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Abstract. It was shown in a previous paper (Ibáñez 2004) that for certain kind of plasmas
the coefficient of second (bulk) viscosity can be orders of magnitude larger than the coefficients
corresponding to the dynamical viscosity and to the thermometric conductivity. In the present
paper, the damping effects of the second viscosity on the hydromagnetic waves propagation are
analyzed. In particular, we study the effect of the second viscosity on the magnetoacustic waves
propagating in a photoionized gas of arbitrary metallicity Z and mean energy E of the ionizing
photons when an initial steady magnetic field H is present.
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1. Introduction.
Propagation of hydromagnetic waves is an important topic in many different contexts,

in particular in astrophysical plasmas, for instance in the solar atmospher (Roberts 2000,
Moortel & Hood 2003, Carbonell et al. 2004, Kumar et al. 2006, Kumar& Kumar 2006),
in the different regions (say, cold warm, hot regions and coronal gas)(Hannebelle & Pas-
sot 2006), as well as in clouds of high velocity in our galaxy where a mean magnetic field
of about 2− 6µG (Spitzer 1978, Parker 1979, Heiles & Troland 2005) exists. Magnetohy-
drodynamic (MHD) waves can generate turbulent motions as can also become sources
of heat when they are dissipated in the plasma by the different irreversible processes
as heat conduction, dynamical and bulk viscosities. This last dissipative process is in
general neglected and most of the works on this subject take into account only the dy-
namical viscosity and thermal diffusivity none the less the bulk viscosity is the dominant
dissipative process in several kind of plasmas, in particular, in a recombining gas, as it
was shown in a previous work (Ibáñez 2004).

The damping effect on the acoustic waves by bulk viscosity was worked out in a pre-
vious paper (Ibáñez 2004). At the present work, the previous papers (Ibáñez & Escalona
1993 and Ibáñez 2004) are generalized, to accounting the damping effects of the second
viscosity on the MHD waves, (effects generally neglected in works on damping of MHD
waves in astrophysical as well as laboratory classical plasmas). For context, a photoion-
ized hydrogen gas will be analyzed.

2. Basic Equations
It has been well established that hydromagnetic waves propagate though plasmas where

magnetic fields are present. In fact, consider a static fluid in a steady state defined by a
magnetic field H, a pressure p and a density ρ, small adiabatic fluctuations of density
ρ′, pressure p′, and velocity v, where a magnetic field h is assumed to be superposed.
Then the linearized MHD equations are simplified to

337

https://doi.org/10.1017/S1743921308015056 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308015056


338 M. H. Ibáñez S.

div v =0 ,
∂h
∂t

= curl(v × h) ,

∂ρ′

∂t
+ ρ∇ · v =0 , (2.1)

∂v
∂t

= −u2
0

ρ
∇ρ′ − 1

4πρ
(H × curl h) ,

where the magnetic field is assumed to be frozen in the plasma, i.e. the conductivity
σ → ∞ (Landau & Lifshitz 1966, Braginskii 1965). If, additionally, the fluctuations are
assumed to be of the form of plane waves ∼ exp[i(k.r − ωt)] where the wave number k
is taken along the x − axis (without losing of generality) and the magnetic field H lays
on the plane x, y, the equations(2.1) are further simplified to

uhz = −vxHx , uvz = −Hxhz

4πρ
, (2.2)

uhy = vxHy − vyHx , uvy = −Hxhy

4πρ
, (2.3)

vx(u − u2
0

u
) =

Hyhy

4πρ
, (2.4)

where u2
0 = (∂p/∂ρ)s is the isentropic sound velocity and u = ω/k is the phase velocity.

Equations (2.2) define Alfvén’s waves propagating with velocity

u = ax =
Hx√
4πρ

= a cos(θ) , (2.5)

where a is the Alfvén velocity and θ is the angle between H and k.
On the other hand, the set of Eqs. (2.3) and (2.4) define the magnetosonic waves for

which the compatibility condition gives

u2
f ,s =

1
2

{
a2 + u2

0 ±
[
(a2 + u2

0)
2 − 4a2u2

0 cos2(θ)
]1/2

}
, (2.6)

where the plus and minus signs in Eq. (2.6) correspond to fast and slow magnetosonic
waves, respectively (Landau & Lifshitz 1966). The two groups of waves above propagate
independently of each other.

