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Abstract

Hypercentrally embedded subgroups of finite groups can be characterized in terms of permutability as
those subgroups which permute with all pronormal subgroups of the group. Despite that, in general,
hypercentrally embedded subgroups do not permute with the intersection of pronormal subgroups, in this
paper we prove that they permute with certain relevant types of subgroups which can be described as
intersections of pronormal subgroups. We prove that hypercentrally embedded subgroups permute with
subgroups of prefrattini type, which are intersections of maximal subgroups, and with J^-normalizers,
for a saturated formation !?. In the soluble universe, ^"-normalizers can be described as intersection of
some pronormal subgroups of the group.

2000 Mathematics subject classification: primary 20D20, 20D30, 20E15; secondary 20D35, 20D40.
Keywords and phrases: permutability, factorizations.

1. Introduction

All groups considered in this paper are finite.
Within the general theory of subnormal subgroups, a considerable amount of effort

has been addressed in the last few years to study certain conditions of permutability.
In this context, subgroups which permute with all Sylow subgroups, or 5-permutable
subgroups, are of particular interest. 5-permutable subgroups were introduced by
Kegel in [14]. In this paper, Kegel proved that 5-permutable subgroups form a
sublattice of the lattice of subnormal subgroups. The influence of 5-permutable
subgroups in the structure of groups is quite clear. For instance, if each maximal
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subgroup of any Sylow subgroup of a group G is 5-permutable in G, then G is
supersoluble [17]. Another example is that, if A and B are two 5-permutable soluble
subgroups of a group G such that G = AB, then G is soluble [18]. We may find many
other results on this line in the literature (see for example [5] or [1]).

A special type of 5-permutable subgroup is a hypercentrally embedded subgroup.
Recall that a subgroup H of a group G is in the hypercentre ZX{G) (that is, the last
member of the ascending central series of G) if and only if H normalizes each Sylow
subgroup of G. A subgroup T of a group G is said to be hypercentrally embedded in
G if the section TG/ TG lies in the hypercentre of the quotient group G/ TG-

where Tc denotes the core of T in G, that is, the largest normal subgroup of G
contained in T and TG denotes the normal closure of T in G, that is, the smallest
normal subgroup containing T.

In [10] it is proved that hypercentrally embedded subgroups form a sublattice of the
lattice of 5-permutable subgroups. Carocca and Maier, in [6], and Schmid, in [16],
characterized hypercentrally embedded subgroups in the following way.

PROPOSITION 1.1. Let G be a group and T a subgroup of G. The following
conditions are equivalent:

(i) T is a hypercentrally embedded subgroup of G.
(ii) T permutes with every pronormal subgroup of G.
(iii) T is a S-permutable subgroup which permutes with the normalizers of all

Sylow subgroups of G.

A short proof of these equivalences appears in [9].
It is clear that if a subgroup T of a group G permutes with two subgroups A and B,

then T permutes with the join {A, B) but not, in general, with the intersection A n B.
In general, hypercentrally embedded subgroups do not permute with the intersection
of pronormal subgroups (see Example 1 of Section 5).

Our aim here is to prove that hypercentrally embedded subgroups permute with
some types of relevant subgroups which, in general, are non-pronormal. These
subgroups are the ^"-normalizers, for a saturated formation &, and subgroups of
prefrattini type. The importance of J^-normalizers and prefrattini subgroups in soluble
groups come from the fact that, defined in terms of intersection of some special
pronormal subgroups, they localize some particular information of the normal structure
of the whole group. The extension of these concepts to the general finite, non-
necessarily soluble, universe, following the well-known program of Wielandt, was
an important challenge succesfully solved in [2, 3, 4]. These generalizations, done
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with no use of the classical Hall theory of soluble groups, give new light to non-
arithmetical properties of maximal subgroups. It is surprising to realize that, in the
general context, although ^"-normalizers and subgroups of prefrattini type lose their
cover and avoidance properties, they keep their excellent permutability properties,
which are reinforced by the results we present in this paper.

