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ON 3-CONNECTED MATROIDS 

JAMES G. OXLEY 

1. Introduction. This paper extends several graph-theoretic results 
to matroids. The main result of Tutte's paper [10] which introduced the 
theory of w-connection for matroids was a generalization of an earlier 
result of his [9] for 3-connected graphs. The latter has since been 
strengthened by Halin [3] and in Section 3 of this paper we prove a 
matroid analogue of Halin's result. Tutte used his result for 3-connected 
graphs to deduce a recursive construction of all simple 3-connected 
graphs having at least four vertices. In Section 4 we generalize this by 
giving a recursive construction of all 3-connected matroids of rank at 
least three. Section 2 contains a generalization to minimally n-connected 
matroids of a result of Dirac [2] for minimally 2-connected graphs. 

The terminology used here for matroids and graphs will in general 
follow [12] and [1] respectively. If 5 is a set, then 5 = I i U I 2 W . . . 
U J r a indicates that 5 is the disjoint union of X\, X2, . . . , Xm. The 
ground set of the matroid M will be denoted by E(M) and, if T C E(M), 
we denote the rank of T by rkT. We shall write rkM for rk(E(M)). The 
restriction of M to E(M)\T will sometimes be denoted by M\T or, if 
T = {#i, x2, . . . , xm), by M\%u %2y ' • • > Xm. Likewise, the contraction of 
M to E(M)\T will be written as M/T or M/xu x2, . . . , xm. A 3-element 
circuit of M will be called a triangle, and a 3-element cocircuit, a triad. 

UN and M are matroids on 5* and S ^J e respectively, then M is an 
extension of N if M\e = N, and M is a lift of TV if M * is an extension of 
N*. We call M a non-trivial extension of N if e is neither a loop nor a coloop 
of My and e is not in a 2-element circuit of M. Likewise, M is a non-
trivial lift of N if M* is a non-trivial extension of TV*. 

Familiarity will be assumed with the concept of w-connection for 
graphs as defined, for example, in [1, p. 42]. We now recall the definition 
of w-connection for matroids. If k is a positive integer, the matroid M is 
k-separated if there is a subset T of E(M) such that |T| ^ k, \E(M)\ 
T\ ^ k and 

rk T + r k ( £ ( M ) \ r ) - rk M = k - 1. 

If there is a least positive integer j such that M is j-separated, it is called 
the connectivity \(M) of M. If there is no such integer, we say that 
\(M) = oo. 
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(1.1) [7, Lemma 2; 4, Theorem 1]. Let M be a matroid having m ele-
I TYl I 

ments. Then\(M) = oo if and only if M = Uk>mwherek = \-^\or 

The matroid M is said to be n-connected for any positive integer n such 
that n ^ X(M). It is routine to show [10, (12)] that 

(1.2) \(M) = \(M*). 

An element e of a 3-connected matroid M is essential if neither M\e 
nor ikf/e is 3-connected. A matroid or graph H is minimally n-connected 
if H is w-connected and, for all elements e ol E(H), H\e is not n-connected. 
The following two results are easy to check. 

(1.3) Let M be an n-connected matroid of rank r where r, n ^ 2. Then 
either M is minimally n-connected or, for some element x of M, the restriction 
M\x is n-connected and has rank r. 

(1.4) [13, Lemma 3.1; 5, Lemma 2.2]. / / M is an n-connected matroid 
and \E(M)\ è 2(n — 1), then every circuit and every cocircuit of M con
tains at least n elements. 

The notions of ^-connectedness of a graph G and ^-connectedness of its 
cycle matroid M(G) do not, in general, coincide (see [11, 12, 6]). How
ever, [11, pp. 1-2]: 

(1.5) / / G is a simple graph having at least 4 vertices, then G is 3-con
nected if and only if M(G) is 3-connected. 

Let G be a simple 3-connected graph. An edge e of G is essential if 
neither G\e nor G/e is both simple and 3-connected. It is straightforward 
to show that e is an essential edge of G if and only if e is an essential 
element of M(G). 

Suppose that r ^ 3. The wheel Wr of order r is a graph having r + 1 
vertices, r of which lie on a cycle (the rim) ; the remaining vertex (the 
hub) is joined by a single edge (a spoke) to each of the other vertices. The 
whirliVT of order r is a matroid on E(Wr) having as its circuits all cycles 
of Wr other than the rim, as well as all sets of edges formed by adding a 
single spoke to the set of edges of the rim. The terms "rim" and "spoke" 
will be applied in the obvious way in both M(Wr) a n d ^ r , and we shall 
usually call M^iVr) a wheel rather than the cycle matroid of a wheel. 
Each of M(Wr) &x\AWT is a self-dual matroid of rank r [10, 4.7]. Tutte's 
main result in [10] is the following. 

