polar opposite response from mainstream genome scien-
tists” (p. 157). For example, Bliss wrote that a recent past presi-
dent of the American Society for Human Genetics expressed
concern “about the ways in which social genomic researchers
were characterizing social phenomena as medically relevant traits”
and remarked that “he hardly believed that any serious scientist
would take social genomics seriously” (p. 158). This recognition
that contemporary genomics scholars have published critiques
of oversimplified assumptions and/or expressed concerns about
the application of these genomic tools to study complex social
traits (e.g., Coop & Przeworski, 2022; Nelson, Pettersson, &
Carlborg, 2013; Rosenberg, Edge, Pritchard, & Feldman, 2019)
is a rebuttal to the tacit or explicit suggestion that critics of
PGSs are invariably naïve and/or politically motivated social
scientists.

R3.3. Socio-environmental epigenetics

Moore and Gooding & Auger highlight interesting, important
research linking social environmental exposures to epigenetic
mechanisms regulating gene expression as a crucial aspect of
development and a challenge to PGSs. Both commentaries suggest
I was remiss to not discuss environmental epigenetics. Despite
their centrality to development, plasticity, and individual differ-
ences, epigenetic mechanisms, per se, are not a challenge to
PGSs, which is why I did not discuss. Specifically, to the extent
that environmental influences inducing epigenetic marks are
uncorrelated with genotype, they do not confound PGS associa-
tions. In the same way that the correlation between parental

income and child educational attainment is not undermined by
the fact that parents devote money and other monetary resources
to children differently, the correlation between a PGS and some
outcome is not undermined by epigenetic mechanisms differen-
tially regulating gene expression. Conversely, if environmentally
induced epigenetic marks are correlated with PGSs, they reflect
one or more of the forms of environmental confounding that I
discuss – population stratification, familial confounding, and
downward causation – and/or genetic influences.

R3.4. Alternative approaches to overcome limitations

Several commentators concur with my main arguments but suggest
shifts in approach or additional analyses to overcome limitations of
PGSs. Highlighting the lack of consideration of GWASs in the con-
text of development, Freitag & Kelsey recommend adopting a
“developmental dynamic” approach and the inclusion of “wider
age populations” “to gain a holistic understanding of the biology
underlying developmental outcomes.” I agree that development is
insufficiently considered in GWASs and PGSs. However, for all
the reasons I outline in my target article, I believe that the limited
utility of GWASs and PGSs for complex social traits remain with a
developmental perspective. Even so, when considering the applica-
tion of GWASs and PGSs to disease traits while also recognizing
that these studies will continue in various fields regardless of
what I say about them, I agree with Freitag & Kelsey’s recommen-
dation that adopting a developmental approach would be beneficial.

Addressing the limitations of PGSs for identifying causal var-
iants and biological pathways, Fox suggests that strategies to iden-
tify “rare variants of large effect” might be useful. Insight from
such approaches, Fox argues, could provide knowledge on biolog-
ical pathways and detrimental mutations, which could be used “to
repair or counteract the deleterious effects of the mutation.” I
agree that rare variants approaches, despite their challenges,
have utility for biomedical conditions, like congenital deafness
and cystic fibrosis, which reflect a biological dysfunction.
However, for normally varying social outcomes, like educational
attainment, income, smoking behavior, and same-sex sex, I do
not share Fox’s enthusiasm for rare variant approaches. This is
because this approach necessarily rests on the assumption that
these social traits reflect a biological deficit produced by a rare
variant of large effect. However, as discussed in the target article,
the assumption that normal variation in complex social outcomes
– for example, “only” graduating high school versus graduating
college – reflects a biological deficit is unjustified (see, e.g.,
Burt, 2023).

Concurring with my arguments that PGSs lack utility for pro-
viding biological insights, Nephew, Murgatroyd, Polcari, Santos,
& Incollingo Rodriguez (Nephew et al.) argue that augmenting
PGS studies with “functional (transcriptome, methylome, metabo-
lome) and/or multimodal genetic data,” can enhance understand-
ing of biological pathways linking genetics and environments to
complex traits and knowledge of “the genetics of social phenom-
ena.” I agree with Nephew et al. that sociogenomics studies in social
science could be enhanced with such functional genetic data and
physiological measurements. However, I remain skeptical of the
utility of PGSs even with “additional, more functional assessments
of genetic context” for the reasons discussed in the target article.
Both because PGSs are environmentally confounded and because
they aggregate millions of mostly non-causal variants with minis-
cule effects, PGSs have limited utility for providing mechanistic
insights into complex social traits even when combined with
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functional and multimodal genetic data. Although I appreciate
Nephew et al. drawing attention to these data and possibilities, in
my view, these neither rescue PGSs from their limitations nor sig-
nificantly expand their utility for social outcomes at the current
state of the science.

