ON 3-CONNECTED MATROIDS

JAMES G. OXLEY

1. Introduction. This paper extends several graph-theoretic results to matroids. The main result of Tutte's paper [10] which introduced the theory of n-connection for matroids was a generalization of an earlier result of his [9] for 3 -connected graphs. The latter has since been strengthened by Halin [3] and in Section 3 of this paper we prove a matroid analogue of Halin's result. Tutte used his result for 3-connected graphs to deduce a recursive construction of all simple 3 -connected graphs having at least four vertices. In Section 4 we generalize this by giving a recursive construction of all 3 -connected matroids of rank at least three. Section 2 contains a generalization to minimally n-connected matroids of a result of Dirac [2] for minimally 2 -connected graphs.

The terminology used here for matroids and graphs will in general follow [12] and [1] respectively. If S is a set, then $S=X_{1} \cup X_{2} \cup \ldots$ $\cup X_{m}$ indicates that S is the disjoint union of $X_{1}, X_{2}, \ldots, X_{m}$. The ground set of the matroid M will be denoted by $E(M)$ and, if $T \subseteq E(M)$, we denote the rank of T by $\mathrm{rk} T$. We shall write $\operatorname{rk} M$ for $\operatorname{rk}(E(M))$. The restriction of M to $E(M) \backslash T$ will sometimes be denoted by $M \backslash T$ or, if $T=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, by $M \backslash x_{1}, x_{2}, \ldots, x_{m}$. Likewise, the contraction of M to $E(M) \backslash T$ will be written as M / T or $M / x_{1}, x_{2}, \ldots, x_{m}$. A 3-element circuit of M will be called a triangle, and a 3 -element cocircuit, a triad.

If N and M are matroids on S and $S \cup e$ respectively, then M is an extension of N if $M \backslash e=N$, and M is a lift of N if M^{*} is an extension of N^{*}. We call M a non-trivial extension of N if e is neither a loop nor a coloop of M, and e is not in a 2 -element circuit of M. Likewise, M is a nontrivial lift of N if M^{*} is a non-trivial extension of N^{*}.

Familiarity will be assumed with the concept of n-connection for graphs as defined, for example, in [1, p. 42]. We now recall the definition of n-connection for matroids. If k is a positive integer, the matroid M is k-separated if there is a subset T of $E(M)$ such that $|T| \geqq k, \mid E(M) \backslash$ $T \mid \geqq k$ and

$$
\operatorname{rk} T+\operatorname{rk}(E(M) \backslash T)-\operatorname{rk} M=k-1
$$

If there is a least positive integer j such that M is j-separated, it is called the connectivity $\lambda(M)$ of M. If there is no such integer, we say that $\lambda(M)=\infty$.

Received June 13, 1979.
(1.1) [7, Lemma 2; 4, Theorem 1]. Let M be a matroid having m elements. Then $\lambda(M)=\infty$ if and only if $M \cong U_{k, m}$ where $k=\left\lfloor\frac{m}{2}\right\rfloor$ or $\left\lceil\frac{m}{2}\right\rceil$.

The matroid M is said to be n-connected for any positive integer n such that $n \leqq \lambda(M)$. It is routine to show $[\mathbf{1 0},(12)]$ that
(1.2) $\quad \lambda(M)=\lambda\left(M^{*}\right)$.

An element e of a 3 -connected matroid M is essential if neither $M \backslash e$ nor M / e is 3 -connected. A matroid or graph H is minimally n-connected if H is n-connected and, for all elements e of $E(H), H \backslash e$ is not n-connected. The following two results are easy to check.
(1.3) Let M be an n-connected matroid of rank r where $r, n \geqq 2$. Then either M is minimally n-connected or, for some element x of M, the restriction $M \backslash x$ is n-connected and has rank r.
(1.4) [13, Lemma 3.1; $\mathbf{5}$, Lemma 2.2]. If M is an n-connected matroid and $|E(M)| \geqq 2(n-1)$, then every circuit and every cocircuit of M contains at least n elements.