3. Damping of Magnetosonic Waves by Bulk Viscosity.
It can be easily realized that if one takes into account thermal diffusion of heat as well

as the dynamical and bulk viscosities, they only affect the magnetosonic modes. Then,
to evaluate the associated damping effect one can generalize the analysis carried out in
the previous Section by introducing the corresponding viscosity terms in the equation
of motion. The corresponding terms in the energy equation are second order terms,
and therefore they can be neglected. However, due to the fact that the bulk viscosity
coefficient exhibits dispersion, it is simpler to apply the Landau and Lifshitz method
(Landau & Lifshitz 1987) that has also been applied in the analysis of the damping of
sound waves by bulk viscosity (Ibáñez 2004). That is, instead of the equation of state,
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one considers a motion in which viscosity is neglected but the pressure p′ is given by the
formulae

p′ =
τρ

1 − iωτ
(c2

0 − c2
∞)∇ · v , (3.1)

where τ is the relaxation time

τ = [∂X(ρ, T, ξ)/∂ξ]−1 , (3.2)

X(ρ, T, ξ) is the net chemical rate and ξ is the chemical parameter denoting the net
advance of the reactions. The sound velocities c2

∞ and c2
0 are defined by

c2
∞ =

(
∂p

∂ρ

)
ξ

, c2
0 =

(
∂p

∂ρ

)
eq

=
(

∂p

∂ρ

)
ξ

+ ξ′0

(
∂p

∂ξ

)
ρ

, (3.3)

where ξ0 is the value of the chemical parameter at chemical equilibrium and ξ′0 =
(∂ξ0/∂ρ) , also at equilibrium.

Formally, k = ω/u0 remains applicable but now the expression for u2
0 involved in Eq.

(2.6)] must be changed to c2 , where

c2 =
(

∂p

∂ρ

)
=

c2
0 − iωτc2

∞
1 − iωτ

, (3.4)

The quantity c, however, no longer denotes the velocity of sound being complex (Landau
& Lifshitz 1987).

If the Alfvén velocity a , as well as c, are normalized to the sound velocity c0 and the
frequency ω is normalized to 1/τ such that a2 = H2/(4πρc2

0), and

c2 =
1 + β2ω2

1 + ω2 + i

(
ω − β2ω

)
1 + ω2 , (3.5)

where β2 = c2
∞/c2

0 , then Eq. (2.6) still holds, but with uf,s being a complex quantity also
normalized to c0 .

On the other hand, for magnetosonic waves the relation k = ω/uf,s remains valid.
Therefore, for the fast and slow magnetosonic waves kf = kf 1 + ikf 2 , and ks = ks1 + iks2 ,
respectively, where kjm (j = f, s and m = 1, 2) are real quantities. All the above wave
numbers are assumed to be normalized to the wave number kτ = 1/τc0 ; consequently,
the phase velocity also normalized to c0 will be given by vph = ω/kj1 and the damping
per unit wave length becomes kj1/kj2 . In particular, from Eq. (2.6) follows that for θ = 0,
u2

f = a2 and u2
s = c2 , i.e., the fast and slow modes become an undamped Alfvén and a

damped sound wave, respectively; and for θ = π/2, u2
f = a2 + c2 and u2

s = 0, i.e., only
the fast magnetosonic damped wave propagates.

4. Photoionized Hydrogen Plasma with Metallicity
For context, the damping effect of the bulk viscosity on magnetosonic waves propa-

gating in an optically thin hydrogen plasma with metallicity heated and ionized by a
background radiation field of mean photon energy E and ionization rate ς will be eval-
uated. For such a plasma the net rate function X(ρ, T, ξ) and the net cooling rate per
unit mass L(ρ, T, ξ) are given, respectively, by

X(ρ, T, ξ) = N0ρ[ξ2α − (1 − ξ)ξγc ] − (1 − ξ)(1 + φ)ς, (4.1)
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L(ρ, T, ξ) = N 2
0 ρ[(1−ξ)ZΛH Z +ξZΛeZ +(1−ξ)ξΛeH +ξ2ΛeH + ]−N0(1−ξ)ς[Eh+(1+φ)χh ].

(4.2)
(Corbelli & Ferrara 1995), where φ is the number of secondary electrons, N0 is the Avo-
gadro number, Eh is the heat released per photoionization (Shull & Van Steenberg 1985);
ΛH Z , ΛeZ , ΛeH and ΛeH + are, respectively, the cooling efficiencies by collisions neutral
hydrogen-ions and metal atoms (Launay & Roueff 1977, Dalgarno & McCray 1972),
electrons-ions and metal atoms (Spitzer 1978), Lyα emission by neutral hydrogen Dal-
garno & McCray 1972) and hydrogen recombination, on the spot approximation (Seaton
1959).

Figure 1. Two-layer model depicting a stratified solar atmosphere. The lower part of the at-
mosphere (index 1) is separated from the upper part (index 2) by a density and temperature
discontinuity at z = L. Waves are launched at z = 0 and propagate in the vertical z-direction.

Figures 1(a) and 1(b) are plots of the parameter β2 as a function of temperature (in the
rage where the equilibrium X = 0 and L = 0 exists) for a plasma with solar abundances
Z = 1 and a pure hydrogen gas Z = 0, respectively. In both plots N0ρ = 1 and curves for
three values of E = 15, 40 and 102 eV are shown. The ratio c2

∞/c2
0 > 1, regardless of the

value of the temperature and of the values of the free parameters N0ρ and Z. However,
the temperature at which a maximum is reached strongly depends on the photon energy
E, but its value depends weakly on E.