R4. Conclusion

We’re told that science self-corrects, but what the candidate-gene literature
demonstrates is that it often self-corrects very slowly, and very waste-
fully…” Munafò (cited in Yong, 2019).

Early in my target article I noted that this new sociogenomics era
has filled the void left by the recent demise of the candidate gene
era. I acknowledged the laudable implementation of methodolog-
ical corrections, such as much-needed attention to statistical
power and correction for multiple testing. Later in the article, I
warned that “we have been here before,” with here being “excite-
ment around genetics, limitations in methodology, and substan-
tial unknown biology.” I pointed to the spectacular collapse and
the widely acknowledged failure of the candidate gene approach
to enhance understanding of social behavior as a lesson that we
should continue to heed moving forward.

In his commentary, Keller objects to my comparison of this
“PGS era” with the candidate gene era. He argues that unlike find-
ings from candidate gene studies, which are likely to be “predom-
inated by false positives,” “research findings on PGSs are very
different.” Keller avers that “PGS findings are largely replicable
and PGSs estimate true quantities.” Although Keller notes, and
I agree, that the candidate gene era “laid bare the fallibility of
the scientific process,” I believe there are several more specific les-
sons to be drawn relevant to this PGS era in social science that he
downplays. Most notable among these lessons are the challenges
with incorporating products of advanced genetic technologies
and statistical genetic methods into social science fields generally
lacking expertise in these areas. Salient assumptions and limita-
tions of PGSs are often unheeded by social scientists who con-
sume, build upon, evaluate, and even conduct these studies.
There is evidence that mistakes are being made and overlooked.

In general, the excitement around new genetic measures and
tools can foster hasty, incautious, and misguided application by
social scientists who lack training in genetics. Ours remain a sci-
entific environment that rewards novelty and exciting findings,
and genetic findings are generally more exciting and newsworthy
than other social science findings (e.g., Panofsky, 2014). To be
sure, all methodological tools can be misused and misrepresented.
However, incognizance among most social scientists of the limita-
tions of PGSs, methodological best practices, and biological
unknowns combined with the ease of use and encouragement
to use these new genomic tools in behavioral research, create a
context vulnerable to PGS misuse and misrepresentation and a
very real risk of repeating the scientific costs of the candidate
gene era, which include, in Keller’s words, “a waste of millions
of dollars and researcher time.”

The aim of my target article was to draw attention to this sci-
entific situation to promote awareness of and a more critical dia-
logue about the use and utility of PGSs in social science. Against
arguments about the great value of PGSs for social science, I
argued that there is a need to rein in the hype about their utility
for enhancing understanding of social outcomes, to be more cau-
tious and accurate in description, and to use PGSs sparingly, given
known limitations. Most commentators agreed, a few disagreed

with my conclusions or what they perceived to be the motivation
for my arguments. Moving forward, I hope these discussions con-
tinue with the aim of promoting better science.