The notions of n-connectedness of a graph G and n-connectedness of its cycle matroid $M(G)$ do not, in general, coincide (see [11, 12, 6]). However, [11, pp. 1-2]:
(1.5) If G is a simple graph having at least 4 vertices, then G is 3 -connected if and only if $M(G)$ is 3 -connected.

Let G be a simple 3-connected graph. An edge e of G is essential if neither $G \backslash e$ nor G / e is both simple and 3 -connected. It is straightforward to show that e is an essential edge of G if and only if e is an essential element of $M(G)$.
Suppose that $r \geqq 3$. The wheel \mathscr{W}_{r} of order r is a graph having $r+1$ vertices, r of which lie on a cycle (the rim); the remaining vertex (the $h u b$) is joined by a single edge (a spoke) to each of the other vertices. The whirl \mathscr{W}^{r} of order r is a matroid on $E\left(\mathscr{W}_{r}\right)$ having as its circuits all cycles of \mathscr{W}_{r} other than the rim, as well as all sets of edges formed by adding a single spoke to the set of edges of the rim. The terms "rim" and "spoke" will be applied in the obvious way in both $M\left(\mathscr{W}_{r}\right)$ and \mathscr{W}^{r}, and we shall usually call $M\left(\mathscr{W}_{r}\right)$ a wheel rather than the cycle matroid of a wheel. Each of $M\left(\mathscr{W}_{r}\right)$ and \mathscr{W}^{r} is a self-dual matroid of rank r [$\left.\mathbf{1 0}, 4.7\right]$. Tutte's main result in $[\mathbf{1 0}]$ is the following.
(1.6) Theorem. [10, 8.3]. Let M be a 3 -connected matroid. Then every element of M is essential if and only if M is isomorphic to a wheel or a whirl.

The next theorem strengthens Tutte's result. It will be proved in Section 3.
(1.7) Theorem. Let M be a minimally 3 -connected matroid having at leastfour elements. If every element in a triad is essential, then M is isomorphic to a wheel or a whirl.
2. Minimally n-connected matroids. The following lemma, which will be needed in both Sections 3 and 4, can also be used to strengthen Lemmas 2.6 and 4.2 of [5] and to prove other similar results.
(2.1) Lemma. Let M be a matroid having at least two elements and n be an integer exceeding one. Suppose that M / e is n-connected, but M is not. Then either e is a loop of M, or M has a cocircuit which contains e and has fewer than n elements.

Proof. As M is not n-connected, M is $(n-j)$-separated for some positive integer j. That is, $E(M)=X \cup Y$ where $|X|,|Y| \geqq n-j$ and
(2.2) $\mathrm{rk} X+\operatorname{rk} Y-\operatorname{rk} M=n-j-1$.

Suppose, without loss of generality, that $e \in X$. Moreover, assume that e is not a loop of M. Then, if rk^{\prime} denotes the rank function of M / e,

$$
\begin{align*}
& \mathrm{rk}^{\prime}(X \backslash e)+\mathrm{rk}^{\prime}(Y)-\mathrm{rk}^{\prime}(M / e) \tag{2.3}\\
& \quad=(\mathrm{rk} X+\mathrm{rk}(Y \cup e)-\mathrm{rk} M)-1 .
\end{align*}
$$

If $\operatorname{rk}(Y \cup e)=\operatorname{rk} Y$, then, by (2.2), we have

$$
\mathrm{rk}^{\prime}(X \backslash e)+\mathrm{rk}^{\prime}(Y)-\mathrm{rk}^{\prime}(M / e)=n-j-2 .
$$

But $|X \backslash e| \geqq n-j-1$ and $|Y| \geqq n-j-1$, hence M / e is $(n-j-1)$ separated; a contradiction. We may therefore assume that

$$
\begin{equation*}
\operatorname{rk}(Y \cup e)=\mathrm{rk} Y+1 \tag{2.4}
\end{equation*}
$$

It follows, by (2.2) and (2.3), that

$$
\mathrm{rk}^{\prime}(X \backslash e)+\mathrm{rk}^{\prime}(Y)-\mathrm{rk}^{\prime}(M / e)=n-j-1 .
$$

Thus, as M / e is n-connected, $|X \backslash e|<n-j$. But $|X| \geqq n-j$, hence $|X|=n-j$. Therefore, $\mathrm{rk} X \leqq n-j$, and, by (2.4), rk $Y \leqq \mathrm{rk} M-1$. Hence, by (2.2), rk $Y=\operatorname{rk} M-1$. Thus, as $\operatorname{rk}(Y \cup e)=\operatorname{rk} Y+1$, the set X contains a cocircuit containing e and having at most $n-j$ elements.