(1.6) THEOREM. [10, 8.3]. Let M be a 3-connected matroid. Then every 
element of M is essential if and only if M is isomorphic to a wheel or a whirl. 

The next theorem strengthens Tutte's result. It will be proved in 
Section 3. 
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(1.7) THEOREM. Let M be a minimally ^-connected matroid having at 
least four elements. If every element in a triad is essential, then Mis isomorphic 
to a wheel or a whirl. 

2. Minimally w-connected matroids. The following lemma, which 
will be needed in both Sections 3 and 4, can also be used to strengthen 
Lemmas 2.6 and 4.2 of [5] and to prove other similar results. 

(2.1) LEMMA. Let M be a matroid having at least two elements and n be an 
integer exceeding one. Suppose that M/e is n-connected, but M is not. Then 
either e is a loop of M, or M has a cocircuit which contains e and has fewer 
than n elements. 

Proof. As M is not n-connected, M is (n — j) -separated for some posi
tive integer j . That is, E(M) = X VJ F where |Z | , | Y\ ^ n — j and 

(2.2) rk X + rk Y - rk M = n - j - 1. 

Suppose, without loss of generality, that e £ X. Moreover, assume that e 
is not a loop of M. Then, if rk' denotes the rank function of M/e, 

(2.3) rk ' (XV) + rk ' (F) - rk'(M/e) 

= ( r kX + r k ( F U e ) - r k J I f ) - 1. 

If r k ( F U e ) = rk F, then, by (2.2), we have 

rk ' (ZV) + rk r(F) - rk'(M/e) = n - j - 2. 

But \X\e\ ^ n — j — 1 and | Y\ ^ n — j — 1, hence M/e is (n — j — 1)-
separated; a contradiction. We may therefore assume that 

(2.4) r k ( F U e ) = rk F + 1. 

It follows, by (2.2) and (2.3), that 

rk r(XV) + rk ' (F) - rk ; (MA) = n - j - 1. 

Thus, as M/e is w-connected, |-X\e| < n — j . But \X\ ^ n — j , hence 
\X\ = n - j . Therefore, r k l g n - j , and, by (2.4), rk F ^ rk M - 1. 
Hence, by (2.2), rk F = rk M - 1. Thus, as r k ( F W e) = rk F + 1, 
the set X contains a cocircuit containing e and having at most n — j 
elements. 

We now recall two results from [5] which will be needed later. 

(2.5) LEMMA. [5, Theorem 3.2]. Let M be a minimally n-connected 
matroid of rank r where r, n ^ 2. If n ^ r, then \E(M)\ ^ r + n — 1 with 
equality being attained if and only if M = Ur,r+n-i' If n > r, then 
\E(M)\ = 2r - 1 and M £Ë Ur,2r-i. 
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(2.6) THEOREM. [5, Theorem 2.9]. Let M be a minimally ^-connected 
matroid having at least four elements. Then for all elements e such that e is 
not in a triad, M/e is minimally ^-connected. 

The next theorem generalizes a result of Dirac [2, Theorem 4] for 
minimally 2-connected graphs. 

(2.7) THEOREM. Suppose that M is a minimally n-connected matroid 
where n ^ 2. Let T be a subset of E(M) such that \T\ ^ 2 and M\T is 
n-connected. Then M\T is minimally n-connected. 

Proof. We suppose first that \T\ < 2(n — 1). Then, if M\T is m-
separated, \T\ ^ 2m and so m < n — 1. But M\T is n-connected, hence 
we have a contradiction. It follows that \(M\T) = GO . 

Now let rk M = r. Then, by Lemma 2.5, if n > r, M ~ Ur,2r-i and 
clearly no restriction of Mother than U\t\ is w-connected. If r ^ n, then, 
by Lemma 2.5 again, \E(M)\ ^ r + n — 1 ^ 2n — 1 and so, by (1.4), 
M has no circuit of size less than n. Hence either M\ T is free, or rk (M\ T) 
^ n — 1. The first case is excluded because M\T is ^-connected and 
\T\ ^ 2. Hence rk(M\T) ^ n - 1 and so, as \T\ < 2{n - 1), we have 
by (1.1) that M\T ^ Un-\^n-z and the required result follows. 

We may now suppose that \T\ ^ 2{n - 1) and that \E{M)\ ^ \T\ + 
1 ^ 2n — 1. Assume that for some element / of T, the matroid Af|(TV) 
is n-connected. Then, as M\t is not w-connected, E(M\t) = X \J Y 
where \X\,\Y\^n - I and 

(2.8) rk X + rk Y - rk(M\t) = n - 2. 