Notes

1. In my reading, most studies are inconsistently careful; that is to say, social
scientists use, describe, and interpret PGSs appropriately in some ways but not
others. In my view, this situation results not from intentional misrepresenta-
tion but because of space constraints and the complexities of these studies,
which are usually conducted by scholars trained in social science not genetics.
2. Fletcher also calls my target article “dissonant,” “imprecise,” and “unfo-
cused,” “like other commenters.” Disappointingly, Fletcher does not specify
what, precisely, is “imprecise” or “unfocused” in my article. In my biased
view, my discussions of environmental confounding, including population
stratification, downward causation, biological uncertainty, and low resolution,
were as precise as the current science allows while also being accessible to a
broad audience including those not familiar with sociogenomics methods.
3. In several perplexing arguments, which I wish to briefly address but not
highlight, Richters writes that my “methodological case against the utility of
sociogenomics research rests on a self-refuting thesis about the environmental
confounding of PGSs with complex social traits.” Not only is my critique not
“self-refuted” (and Richters provides no explanation for such self-refutation),
but also, I provide a wealth of evidence in the target article that demonstrate
this environmental confounding, which Richters ignores. Even commentators
who disagree with my conclusions recognize that PGSs are environmentally
confounded (e.g., Morris et al.; Zietsch et al.). Further, Richters asks, “on
what authority [am I] asserting, matter-of-factly, repeatedly, and without
explanation that environmental effects masquerade as ‘genetic influences’ in
PGS studies.” I do not appeal to authority; I point to empirical evidence. I
direct interested readers to sections 5 and 6 of the target article, where I
cover these issues in detail.
4. Readers interested in such ethical and sociopolitical discussions about soci-
ogenomics/behavior genetics, which have starkly different foci than my target
article, can see e.g., Callier and Bonham (2015); Duster (2015); Martschenko
(2021); Parens, Chapman, and Press (2006); Reiss (2000); Richardson
(2015); Roberts (2015); and Sabatello and Juengst (2019).
5. This is my full sentence they quoted in part: “I argue that leaving ethical
concerns aside, the potential scientific rewards of adding PGSs to social science
are greatly overstated and the scientific costs outweigh these meager benefits
for most social science applications” (emphasis added). I assume uninten-
tional, but the omission of “leaving ethical concerns aside” and quotation of
remainder as evidence of my ethical concerns is a bit misleading.
6. Although I am perplexed thatMorris et al. deem my concern with “wasting
resources” as evidencing sociopolitical concerns, I am even more puzzled by
Morris et al.’s response. They write: “a substantial share of the funding for
GWAS comes from private and philanthropic sources who disagree with
Burt’s assessment.” I do not see their point. Perhaps Morris et al. believe
that only public funding can be a concern? Or perhaps they believe that
such private funding would go to sociogenomics or no other research? Or per-
haps their statement that “private funders disagree with [my] assessment” is
presented as evidence that I am wrong (a peculiar fallacy of authority
argument)?
7. This is, of course, does not imply that differences in such cognitive traits are
only shaped by environmental variation.
8. Malleable within limits, not infinitely malleable. As before, recognition of
malleability does not imply that genetic influences are irrelevant.
9. Notably, Keller employs examples that I agree represent indirect genetic
effects rather than social causation (e.g., between skin pigmentation alleles,
skin pigmentation, and vitamin D levels and/or propensity to skin cancer).
10. Alternatively, or additionally, our disagreement may reflect different
understandings of causality and mediation. Keller, Xia & Hill, and Trejo &
Martschenko appear to endorse a counterfactual variable substitution effects
model of causality (see Madole & Harden, 2023), with causal mediation
being demonstrated by statistical mediation. A variable (here racial discrimina-
tion) is said to statistically “mediate” all or part of the effect size of a causal
variable (skin pigmentation alleles) on an outcome if it reduces (“explains”)
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the causal variables’ effect on the outcome when controlled. For example, one
might introduce a measure of colorism or racial discrimination in a model
linking skin pigmentation alleles to, say, educational attainment or depression.
If the estimated effect of skin pigmentation alleles is reduced (as we all agree it
would be in this example), this would constitute statistical mediation.
However, causality is not demonstrated by statistical mediation, which can
be observed in the absence of causal mediation if causal ordering is not cor-
rectly specified (or all factors are not accounted for). Thus, we can agree
that in a statistical model racial discrimination will likely statistically mediate
a portion of the effect of skin pigmentation alleles on depression or educa-
tional attainment; however, such a finding does not demonstrate that skin pig-
mentation alleles cause racial discrimination. Moreover, the argument that skin
pigmentation alleles→ skin pigmentation→ racial discrimination→ lower
educational attainment is even less compelling inasmuch as educational attain-
ment is employed as a “proxy for intelligence” or “cognitive ability.”
11. Consistent with my critique, the creators of LDPred wrote: “An arguably
more reasonable prior for the effect sizes is a non-infinitesimal model, where
only a fraction of the markers are causal” (Vilhjálmsson et al., 2015).
Unfortunately, the non-infinitesimal LDPred model “is particularly sensitive
to model misspecification when applied to summary statistics with large sam-
ple sizes…it is also unstable in long-range LD regions” (Privé, Arbel, &
Vilhjálmsson, 2020). A revised version of LDPred, LDPred2, has been devel-
oped to address some of these issues, but it too necessarily rests on a variety
of assumptions (Privé et al., 2020). I have not seen LDPred2 applied in any
PGS studies, and I am not yet familiar with its revisions.
12. Few but not zero. Some studies laudably employ more rigorous within-
family methods in social science applications (see, e.g., Belsky et al., 2018;
Kweon et al., 2020).
13. Throughout Alexander et al. italicize prediction and understanding.
14. For example, they used all available SNPs from an unrelated GWAS and
did not clump or prune SNPs for LD (to avoid inflating the effects of SNPs
associated with the variant(s) driving the association).
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