We now recall two results from [5] which will be needed later.
(2.5) Lemma. [5, Theorem 3.2]. Let M be a minimally n-connected matroid of rank r where $r, n \geqq 2$. If $n \leqq r$, then $|E(M)| \geqq r+n-1$ with equality being attained if and only if $M \cong U_{r, r+n-1}$. If $n>r$, then $|E(M)|=2 r-1$ and $M \cong U_{r, 2 r-1}$.
(2.6) Theorem. [5, Theorem 2.9]. Let M be a minimally 3-connected matroid having at least four elements. Then for all elements e such that e is not in a triad, M / e is minimally 3-connected.

The next theorem generalizes a result of Dirac [2, Theorem 4] for minimally 2 -connected graphs.
(2.7) Theorem. Suppose that M is a minimally n-connected matroid where $n \geqq 2$. Let T be a subset of $E(M)$ such that $|T| \geqq 2$ and $M \mid T$ is n-connected. Then $M \mid T$ is minimally n-connected.

Proof. We suppose first that $|T|<2(n-1)$. Then, if $M \mid T$ is m separated, $|T| \geqq 2 m$ and so $m<n-1$. But $M \mid T$ is n-connected, hence we have a contradiction. It follows that $\lambda(M \mid T)=\infty$.

Now let rk $M=r$. Then, by Lemma 2.5 , if $n>r, M \cong U_{r, 2 r-1}$ and clearly no restriction of M other than $U_{1,1}$ is n-connected. If $r \geqq n$, then, by Lemma 2.5 again, $|E(M)| \geqq r+n-1 \geqq 2 n-1$ and so, by (1.4), M has no circuit of size less than n. Hence either $M \mid T$ is free, or $\operatorname{rk}(M \mid T)$ $\geqq n-1$. The first case is excluded because $M \mid T$ is n-connected and $|T| \geqq 2$. Hence $\operatorname{rk}(M \mid T) \geqq n-1$ and so, as $|T|<2(n-1)$, we have by (1.1) that $M \mid T \cong U_{n-1,2_{n-3}}$ and the required result follows.

We may now suppose that $|T| \geqq 2(n-1)$ and that $|E(M)| \geqq|T|+$ $1 \geqq 2 n-1$. Assume that for some element t of T, the matroid $M \mid(T \backslash t)$ is n-connected. Then, as $M \backslash t$ is not n-connected, $E(M \backslash t)=X \cup Y$ where $|X|,|Y| \geqq n-1$ and
(2.8) $\mathrm{rk} X+\mathrm{rk} Y-\operatorname{rk}(M \backslash t)=n-2$.

Since M is n-connected, $\operatorname{rk}(X \cup t)=\operatorname{rk} X+1$, and $\operatorname{rk}(Y \cup t)=$ rk $Y+1$. Let $L=T \backslash t$. Then, by submodularity,

$$
\begin{align*}
& \mathrm{rk}(X \cap L)+\mathrm{rk}(Y \cap L)-\mathrm{rk} L \leqq(\mathrm{rk} X+\mathrm{rk} L-\mathrm{rk}(X \cup L)) \tag{2.9}\\
& +(\mathrm{rk} Y+\operatorname{rk} L-\operatorname{rk}(Y \cup L))-\operatorname{rk} L \\
& =(\mathrm{rk} X+\operatorname{rk} Y-\operatorname{rk}(M \backslash t)) \\
& +(\mathrm{rk} L+\operatorname{rk}(M \backslash t)-\operatorname{rk}(X \cup L)-\operatorname{rk}(Y \cup L))
\end{align*}
$$