It is worth remarking that, in general, these factorizations are not valid for S-
permutable subgroups instead of hypercentrally embedded subgroups (see Example 2
of Section 5). In fact, Schmid proved in [16] that, in the soluble universe, hyper-
centrally embedded subgroups can be characterized as those 5-permutable subgroups
which permute with some system normalizer of the group.

A related result appears in [10] involving ^•-hypercentrally embedded subgroups
of soluble groups. These subgroups are a natural extension to the concept of hyper-
centrally embedded subgroups by considering the ^"-hypercentre of the group. In
[10] it is proved that if & is a saturated formation containing all nilpotent groups
and G is a soluble group, then an 5-permutable subgroup of G is ^-hypercentrally
embedded in G if and only if it permutes with all ^"-normalizers of G. This result is
an extension of the above mentioned Schmid theorem ([16]).

In Section 4, we extend the factorizations obtained in the two previous sections.
In the soluble case, subgroups whose Sylow subgroups are also Sylow subgroups of
hypercentrally embedded subgroups also permute with the ^"-normalizers and with
the subgroups of prefrattini type associated to a fixed Hall system of the group.

Let us summarize the main properties of hypercentrally embedded subgroups which
are used in the sequel.

PROPOSITION 1.2 ([10]). Let G be a group and T a hypercentrally embedded
subgroup of G. Then, if K is a normal subgroup of G and M < G, we have

(i) the subgroup TK is a hypercentrally embedded subgroup of G and TK/K is
a hypercentrally embedded subgroup ofG/K;

(ii) ifK < M and M/K is a hypercentrally embedded subgroup ofG/K, then M
is a hypercentrally embedded subgroup of G;

(iii) the subgroup M PI T is a hypercentrally embedded subgroup of M;
(iv) the subgroup T H K is a hypercentrally embedded subgroup of G;
(v) T is a subgroup with the cover and avoidance property in G.

2. Factorizations with ^"-normalizers

In this section we assume that & is a saturated formation.
Our next result shows that in fact hypercentrally embedded subgroups of finite

not-necessarily soluble groups permute with j£"-normalizers for any saturated forma-
tion <?.
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First we observed that ,^-normalizers are not pronormal subgroups in general. In
the symmetric group of degree 4, G = Sym(4), the conjugacy class of all Sylow
normalizers, or o/K-normalizers, is the set Nor^(G) = {(t) : t is a transposition}. If
(t) e Nor^(G) were pronormal in G, then (r) would be pronormal and subnormal,
and then normal, in any Sylow 2-subgroup of G containing it, which is not true.

However, ^"-normalizers can be described in soluble groups as intersections of
some pronormal subgroups (see [7, V.2.2]).

THEOREM 2.1. Let & be a saturated formation and let G be a group. If T is
a hypercentrally embedded subgroup of G and D is an &-normalizer of G, then
TD = DT.

PROOF. Suppose that the theorem is not true and let G be a minimal counterexample.
In G we choose a hypercentrally embedded subgroup T such that T does not permute
with some ^-normalizer D of G and T is of minimal order with these conditions.

Since ̂ -normalizers are preserved under epimorphic images and the same happens
to hypercentrally embedded subgroups by Proposition 1.2 (i), it follows that D(TN)
is a subgroup of G for every non-trivial normal subgroup N of G, by minimality of G.
This implies that T is a core-free subgroup of G and then T < Z^iG). In particular,
T is a nilpotent group.

Every Sylow subgroup of T is hypercentrally embedded in G and then, if T is not
of prime-power order, every Sylow subgroup of T permutes with D, by minimality
of T. But this implies that T permutes with D, a contradiction. Consequently,
T is a subnormal p-subgroup of G, for some prime p. For any prime q ^ p, if
Q e Sy\q(G), then T normalizes Q. Clearly T is a normal Sylow p-subgroup of QT,
thus Q centralizes T. Hence T is centralized by all p '-elements of G. This is to say
that Op(G) < CG(T).

