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DIVISORS ON VARIETIES OVER A REAL CLOSED FIELD

W. KUCHARZ

ABSTRACT.  Let X be a projective nonsingular variety over a real closed field R such
that the set X(R) of R-rational points of X is nonempty. Let Clg(X) = CI(X)/T(X),
where CI(X) is the group of classes of linearly equivalent divisors on X and I'(X) is
the subgroup of CI(X) consisting of the classes of divisors whose restriction to some
neighborhood of X(R) in X is linearly equivalent to 0. It is proved that the group Clg(X)
is isomorphic to (Z/2)* for some non-negative integer s. Moreover, an upper bound
on s is given in terms of the Z/2-dimension of the group cohomology modules of
Gal(C/R), where C = R(\/—_l ), with values in the Néron-Severi group and the Picard
variety of Xc = X xg C.

1. Introduction. Let k be a commutative field. Let X be a quasi-projective nonsin-
gular variety over k (that is, X is assumed to be a quasi-projective integral scheme over k,
which is smooth over k). We let Div(X) and CI(X) denote the group of (Weil) divisors on
X and the group of classes of linearly equivalent divisors on X, respectively. Given a di-
visor D in Div(X), let [D] denote its class in CI(X). Assume that the set X(k) of k-rational
points of X is nonempty and put

Cl(X) = CI(X)/T(X),

where I'(X) is the subgroup of CI(X) consisting of all classes [D] in CI(X) such that the
restriction of D to some neighborhood X(k) in X is linearly equivalent to O.

Throughout the remaining part of this note R stands for a fixed real closed field. Our
first result is as follows.

THEOREM 1. Let X be a quasi-projective nonsingular variety over R with X(R)
nonempty. Then the group Clg(X) is isomorphic to (Z/2)° for some nonnegative inte-
gers.

This result is of interest since, in general, the group CI(X) is not even finitely gen-
erated. For example, this is the case when X is an affine or projective cubic curve over
R = R. Let us also mention that X(R) # (} implies density of X(R) in X (¢f. for example
(1p.

REMARK. If in Theorem 1, X is projective and R = R, then a more precise result is
known. Namely, there exists a canonical monomorphism

¢: Clr(X) — H'(X(R),Z/2)
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(cf. [3] or [2, Definition 11.3.2, Corollary 12.4.7]). Here X(R) is equipped with the metric
topology and H' (—, Z / 2) stands for the first cohomology group with coefficients in Z /2.
The above statement follows also easily from [7] and [13, Theorem 2.2], which concern
vector bundles.

In case of an arbitrary real closed field R, we still have the cohomology group
H' (X(R), z/ 2) suitably defined (cf. [2, 6]). This group is, as in the classical case R = R,
a finite-dimensional Z /2-vector space. Moreover, one can easily define a canonical ho-
momorphism ¢g: Clg(X) — H' (X(R), Z/2), which coincides with the monomorphism
¢ for R = R. Using Witt’s theorem [9], one can show that ¢ is a monomorphism if
dim X = 1. However, in higher dimensions it is not known whether ¢ is injective. For
R = R, injectivity is proved by applying the approximation theorem of Weierstrass. m

Theorem 1 is an easy consequence of Theorem 2, stated in Section 2 and proved in
Section 3. Section 4 deals with the Picard group of some R-algebras and is based on
Theorem 1.

2. The main theorem. Let X be a projective nonsingular variety over R with X(R)
nonempty. Let C denote the algebraic closure of R, that is, C = R(v/—1). Then X¢ =
X Xg C is a nonsingular variety over C. The Galois group G = {1,5} of C over R acts
on Div(X¢) as follows. Let ox: X¢c — Xc be the involution corresponding to o. Given
D = Y k;D; in Div(X¢), where the k; are integers and D; are prime divisors, one sets
D° = Y kijox(D;). This action induces actions of G on Cl(X¢) and the Néron-Severi
group NS(X¢) of X¢. Thus Div(X¢), Cl(X¢) and NS(X¢) can be regarded as G-modules.
If P is the Picard variety of X, then P(C) = Morg(Spec C, P) is also a G-module.

Recall that if M is a (right) G-module, then the second cohomology group H*(G, M)
is the Z / 2-vector space defined by

H*(G,M) = MC [ {m+m® | m € M},

where m° is the image of m under the action of o and M®¢ = {m € M | m° = m}.
We can now state our main result.

THEOREM 2. Let X be a projective nonsingular variety over R with X(R) nonempty.
Then the group Clg(X) is isomorphic to (Z/2)° for some nonnegative integer s. More-
over, HZ(G, NS(XC)) and H? (G, P(C)), where P is the Picard variety of X, are finite-
dimensional Z [ 2-vector spaces and

s <dimg ), H*(G,NS(Xc)) +dimg, H*(G, P(C)).