But

$$
\begin{aligned}
\operatorname{rk}(X \cup L)+\operatorname{rk}(Y \cup L) \geqq \operatorname{rk} L+\operatorname{rk}(X \cup & Y) \\
& =\operatorname{rk} L+\operatorname{rk}(M \backslash t)
\end{aligned}
$$

Therefore, by (2.8) and (2.9),

$$
\operatorname{rk}(X \cap L)+\operatorname{rk}(Y \cap L)-\operatorname{rk} L \leqq n-2
$$

Since $M \mid L$ is n-connected, it follows that $|X \cap L| \leqq n-2$ or $|Y \cap L| \leqq$ $n-2$. Assume, without loss of generality, that $|X \cap L| \leqq n-2$. Now $M \mid L$ is certainly $(n-1)$-connected. Moreover, $|L|=|T|-1 \geqq 2 n-3$, so, by (1.4), no cocircuit of $M \mid L$ has fewer than $n-1$ elements. Thus
$X \cap L$ does not contain a cocircuit of $M \mid L$, and $\operatorname{sork}(Y \cap L)=\mathrm{rk} L$. But, as $\operatorname{rk}(Y \cup t)=\operatorname{rk} Y+1$, it follows that

$$
\operatorname{rk}((Y \cap L) \cup t)=\operatorname{rk}(Y \cap L)+1
$$

Thus

$$
\begin{aligned}
\mathrm{rk} T=\operatorname{rk}(L \cup t) \geqq \operatorname{rk}((Y \cap L) \cup t)=\operatorname{rk}(Y \cap L) & +1 \\
= & \operatorname{rk} L+1 .
\end{aligned}
$$

Hence t is a coloop of $M \mid T$; a contradiction.
3. Wheels and whirls. Theorem 1.7 is motivated by Halin's result [3 , Satz 7.3] that a minimally 3 -connected graph is a wheel if every edge incident with a vertex of degree 3 is essential. In this section we prove Theorem 1.7. The following result of Tutte will be needed.
(3.1) Lemma. [10, 7.3]. Let M be a 3 -connected matroid having at least four elements. Suppose $\{a, b, c\}$ is a triad of M such that neither M / a nor M / b is 3 -connected. Then M has a triangle containing a and just one of b and c.

Proof of Theorem 1.7. In view of Theorem 1.6, it suffices to show that every element of M is essential. We argue by induction on $|E(M)|$. Since there is no minimally 3 -connected matroid having 4 elements, the result is vacuously true for $|E(M)|=4$. Assume that the required result holds for $|E(M)|=k-1$ and let $|E(M)|=k \geqq 5$. If every element of M is in a triad, then every element is essential. We may therefore assume that M has an element e which is not in a triad. Then, by Theorem 2.6, M / e is minimally 3 -connected.

Now let x be an element in a triad of M / e. Then x is in a triad of M, so x is essential in M. Therefore M / x is not 3 -connected. If $M / x / e$ is $3-$ connected, then, by Lemma $2.1, e$ is a loop of M / x, or M / x has a cocircuit containing e and having fewer than 3 elements. In both cases, (1.4) is contradicted and so $M / x, e$ is not 3 -connected. Therefore every element of M / e which is in a triad is essential, and so, by the induction assumption, M / e is isomorphic to a wheel or a whirl. Thus every element of M / e is in a triad of M / e and hence is in a triad of M. Therefore every element of M / e is essential for M. As M / e is 3 -connected, e is not essential for M and so e is not in a triad of M.

By Lemma 3.1, since every element of M other than e is in a triad and is essential, every such element is in a triangle of M. We now distinguish two cases:
(I) $\mathrm{rk}(M / e) \geqq 4$; and (II) $\mathrm{rk}(M / e)<4$.
(I) Suppose that $\mathrm{rk}(M / e) \geqq 4$. If T is a triangle of M / e, then T contains a unique element t of the rim of M / e. Moreover, T is the only
triangle of M / e containing t, and t is in some triangle of M. Therefore, since e is not in a triangle of M, every triangle of M / e is a triangle of M. Now label $E(M / e)$ as shown in Figure 1 and let C^{*} be a cocircuit of M which contains e and is of minimum size among such cocircuits.