Since obviously D is a proper subgroup of G, there exists an ^"-critical maximal
subgroup M of G such that D is an & -normalizer of M, by [2, Theorem 3.5]. Let
H/K be any chief factor of G under TG. Since TG < Z^iG), then H/K is a central
(abelian) chief factor of G.

If H/K is avoided by M, then M is a normal subgroup of G complementing H/K.
In particular \G : M\ = p = \H/K\, for the prime p dividing the order of T.
Since M is ^"-abnormal in G, it follows that p £ char J?". But D is an & -group
and then a //-group, by [7, IV.4.3]. Therefore, D < OP(G) < Cc(7). In particular,
DT = TD, which is a contradiction. Consequently, M covers every chief factor of G
under TG. This implies that T < TG < M. By Proposition 1.2 (iii), it follows that T
is hypercentrally embedded in M. Since D is an ^-normalizer of M, we have that TD
is a subgroup of M, by minimality of G. This is the final contradiction. •

REMARK 1. The converse of Theorem 2.1 is not true in general. For this, see
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Example 3 of Section 5.

REMARK 2. Theorem 2.1 is also true for #-hypercentrally embedded subgroups.
Each j£"-normalizer of a group G covers all .^"-central chief factors of G, by [2,

Theorem 4.3]. Thus the ̂ "-hypercentre of G is a subgroup of any ^"-normalizer of G.
Since J^-normalizers are preserved under epimorphic images ([2, Proposition 4.2]),
it is not difficult to prove that each ^"-hypercentrally embedded subgroup of a finite
group permute with every j^-normalizer of the group.

The converse is not true in general. In fact, in [10] it is proved that, to obtain the con-
verse in the soluble case, the saturated formation & must contain all nilpotent groups
and the subgroup which permutes with all ^"-normalizers must be S-permutable in
the group.

Hypercentrally embedded subgroups are subgroups with the cover and avoidance
property (see [10, Theorem 5]). In the soluble universe, ^"-normalizers are subgroups
which cover the ^-central chief factors and avoid the ^-eccentric ones. The factor-
ization of the previous theorem produces, in a soluble group, a new subgroup with the
cover and avoidance property.

THEOREM 2.2. Let Gbea soluble group and T a hypercentrally embedded subgroup
of G. Let &be a saturated formation and D an &-normalizer of G.

(i) The subgroup D T possesses the cover and avoidance property in G. More
precisely, D T avoids the &-eccentric chief factors of G avoided by T and covers the
rest.

(ii) The subgroup D C\T possesses the cover and avoidance property in G. More
precisely, DDT covers the &-central chief factors of G covered by T and avoids the
rest.

PROOF. Using routine order arguments, the statement (ii) can be deduced from (i).
Therefore, we have only to prove (i).

Assume that the result is false and let G be a minimal counterexample. Let H/K
be a chief factor of G. If either H/K is covered by T or is ^"-central, then H/K is
covered by D T. Thus we may assume that there exists an ^"-eccentric chief factor
H/K of G which is avoided by T but is not avoided by D T.

Write N = TG and suppose that N ^ 1. Since T avoids H/K, then HN/KN is a
chief factor of G which is G-isomorphic to H/K. Moreover,

TDHN=(TD H)N < KN.

Thus, if a is the epimorphism of G onto G/N, we have that Ha/Ka is an ^"-eccentric
chief factor of Ga and the hypercentrally embedded subgroup T" of G° avoids H" /K".
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Therefore, by minimality of G, it follows that (DT)a avoids H" /Ka. This means
that DTHHN = DTHKN. Thus D m / / < (DTDH)N = (DTDK)N. Since
H n N < K, we have

DTDH = (DTnH)n(DTnK)N = (DT n K)(DTD H fl N) = DT (1 K

and DT avoids H/K, which is a contradiction. Therefore, necessarily, TG = 1.
Thus T is a subgroup of Z^G).