In Figs 1(c) and 1(d) the ratio a2 between the Alfvén velocity H2/4πρ and the sound
velocity at the equilibrium c2

0 (second relation in Eq. (3.3)) are plotted as a function
of temperature for H = 2 × 10−6 G (mean value of the galactic magnetic field), with
the values of the remaining free parameters corresponding to Figs 1(a) and 1(b), re-
spectively. For a plasma with solar abundances, a2 strongly decreases with temperature
(see Fig. 1(c)) due to the strong increase of the equilibrium sound speed c2

0 when T in-
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creases. Instead, for a pure hydrogen plasma such decrease is weak as it is apparent from
Fig. 1(d), i.e., for a given value of the magnetic field the above ratio is very sensitive to
the metallicity of the plasma and weakly depends on the photoionizing energy E.

Figure 2. The phase velocity of the sonic (a) and magnetosonic (b) mode for No ρ = 1, Z = 1,
E = 102eV and θ = 0 (a) and θ = π/2.(b), θ = π/3 (c) and (d)

Figures 2(a) and 2(b) are plots of the phase velocity of both the sonic (slow mode)
and the magnetosonic mode, as a function of dimensionless frequency for θ = 0 and π/2,
respectively, and a temperature T = 1.1 × 104 K at which β2 is a maximum and for
Z = 1, N0ρ = 1, E = 102 eV. The slow mode becomes a damped sonic mode which
for ω << 1 propagates with velocity c0 , as it apparent from Fig. 2(a). The fast mode
becomes an Alfvén mode. For θ = π/2, the fast mode becomes a magnetosonic damped
mode with phase velocity u2

f = a2 +c2 as shown in Fig. 2(b). The phase velocity becomes
vs = 0 for the slow mode.

Figures 2(c) and 2(d) are plots of the phase velocity as function of the dimensionless
frequency ω of the slow and fast modes, respectively, for θ = π/3. The respective damping
per unit wave length kj1/kj2 (j = f, s) as a function of the dimensionless frequency ω
is plotted in Figs. 3(a) for the slow mode when θ = 0 (solid line), the fast magnetosonic
mode when θ = π/2 (dashed line), and for the fast and slow magnetosonic modes when
θ = π/3 (dotted lines). The slow mode is less damped than the fast one. In all the above
cases under consideration, the maximum damping occurs for values of the dimensionless
frequencies close to 1, i.e., where the period of the oscillation is close to the relaxation
time τ , and where the strongest change in the corresponding phase velocity also takes
place (see Figs. 2 and 3).

In general, the same qualitative behavior is shown by the phase velocity and the re-
spective damping for both, the slow and fast mode, when the parameters Z,E, T and
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Figure 3. (a) The damping rate per unit of wave length as a function of the dimensionless
frequency ω for the corresponding modes on Figs. 1(c) to 2(d).(b) The relaxation time τ (in
years) as a function of temperature for plasmas with Z = 0 (dashed lines) and Z = 1 and
E = 15, 40 and 102eV.

Figure 4. The phase velocity of the fast (a) and slow(b) mode as a function of temperature
for a wave with maximum damping per unit wave length (ω = 1), for Z = 1 and three values
of the photoionizing energy E = 15 (solid lines), 40 (dash lines) and 102 eV (point lines). and
the corresponding damping per unit wave length (c) and (d). Solid and dash lines correspond
to the fast and slow mode, respectively.

H are varied. However, the time scales involved can be very different, as it can be seen
from Fig. 3(b) where the relaxation time τ has been plotted as a function of the tem-
perature for a hydrogen plasma (dashed lines) and for a plasma with solar abundances
(solid lines). The two sets of three lines correspond to a photon energy of E = 102, 40
and 15 eV, from the top for the set with Z = 1 and from the right to the left for the set
with z = 0, respectively.
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In Fig. 4 the phase velocity of the fast and slow mode as well as the respective damping
length are plotted as function of temperature for a dimensionless frequency ω = 1 (where
the maximum damping occurs), for a plasma with Z = 1, an angle θ = π/3, and three
values of the photoionizing energy. The phase velocity of the fast and slow modes are
shown in Figs 4(a) and 4(b), respectively, for the three photoionizing energies E = 15
(solid lines), 40 (dash lines) and 102 eV (point lines). The corresponding damping per
unit wave length is shown in Figures 4(c) and 4(d). Both velocities strongly decay with
temperature, as it is expected from simple physical arguments. The strongest damping
occurs at higher plasma temperature where the energy transfer becomes much more
effective. Finally, one can point out that the damping becomes weaker when the strength
of the magnetic field increases.

5. Summary
In summary, in reacting plasmas, magnetosonic waves are damped by bulk viscosity;

the strongest damping occurs at frequencies ω close to the inverse of the chemical relax-
ation time (1/τ) at which the strongest change of the phase velocity for both fast and
slow modes also occurs. Depending on the value of the angle between the wave num-
ber and the magnetic field mode, crossing may occur. The above effects are shown, in
particular, for a photoionized (by photons with mean energy E) hydrogen plasma with
arbitrary metallicity Z and particle number density N0ρ embedded in a magnetic field
of the order of the observed mean galactic magnetic field (∼ 2µG).
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