Figure 1
We shall now show that we can assume that C^{*} contains an element of the rim of M / e. For, if C^{*} does not contain such an element, then C^{*} contains a spoke, say x_{1}, of M / e. Since $\left\{x_{1}, x_{2}, y_{1}\right\}$ is a circuit of M, it follows that $\left|C^{*} \cap\left\{x_{1}, x_{2}, y_{1}\right\}\right| \neq 1$. Hence, as $y_{1} \notin C^{*}, x_{2} \in C^{*}$. Similarly, since $x_{2} \in C^{*}$ and $y_{2} \notin C^{*}, x_{3} \in C^{*}$. By repeated application of this argument, we obtain that C^{*} contains $\left\{e, x_{1}, x_{2}, \ldots, x_{r}\right\}$. Thus $\left|C^{*}\right| \geqq$ $r+1$. But, as M has corank r, no cocircuit of M has more than $r+1$ elements. Since M certainly has a cocircuit containing e and some element of the rim of M / e, it follows, by the choice of C^{*}, that we may indeed assume that C^{*} contains an element of the rim of M / e.
Suppose, without loss of generality, that $y_{1} \in C^{*}$. Then, as $\mid C^{*} \cap$ $\left\{x_{1}, x_{2}, y_{1}\right\} \mid \neq 1, x_{1} \in C^{*}$ or $x_{2} \in C^{*}$, so say $x_{1} \in C^{*}$. Since C^{*} does not contain the triad $\left\{x_{1}, y_{1}, y_{r}\right\}, y_{r} \notin C^{*}$. Now consider the cocircuits $\left\{x_{1}, y_{1}, y_{r}\right\}$ and C^{*}. By exchange, M has a cocircuit $D_{1}{ }^{*}$ such that

$$
e \in D_{1}^{*} \subseteq\left(C^{*} \cup y_{r}\right) \backslash x_{1}
$$

By the choice of C^{*}, it follows that $\left|D_{1}^{*}\right|=\left|C^{*}\right|$ and so

$$
D_{1}^{*}=\left(C^{*} \cup y_{r}\right) \backslash x_{1} .
$$

But $\left\{x_{1}, y_{1}, x_{2}\right\}$ is a triangle of M, so

$$
\left|D_{1}^{*} \cap\left\{x_{1}, y_{1}, x_{2}\right\}\right| \neq 1 .
$$

Hence $x_{2} \in D_{1}{ }^{*}$. Since $\left\{x_{2}, y_{1}, y_{2}\right\} \nsubseteq D_{1}{ }^{*}$, it follows that $y_{2} \notin D_{1}{ }^{*}$.

Now consider $D_{1}{ }^{*}$ and $\left\{x_{2}, y_{1}, y_{2}\right\}$. By exchange, M has a cocircuit $D_{2}{ }^{*}$ such that

$$
e \in D_{2}^{*} \subseteq\left(D_{1}^{*} \cup y_{2}\right) \backslash x_{2} .
$$

Since $\left|D_{1}{ }^{*}\right|=\left|C^{*}\right|$, it follows by the choice of C^{*} that

$$
D_{2}{ }^{*}=\left(D_{1}^{*} \cup y_{2}\right) \backslash x_{2} .
$$

But $D_{1}^{*}=\left(C^{*} \cup y_{r}\right) \backslash x_{1}$, so

$$
D_{2^{*}}=\left(C^{*} \cup\left\{y_{2}, y_{r}\right\}\right) \backslash\left\{x_{1}, x_{2}\right\},
$$