Let us consider the Hall system E of G associated to D, and Gp, the Hall
p'-subgroup of G in E, where p is the prime number dividing the order of H/K.
Since T normalizes every pronormal subgroup of G, then T < NG(GP'r\GFlj')), where
F is the canonical local definition of &. By [7, V.3.2 (c)], we have that DT < DGP.
If Dp denotes a Sylow p -subgroup of D, then Dp is also a Sylow p -subgroup of D Gp>.
Consequently, DTK D H < DGPK r\H = DpKnH = DKDH = K. This to
say that DT avoids H/K and this is the final contradiction. •

3. Factorizations with subgroups of prefrattini type

The classical prefrattini subgroups of soluble groups, introduced by Gaschiitz and
extended by Hawkes (see [11, 12]), are defined as intersections of certain maximal
subgroups into which a fixed Hall system reduces. Obviously this choice of maxi-
mal subgroups cannot be done in the general non-soluble universe. The extension
of prefrattini subgroups to finite non-necessarily soluble groups presented in [3] is
possible by a new approach which does not depend on the arithmetical properties
which characterize solubility. This is the origin of the systems of maximal subgroups,
introduced in [3]. Later, in [4], the same authors introduced the concept of a weakly
solid (or simply w-solid) set of maximal subgroups following some ideas due to
Tomkinson. Equipped with this new definition, the authors were able to extend the
idea of subgroups of prefrattini type to a finite group. In a group G, given a w-solid
set of maximal subgroups X, the AT-prefrattini subgroup of G associated to a system
of maximal subgroups S? is just the intersection of all maximal subgroups in X n 5?.

' DEFINITION 3.1. Let G be a group, X a w-solid set of maximal subgroups of G and
y a system of maximal subgroups of G.

(a) ([4]) Suppose that X n S? £ 0 and form the subgroup W(G,X,y) =
f ) M e X n y M. We say that W(G, X, y) is the X-prefrattini subgroup of G associated
to y . Moreover, if X n y = 0, then we put W(G,X,Sfi) = G.
(b) We will say that a subgroup W is a subgroup of prefrattini type of G if W is

the .Y-prefrattini subgroup of G associated to y , for some system y of maximal
subgroups of G and some w-solid set X of maximal subgroups of G.
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When X is the set of all maximal subgroups of a soluble group, the .Y-prefrattini
subgroups are just the classical Gaschiitz prefrattini subgroups associated to the Hall
systems. In fact, as it was remarked in [4], this definition extends the classical ones due
to Gaschiitz, Hawkes, Forster and Kurzweil (see [7] for details of these constructions).

A maximal subgroup is pronormal into the group. Thus a subgroup of prefrattini
type is always an intersection of pronormal subgroups. But, in general, it is not
pronormal. In the symmetric group of degree 4, G = Sym(4), if t is a transposition
and we consider a core-free maximal subgroup M of G such that t e M and a Sylow
2-subgroup P of G such that t e P, then {t) = P D M. Therefore, {t) is a subgroup
of prefrattini type of G. But (r) is non-pronormal in G.

Our aim here is to obtain a factorization of subgroups of prefrattini type with
hypercentrally embedded subgroups in a finite group. Observe that the new subgroup
appearing is again a subgroup of prefrattini type.

THEOREM 3.2. Let G be a group and X a w-solid set of maximal subgroups
ofG.

(i) For any subgroup H of G, the set XH = [M 6 X : H < M] is a w-solid set
of maximal subgroups of G.

(ii) Let T be a hypercentrally embedded subgroup of G. If y is a system of
maximal subgroups of G, then the Xj-prefrattini subgroup of G associated to y is
W(G, XT, y) = TW(G, X, y).

PROOF. It is an easy exercise to check that XH is a w-solid set of maximal subgroups
of G whenever A" is.