We should mention that Theorem 2 with R = R is related to [12, p. 58]. A proof of
Theorem 2 will be postponed to Section 3. Here we show only how to derive Theorem 1
from Theorem 2.

PROOF OF THEOREM 1. By Hironaka’s resolution of singularities theorem [8], we
may assume that X is an open subvariety of some projective nonsingular variety Y over
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R. Clearly, the inclusion morphism X — Y induces an epimorphism Clgz(Y) — Clz(X)
and hence Theorem 1 follows from Theorem 2. ]

3. Proof of the main theorem. We begin with some preliminary results.

LEMMA 1. Let X be a quasi-projective variety over R with X(R) nonempty. Let N be
a neighborhood of X(R) in X. Then there exists an affine neighborhood U of X(R) in N.

PROOF. We may assume that X is a locally closed subvariety of projective space
P} for some n. Let Y be the closure of X in P%. Then N can be written as N = Y\
V(H,,...,Hy), where H,...,H, are homogeneous polynomials in R[Xy,...,X,] and
V(Hi,...,H) denotes the closed subspace of Py determined by the zeros of the H;,
1 <i < k. Select nonnegative integers di, . .., d; such that

k
H=Y X5+ +X))"H;
i=1

is a homogeneous polynomial. By construction, U = Y\ V(H) is a neighborhood of X(R)
in N. It is obvious that U is affine. n

Recall that R (being real closed) is an ordered field and the order on R is uniquely
determined. The open intervals (a,b) = {x € R | a < x < b}, witha,b € R, a < b,
form a base of open sets of a topology on R, called the order topology.

Let X be a quasi-projective variety over R with X(R) nonempty. Suppose that X is
a locally closed subvariety of P} for some n. Then X(R) is a semi-algebraic subset of
P%(R). The order topology on R determines a topology on P (R), which in turn induces
a topology on X(R). This topology on X(R) is called the order topology. Recall that X(R)
can be written as X(R) = §; U - -US;, where the S; are pairwise disjoint semi-algebraic
subsets of X(R), which are open and closed in the order topology on X(R), and S; can-
not be represented as a union of two semi-algebraic, closed, disjoint, nonempty subsets.
Moreover, the S; are uniquely determined up to permutation. They are called the semi-
algebraic connected components of X(R). The above constructions do not depend on the
choice of the embedding of X in P%. All these facts, and others which will be used in the
proof of Lemma 2 below, can be found in [2] [4] [5].

LEMMA 2. Let A be an abelian variety over R. Let ¢ be the number of semi-algebraic
connected components of A(R). Then considering A(C) as a G-module and setting
2A(R) = {x+x | x € A(R)}, one has

dimy , H*(G,A(C)) < dimg/; A(R)/2A(R)
order (A(R) / 2A(R)) <ec.

PROOF. The first inequality is obvious by virtue of the definition of H*(G, —). Below
we prove the second inequality.
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Since A(R) is nonempty, it follows that A(R) is dense in A (cf. for example [1]). Hence
2A(R) =24 (A(R)), where 24: A — A is the isogeny multiplication by 2, is also dense in
A. By a theorem of Seidenberg and Tarski [2], 2A(R) is a semi-algebraic subset of A(R).
The last two facts imply that 2A(R) has a nonempty interior in the order topology on A(R)
(cf. [2, Proposition 2.8.12]) and hence, using translations on A(R), one easily sees that
2A(R) is open in the order topology on A(R). By [2, Theorem 2.5.8], 2A(R) is also closed
in the order topology on A(R).

Let S be a semi-algebraic connected component of A(R). Let x be a point in A(R) and
let f,: A(R) — A(R) be the mapping defined by f.(y) = y — x for y in A(R). It follows
from the properties of 2A(R) discussed above that the set

S = SN (2AR) = {y € S|y —x € 24}

is semi-algebraic, and open and closed in the order topology on A(R). Thus § = S, which
shows that
order(A(R)/2A(R)) < c. "

PROOF OF THEOREM 2. The short exact sequence of groups
0— P(C) — Cl(X¢) — NS(X¢) — 0
gives rise to an exact sequence of Z /2-vector spaces
H*(G,P(C)) — H*(G,Cl(Xc)) — H*(G,NS(Xc))
and hence
dimg, H*(G, Cl(X¢)) < dimg, H*(G, (NS(X¢)) + dimg ), H*(G, P(C)).

Note that dimg /, Hz(G, NS(XC)) < 09, the Néron-Severi group NS(X¢) being finitely
generated [10]. Moreover, by Lemma 2, dimy, /2 H? (G, P(C)) < 00. Thus in order to

complete the proof of Theorem 2, it suffices to find an epimorphism of H? (G, Cl(Xc))
onto Clz(X) or, equivalently, to construct an epimorphism

¢: Cl(Xc)® — Clr(X)

such that
) o([D+D°)=0

for all D in Div(Xc).