and therefore

$$
\left|D_{2}{ }^{*} \cap\left\{x_{1}, x_{2}, y_{1}\right\}\right|=1
$$

a contradiction, since $\left\{x_{1}, x_{2}, y_{1}\right\}$ is a circuit of M.
(II) Suppose that $\mathrm{rk}(M / e)<4$. Then, as M / e is isomorphic to a wheel or a whirl, $\operatorname{rk}(M / e) \geqq 3$ and hence $M / e \cong M\left(\mathscr{W}_{3}\right)$ or \mathscr{W}^{3}. Therefore $M^{*} \backslash e \cong M\left(\mathscr{W}_{3}\right)$ or \mathscr{W}^{3}. Moreover, as e is not in a triad of M, it follows that e is not in a triangle of M^{*}. It is now straightforward to check that $M^{*} / e \cong U_{2,6}$. Thus $M \backslash e \cong U_{4,6}$. But the latter is 3 -connected and this is a contradiction to the fact that M is minimally 3 -connected.
4. Constructing 3 -connected matroids. In this section we give a matroid generalization of Tutte's recursive construction [9, §5] of all simple 3 -connected graphs having at least 4 vertices.
(4.1) Theorem. A matroid of rank at least three is 3 -connected if and only if it is a wheel, a whirl or $U_{3,5}$, or is obtainable from one of these matroids by a sequence of the following operations:
(i) non-trivial extensions; and
(ii) non-trivial lifts.

Proof. To show that every 3 -connected matroid of rank at least 3 is obtainable as described, we argue by induction on rk M. Suppose that M is a 3 -connected matroid having rank 3 . Then, by (1.3), M has a restriction N which is minimally 3 -connected of rank r. Moreover, either $N=M$, or $N=M \backslash x_{1}, x_{2}, \ldots, x_{m}$ where $M \backslash x_{1}, x_{2}, \ldots, x_{i}$ is 3 -connected for all $i<m$. Thus $M=N$ or M can be obtained from N by a sequence of non-trivial extensions.

Now by Lemma 2.5, as $\mathrm{rk} N=3,|E(N)| \geqq 5$ with equality being attained if and only if $N \cong U_{3,5}$. Moreover, one can check that $|E(N)| \leqq 6$ with equality being attained here if and only if $N \cong M\left(\mathscr{W}_{3}\right)$ or \mathscr{W}^{3} (see [5, Theorems 4.7 and 5.2]). The required result follows for rk $M=3$.
Next assume that the required result holds for $\mathrm{rk} M=r-1$ and let $\operatorname{rk} M=r \geqq 4$. Then, by (1.3) again, M has a restriction N which is minimally 3 -connected of rank r and such that M is obtained from N by a sequence of non-trivial extensions. Since N is minimally 3 -connected,
either every element of N is essential or else N has a non-essential element f. In the first case, by Theorem $1.6, N$ is isomorphic to a wheel or a whirl and hence the required result holds. In the second case, N / f is 3 -connected and has rank $r-1$. Thus, by the induction assumption, N / f is obtainable from a wheel, a whirl or $U_{3,5}$ by a sequence of the operations (i) and (ii). Since N is 3-connected, N is a non-trivial lift of N / f, and hence N, and therefore M, is obtainable in the prescribed way.

The converse follows without difficulty by combining Lemma 2.1 with (1.2).

References

1. J. A. Bondy and U. S. R. Murty, Graph theory with applications (Macmillan, London; American Elsevier, New York, 1976).
2. G. A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967), 204-216.
3. R. Halin, Zur Theorie der n-fach zusammenhängenden Graphen, Abh. Math. Sem. Univ. Hamburg 33 (1969), 133-164.
4. T. Inukai and L. Weinberg, Theorems on matroid connectivity, Discrete Math. 22 (1978), 311-312.
5. J. G. Oxley, On matroid connectivity (submitted).
6. On a matroid generalization of graph connectivity. (submitted).
7. W. R. H. Richardson, Decomposition of chain-groups and binary matroids, Proc. Fourth South-Eastern Conf. on Combinatorics, Graph Theory, and Computing (Utilitas Mathematica, Winnipeg, 1973), 463-476.
8. P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B (to appear).
9. W. T. Tutte, A theory of 3 -connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 (1961), 441-455.
10. - Connectivity in matroids, Can. J. Math. 18 (1966), 1301-1324.
11. Wheels and whirls, in Théorie des matrö̈des (Lecture Notes in Mathematics Vol. 211, Springer-Verlag, Berlin, Heidelberg, New York, 1971), 1-4.
12. D. J. A. Welsh, Matroid theory (Academic Press, London, New York, San Francisco, 1976).
13. P.-K. Wong, On certain n-connected matroids, J. Reine Angew. Math. 299/300 (1978), 1-6.

Australian National University, Canberra, Australia