To prove (ii) assume that the theorem is false and let G be a counterexample of
minimal order. Then G has a w-solid set of maximal subgroups X, a system of
maximal subgroups y and a hypercentrally embedded subgroup T ^ 1 such that
W(G, XT, Y) jL TW(G, X, y). Let us denote W := W(G, X, J") and WT :=
w(G, xT, y\

Let N be any minimal normal subgroup of G. The set

y/N = {M/N : M ey,N < M)

is a system of maximal subgroups of G/N (see [3, Proposition 2.3]) and X/N =
{M/N : M e X, N < M] is a w-solid set of maximal subgroups of G/N (see [4,
Lemma 2]). Moreover, W(G/N, X/N, y/N) = WN/N, by [4, Theorem B]. Then
in G/N all hypotheses hold for TN/N, ^ / N and X/N. By minimality of G, we
obtain that WTN = (TN)(WN). Since WT c WT, if N < W or W < T, then
WT = WT, a contradiction. Hence, we can suppose CoreG(7*) = CoreG( W) = 1.

Since CoreG( W) = 1, we have that <I>(G) = 1. This implies that

1 £ T < Zoo(G) < F(G) = Soca(G),
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where Soca (G) denotes the abelian socle of G (see [7, A. 10.6]). It follows I
is generated by some minimal normal subgroups of G, all of which must be central,
because they are covered by ZX(G). It follows that T < Z^G) = Z(G).

In particular, T is a non-trivial normal subgroup of G. But this contradicts our
assumption that CoreG(7) = 1. This is the final contradiction. •

4. An extension of the previous results

Makan in [15] proved that, in the soluble universe, normally embedded subgroups
also factorize with (Gaschiitz-)prefrattini subgroups and ^"-normalizers. Recall that
normally embedded subgroups are subgroups whose Sylow subgroups are also Sylow
subgroups of normal subgroups. In [15] all proofs depend heavily on the structure of
normally embedded subgroups of finite soluble groups and in particular on the cover
and avoidance properties.

In the soluble universe, our Theorems 2.1 and 3.2 can be extended to factorizations
involving subgroups whose Sylow subgroups are also Sylow subgroups of hyper-
centrally embedded subgroups. However our proofs are essentially different to those
of Makan and, for instance, do not use cover and avoidance properties.

DEFINITION 4.1. A subgroup V of a group G is said to be local-hypercentrally em-
bedded in G if each Sylow subgroup of V is also a Sylow subgroup of a hypercentrally
embedded subgroup of G.

In the soluble universe, we may describe the local-hypercentrally embedded sub-
groups in terms of hypercentrally embedded subgroups in the following way. The
proof appears in [8].

PROPOSITION 4.2. Let G be a soluble group. Denote by n(G) the set of all primes
dividing the order of G.

A subgroup V is local-hypercentrally embedded in G if and only if for every Hall
system S = {Gn : n C n(G)} of G such that £ reduces into V, there exists a family
of hypercentrally embedded subgroups {Tp : p e n(G)} ofG such that

V=f] Gp,T
p.

p\\G\

Moreover, for every p, Tp is such that Vp = V n Gp £ Sy\p(V) r\Sy\p(T
p).

THEOREM 4.3. Let V be a local-hypercentrally embedded subgroup of a soluble
group G. Let E be a Hall system of G reducing into V and D the & -normalizer of G
associated to E.for a saturated formation &'. It follows that
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(1) V has the cover and avoidance property in G.
(2) V permutes with D. Moreover, the product D V and the intersection D C\V are

subgroups with the cover and avoidance property in G as in Theorem 2.2.

PROOF. Statement (1) is a direct consequence of Proposition 1.2 (v).
Statement (2) is an easy corollary of Theorems 2.1-2.2 together with Proposi-

tion 4.2. •

Next we will see that, using the description in Proposition 4.2 for local-hyper-
centrally embedded subgroups, we may obtain that these subgroups permute with
subgroups of prefrattini type.