Since M is rc-connected, r k ( I U 0 = r k X + l , and r k ( F U / ) = 
rk Y + 1. Let L = TV. Then, by submodularity, 

(2.9) r k ( i n i ) + r k ( F H L ) - r k L g ( r k Z + rk L - r k ( I U L ) ) 

+ ( r k F + r k Z , - r k ( F U L ) ) - r k L 

= ( rkX + rk F - rk (M\0) 

+ (rkL + rk(M\/) - r k ( I U L ) - r k ( F U L ) ) . 

But 

r k ( I U I ) + r k ( F W L ) ^ r k L + r k ( X U F) 

= r k L - f r k ( M V ) . 
Therefore, by (2.8) and (2.9), 

r k ( I H L ) + r k ( F H L ) - r k L ^ n - 2 . 

Since M\L is w-connected, it follows that \X C\ L\ ^ n — 2or\Y C\ L\ g 
n — 2. Assume, without loss of generality, that \X C\ L\ ^ n — 2. Now 
M|L is certainly (n — 1)-connected. Moreover, \L\ — \T\ — 1 ^ 2n — 3, 
so, by (1.4), no cocircuit of M\L has fewer than n — 1 elements. Thus 
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X C\L does not contain a cocircuit of M\L, and so vk(Y C\ L) = rkL. 
But, as rk(FU /) = rkF + 1, it follows that 

r k ( ( F H L) U /) = r k ( F H L) + 1. 

Thus 

rkT = rk(LVJ/) è r k ( ( r n i ) U / ) = r k ( F H L ) + 1 

= r k L + 1. 
Hence / is a coloop of M|T; a contradiction. 

3. Wheels and whirls. Theorem 1.7 is motivated by Halin's result 
[3, Satz 7.3] that a minimally 3-connected graph is a wheel if every edge 
incident with a vertex of degree 3 is essential. In this section we prove 
Theorem 1.7. The following result of Tutte will be needed. 

(3.1) LEMMA. [10, 7.3]. Let M be a 3-connected matroid having at least 
four elements. Suppose {a, b, c) is a triad of M such that neither M/a nor 
M/b is ^-connected. Then M has a triangle containing a and just one of b 
and c. 

Proof of Theorem 1.7. In view of Theorem 1.6, it suffices to show that 
every element of M is essential. We argue by induction on \E{M)\. 
Since there is no minimally 3-connected matroid having 4 elements, the 
result is vacuously true for \E(M)\ = 4. Assume that the required result 
holds for \E(M)\ = k - 1 and let \E(M)\ = k ^ 5. If every element of 
AT is in a triad, then every element is essential. We may therefore assume 
that M has an element e which is not in a triad. Then, by Theorem 2.6, 
M/e is minimally 3-connected. 

Now let x be an element in a triad of M/e. Then x is in a triad of M, so 
x is essential in M. Therefore M/x is not 3-connected. If M/x/e is 3-
connected, then, by Lemma 2.1, e is a loop of M/x, or M/x has a cocircuit 
containing e and having fewer than 3 elements. In both cases, (1.4) is 
contradicted and so M/x, e is not 3-connected. Therefore every element 
of M/e which is in a triad is essential, and so, by the induction assump
tion, M/e is isomorphic to a wheel or a whirl. Thus every element of M/e 
is in a triad of M/e and hence is in a triad of M. Therefore every element 
of M/e is essential for M. As M/e is 3-connected, e is not essential for M 
and so e is not in a triad of M. 

By Lemma 3.1, since every element of M other than e is in a triad and 
is essential, every such element is in a triangle of M. We now distinguish 
two cases: 

(I) rk(M/e) ^ 4; and (II) rk(M/e) < 4. 

(I) Suppose that rk(M/e) ^ 4. If T is a triangle of M/e, then T con
tains a unique element t of the rim of M/e. Moreover, T is the only 
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triangle of M/e containing /, and / is in some triangle of M. Therefore, 
since e is not in a triangle of M, every triangle of M/e is a triangle of M. 
Now label E(M/e) as shown in Figure 1 and let C* be a cocircuit of M 
which contains e and is of minimum size among such cocircuits. 