We proceed as follows. First recall that the canonical projection m: X¢ = X Xg C — X
induces a monomorphism 7*: C1(X) — CI(X¢), whose image is equal to C1(X¢) (cf. [11,
V. 20]). We define ¢: C1(Xc)® — Clg(X) to be the composition of (7*)~!: CI(X¢)¢ —
CI(X) and the canonical projection C1(X) — Clz(X) = CI(X)/T(X) (cf. Section 1). By
construction, ¢ is an epimorphism. Now it remains to prove (1), where without any loss
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of generality we may assume that D is a prime divisor. We precede the proof of (1) by
some preliminary remarks.

Recall that X¢ endowed with its canonical descent datum relative to C/R can be
identified with X (cf. [11, V. 20]). Let ox: Xc — Xc be the involution corresponding
to o in G. We regard X(C) = Morg(Spec C, X) as the set of closed points in X¢. Then
X(C)¢ = {x € X(C) | ox(x) = x} corresponds to the subset X(R) of X. In particular, by
Lemma 1, for each neighborhood N of X(C)® in Xc, there exists an affine neighborhood
U of X(C)® in N such that ox(U) = U (observe that N N ox(N) is a neighborhood of
X(0)°).

Let O be the structure sheaf of X¢. Given an open subset V of X, we identify elements
of O(V) with morphisms from V into affine line AL. If f is an element of O(V), then f°
denotes the element of O(Ux(V)) defined by f =g, 0f o (axfox(V)), where 0,: A'C —
A}; is the involution corresponding to o. Observe that if ox(V) = V and f = f7, then
f(x) is in R for all x in V N X(C)°, where R is considered as a subset of AL(C) = C.
Furthermore, if ox(V) = V and g is any element of O(V), then (gg”)(x) > 0 for all x in
VNX(C)°.

Let us now return to the proof of (1). One can find affine open sets V; and elements f;
in O(V;), 1 < i <k, such that X(C)C is containedin M = V, U---U V, and D = (f;) as
divisorson V;. Let U be an affine neighborhood of X(C)°inMand let U; = UNVNox(V;)
for 1 <i < k. Then the U; form an open cover of U and o(U;) = U;. Since U and the U;
are affine, one can find g; in O(U) such that D = (g;) as divisors on U; and g; = a;g; for
some oy in O(Uy), 1 <i <k, 1 <j <k. Note that

2) D +D° = (gig?) as divisors on U;.

We claim that if £ is the element of O(U) defined by

M=

3) h=73 g,

7

then there is a neighborhood U’ of X(C)® in U such that
4) ox(U") = U’ and D + D° = (h) as divisors on U’.

Indeed, let x be a point in X(C)°. Then x is in U; for some i, 1 <i <k. By renaming the
indices, we may assume that i = 1. Then putting a; = «;;, we have g; = a;g1 on Uy,
and substituting into (3), we obtain

k k
5) h:glg‘l’+2gjg}’:glg‘l’(1+2aja;’) on Uj.
j=2 j=2

Since () (x) > 0inR for 2 <j <k, it follows that

k
1+ ajaf
j=2
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is an invertible element in the stalk O,. Hence, by virtue of (5), (h) = (g1g7) as divisors
on some neighborhood of x in U. Applying (2), we see that (4) follows.

Since h = h°, it follows from (4) that (1) holds, which completes the proof of Theo-
rem 2. u

4. The Picard group of some algebras over R. Let A be a finitely generated R-
algebra with no zero divisors. Assume that the set Maxg(A) of maximal ideals of A with
residue field R is nonempty, and that the localization of A with respect to every maximal
ideal in Maxg(A) is a regular local ring. Let Ag denote the localization of A with respect
to the multiplicatively closed subset consisting of all elements in A not contained in any
maximal ideal in Maxgz(A).

THEOREM 3. With the notation as above, the Picard group Pic(Agr) of Ag is isomor-
phic to (Z]2)* for some nonnegative integer s.

PROOF. Let Y = Spec A. Observe that there is a neighborhood X of Y(R) in Y, which
is a nonsingular variety over R. Hence, by Theorem 1, Clg(X) is isomorphic to (Z/2)*®
for some nonnegative integer s.

Consider the ring X (X) defined by

R(X) = liminj Ox(U),

where Ok is the structure sheaf of X and U runs through the set of all affine neighborhoods
of X(R) = Y(R) in X (c¢f. Lemma 1). One easily sees that & (X) is canonically isomorphic
to Ag. Moreover, since Pic(O(U)) is canonically isomorphic to CI(U), U being affine,
one obtains that Pic(.‘?{(X)) is isomorphic to Clg(X). Thus the proof is complete. ]
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