In a soluble group G, for a given system of maximal subgroups S? of G, there is
always a Hall system E of G such that S? = 5?(E), the set of maximal subgroups of G
such that E reduces into them (see [3]). If AT is a w-solid set of maximal subgroups
of G and S* = J^(E), we write simply W(G, X, E) instead of W(G, X,

THEOREM 4.4. Let G be a soluble group, E = {Gn : n c TT(G)} a Hall system
of G and X a w-solid set of maximal subgroups of G. Denote W = W(G, X, E).
Let V bea local-hypercentrally embedded subgroup of G such that E reduces into V.
As in Proposition 4.2, let [Tp : p € n(G)} be a family of hypercentrally embedded
subgroups of G such that V = Ope^o GP'TP. Then

W(G, Xv, E) = VW = p | GP,T" W.
P\\G\

PROOF. For any w-solid set of maximal subgroups Y of G, let us denote K(E) the
set of maximal subgroups in Y such that E reduces into them. Since in soluble groups
the index of any maximal subgroup is a prime power, we observe that, for each prime
p 6 n(G), if M is a maximal subgroup of the group G and E reduces into M, then
either Gp* < M, if the index of M in G is a p -power, or Gp < M, if the index of M
in G is a p '-number. This is to say that for any w-solid set Y of maximal subgroups
of G, we have that the set F(E) is the disjoint union set F(E) = FGP.(E) U YCr(Y,),
for each prime p. Hence by the Dedekind law (see [7, A. 1.6 (b)]), the following
equalities hold:

GP,W(G, Y, E) =
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= W(G, YGpl, E) n G = W(G, YGp,, E).

Apply this result to the w-solid set Y = XTP and, by Theorem 3.2, we have that
W(G,(XT*)C,,V) = Gp,W(G,XTp,^) = Gp,[Tp W(G, X, E)]. Recall that T"
permutes with Gp> since Hall subgroups are pronormal. So, in fact, we have

GP,T"W= W(Gt Jrc , ,7».E).

Now, by induction on the cardinal of n{G) and using [7, A. 1.6 (b)-(c)L it is easy to
check that

GPTP\W= p) Gp.T
pW=

I pen(G) p£n(G)

We know that, for each prime number p, Vp = V n Gp e Sylp (V) n Sylp (T
p) and

then V < GP>TP. Therefore XGP,TP ^ %v, for each prime number p . Hence

W(G,XV, E ) < p | W(G,XGplTP,-L)= VW.
pen(G)

Since it is clear that VW < W(G, Xv, £ ) , the equality holds and the theorem is
true. •

REMARK 3. It is not difficult to obtain a direct proof of Theorem 4.4 (without
description of Proposition 4.2), using the ideas of Theorem 3.2.

5. Final examples

EXAMPLE 1. The following example shows a hypercentrally embedded subgroup
which does not permute with the intersection of two pronormal subgroups.

Let D be a Sylow 2-subgroup of the symmetric group Sym(4) of degree 4. Write
D = (a, b), where a = (12), b = (1324), and D is isomorphic to a dihedral group of
order 8. If V is a 4-dimensional GF(3)-vector space, then Sym(4), and therefore D,
acts on V by permuting the indices of a basis [v\, v2, v3, u4}. If we denote by
u», = Vj — u4, for / = 1, 2, 3, then the subspace W = (wu w2, uii) is an irreducible
and faithful D-module over GF(3). Construct the semidirect product G = [W]D and
consider the element w = ui\ + w2 (in abelian notation of vector space).

Clearly, D and Dw are Sylow 2-subgroups of G, and therefore pronormal subgroups,
of G.
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Consider the subgroup T = (ab) W of G. The core of T in G is TG = W and then
G/ TG is nilpotent. Thus T is a hypercentrally embedded subgroup of G.

It is clear that T permutes with D and with Dw. However, T does not permute with
D n Dw = (a) since the subgroups (a) and {ab) do not permute in D.

EXAMPLE 2. It is worth remarking that the factorizations of Theorems 2.1 and 3.2
are no longer valid if we use 5-permutable subgroups instead of hypercentrally em-
bedded subgroups, as we may see in the following example.