FIGURE 1 

We shall now show that we can assume that C* contains an element of 
the rim of M/e. For, if C* does not contain such an element, then C* 
contains a spoke, say Xi, of M/e. Since {xi, x2, yi\ is a circuit of M, it 
follows that \C* P\ {#i, #2, ̂ îîl ^ 1- Hence, as j \ (t C*, x2 £ C*. Simi
larly, since x2 € C* and ;y2 ? C*, x3 G C*. By repeated application of this 
argument, we obtain that C* contains {e, Xj,x2, . . . ,xr\. Thus |C*| ^ 
r + 1 . But, as M has corank r, no cocircuit of M has more than r + 1 
elements. Since i f certainly has a cocircuit containing e and some element 
of the rim of M/e, it follows, by the choice of C*, that we may indeed 
assume that C* contains an element of the rim of M/e. 

Suppose, without loss of generality, that yi £ C*. Then, as \C* C\ 
{xu x2, yi}\ 7e 1, Xi £ C* or x2 £ C*, so say Xi G C*. Since C* does not 
contain the triad {xi, yi} yr}} yr ([ C*. Now consider the cocircuits 
{#i> yu J A and C*. By exchange, M has a cocircuit Pi* such that 

eeDSQ (C* U y r ) V L 

By the choice of C*, it follows that |Z>i*| = \C*\ and so 

Dj* = (C* U yr)\xi. 

But {xi, 3/1, x2} is a triangle of M, so 

| £ i * n { x i , y i , * 2 } | ^ 1. 

Hence x2 Ç Z>i*. Since {x2, 3>i, y2] £ £>i*, it follows that y2 $_ Di*. 
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Now consider D* and \x2, Ji, y2}. By exchange, M has a cocircuit D2* 
such that 

ee D2* C (/?!* U y2)\*2 . 

Since |Z?i*| = |C*|, it follows by the choice of C* that 

£2* = (DS U y2) \ x2. 

But Pi* = ( C * U y r ) V i , so 

D2* = (C*U{y2,y r})\{jc1>3C2}, 

and therefore 

\D2* H {xi, x2, yi}| = 1; 

a contradiction, since {xi, x2, yi} is a circuit of AT. 
(II) Suppose that rk(M/e) < 4. Then, as M/e is isomorphic to a wheel 

or a whirl, rk(M/é?) è 3 and hence M/e ^ M(7^3) or l^3 . Therefore 
M*V = M ( # 3 ) oxIV*. Moreover, as g is not in a triad of M, it follows 
that e is not in a triangle of M*. It is now straightforward to check that 
M*/e ^ U2,6. Thus M\e = U^%. But the latter is 3-connected and this 
is a contradiction to the fact that M is minimally 3-connected. 

4. Constructing 3-connected matroids. In this section we give a 
matroid generalization of Tutte's recursive construction [9, § 5] of all 
simple 3-connected graphs having at least 4 vertices. 

(4.1) THEOREM. A matroid of rank at least three is ^-connected if and 
only if it is a wheel, a whirl or t/3,5, or is obtainable from one of these 
matroids by a sequence of the following operations: 

(i) non-trivial extensions; and 
(ii) non-trivial lifts. 

Proof. To show that every 3-connected matroid of rank at least 3 is 
obtainable as described, we argue by induction on rk M. Suppose that M 
is a 3-connected matroid having rank 3. Then, by (1.3), M has a restric
tion N which is minimally 3-connected of rank r. Moreover, either 
N = M, or N = M\x1} x2j . . . , xm where M\xi, x2, . . . , xt is 3-connected 
for all i < m. Thus M = N or M can be obtained from N by a sequence 
of non-trivial extensions. 

Now by Lemma 2.5, as rk N = 3, |£(iV)| ^ 5 with equality being 
attained if and only if N == f/3,5. Moreover, one can check that 
\E(N)\ S 6 with equality being attained here if and only if N = M ( # 3 ) 
oxWz (see [5, Theorems 4.7 and 5.2]). The required result follows for 
rk M = 3. 

Next assume that the required result holds for rk M = r — 1 and let 
rk M = r ^ 4. Then, by (1.3) again, M has a restriction TV which is 
minimally 3-connected of rank r and such that M is obtained from N by 
a sequence of non-trivial extensions. Since N is minimally 3-connected, 
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either every element of N is essential or else N has a non-essential 
element/. In the first case, by Theorem 1.6, N is isomorphic to a wheel 
or a whirl and hence the required result holds. In the second case, N/f 
is 3-connected and has rank r — 1. Thus, by the induction assumption, 
N/f is obtainable from a wheel, a whirl or ^3,5 by a sequence of the 
operations (i) and (ii). Since N is 3-connected, N is a non-trivial lift of 
N/f, and hence N, and therefore M, is obtainable in the prescribed way. 

The converse follows without difficulty by combining Lemma 2.1 with 
(1.2). 
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