Let D = (c, b : c7 = b2 = 1, & = c6) be the dihedral group of order 14. Denote by
C = (c) = C7. There exists an irreducible C-module U over GF(2) of dimension 3,
such that the minimal polynomial of the action of c over U is x3 + x2 + 1. Consider
the induced module V = UD. Then, the restricted module Vc is Vc = £/© Ub. Since
the minimal polynomial of the action of c over Ub is x3 + x + 1, we have that (/
and f/fc are non-isomorphic irreducible C-modules. Therefore, the inertia subgroup
is ID(U) = C. This implies that V is an irreducible D-module over GF(2), by [13,
Vn 9.6].

Construct the semidirect product G = [V]D. Then V = U x Ub. If Q € Syl7(G),
then C = C , for some element v e V. Since f/C is a subgroup of G, we have that
(C/Qv = UC = UQ is a subgroup of G. Moreover (/ < V = 02(G) and then U
is contained in all Sylow 2-subgroups of G. Hence U is an S-permutable subgroup
ofG.

(i) The subgroup D is maximal in G. Therefore, D is pronormal in G. However, [/
does not permute with D. Thus the subgroup U is not hypercentrally embedded in G.
Notice that Uc = 1 and Zoo(G) = 1.

(ii) Since V is a minimal normal subgroup of G and l^U=UC\V^V, the
subgroup t/ does not possess the cover and avoidance property in G.

(iii) The subgroup (b) is a system normalizer of G, that is, an ^-normalizer of G,
for Jf the saturated formation of all nilpotent groups. The subgroup U does not
permute with (b). Hence, Theorem 2.1 does not hold for 5-permutable subgroups in
general.

(iv) If we consider the w-solid set of maximal subgroups X := [D, P] of G,
where P = V(b), then Xv - {P}. Let S be a Hall system of G such that P e E ,
then W(G, X, E) = (b) and W(G, Xu, E) = P. Nevertheless, the product U(b) is
not a subgroup of G and obviously U{b) ^ P. Hence Theorem 3.2 is not true for
5-permutable subgroups.

EXAMPLE 3. The converse of Theorem 2.1 is not true in general. In [10] appears
a counterexample using the saturated formation of all 3-groups. Here we present a
counterexample, suggested by the referee, using a saturated formation of full charac-
teristic.
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Let G = Alt(5) be the alternating group of degree 5. Let us consider A2(G), the
2-Frattini G-module and E = E2(G), the maximal 2-elementary Frattini extension
of G. Then £/<&(£) is isomorphic to Alt(5) and <t>(£) = A2(G) is an elementary
abelian normal 2-subgroup of E. (See [7, Appendix y3] for details about Frattini
extensions).

Let & be the class composed of all finite groups with no epimorphic image iso-
morphic to Alt(5). The class & is a saturated formation containing all soluble groups.
Clearly, E I &.

Let us see that the set of all ^-normalizers of E coincides exactly with the set
of all maximal subgroups of E. For this, let us take a maximal subgroup M of E.
The quotient M/<f>(£) is a maximal subgroup of £/<!>(£) = Alt(5). Therefore,
M/4>(£) is soluble and so is M. In particular, M e &. Since £/<!>(£) is a simple
group, it follows that E = F'(E), where F'(E) = Soc(£ mod <!>(£)). Thus M is
an J^-normalizer of £.

Recall that Soc(/V2(G)) is a completely reducible G-module. If all irreducible
submodules of Soc(A2(G)) were trivial, then C£(Soc(A2(G))) = £. But, by the
Griess-Schmid theorem, we know that CG(Soc(A2(G))) = 022(G) = 1. Hence
C£(SOC(J42(G))) = 0>(E). Therefore, there exists a non-central minimal normal
subgroup N of £ such that N < * (£ ) .

Clearly, N is not of order 2. Thus we may consider a subgroup T of order 2
such that T < N. It follows that T is a core-free subgroup such that T D Zoo(£) <
N D Zoo(,E) = 1. Hence, T is not a hypercentrally embedded subgroup of £.

Finally, since T < N < $ (£ ) and the ̂ "-normalizers of £ are exactly the maximal
subgroups of £, it is clear that T permutes with all ^"-normalizers of £.
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