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Pressure-driven laminar and turbulent flow in a horizontal partially filled pipe
was investigated using stereoscopic particle imaging velocimetry (S-PIV) in the
cross-stream plane. Laminar flow velocity measurements are in excellent agreement
with a recent theoretical solution in the literature. For turbulent flow, the flow
depth was varied independently of a nominally constant Reynolds number (based
on hydraulic diameter, DH; bulk velocity, Ub and kinematic viscosity ν) of ReH =

UbDH/ν ≈ 30 000 ± 5 %. When running partially full, the inferred friction factor is
no longer a simple function of Reynolds number, but also depends on the Froude
number Fr = Ub/

√
gDm where g is gravitational acceleration and Dm is hydraulic

mean depth. S-PIV measurements in turbulent flow reveal the presence of secondary
currents which causes the maximum streamwise velocity to occur below the free
surface consistent with results reported in the literature for rectangular cross-section
open channel flows. Unlike square duct and rectangular open channel flow the mean
secondary motion observed here manifests only as a single pair of vortices mirrored
about the vertical bisector and these rollers, which fill the half-width of the pipe,
remain at a constant distance from the free surface even with decreasing flow depth
for the range of depths tested. Spatial distributions of streamwise Reynolds normal
stress and turbulent kinetic energy exhibit preferential arrangement rather than having
the same profile around the azimuth of the pipe as in a full pipe flow. Instantaneous
fields reveal the signatures of elements of canonical wall-bounded turbulent flows near
the pipe wall such as large-scale and very-large-scale motions and associated hairpin
packets whilst near the free surface, the signatures of free surface turbulence in the
absence of imposed mean shear such as ‘upwellings’, ‘downdrafts’ and ‘whirlpools’
are present. Two-point spatio-temporal correlations of streamwise velocity fluctuation
suggest that the large-scale coherent motions present in full pipe flow persist in
partially filled pipes but are compressed and distorted by the presence of the free
surface and mean secondary motion.
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1. Introduction
Pipes transport fluids. Flow in pipes can be of simple Newtonian fluids or complex

non-Newtonian fluids and applications range from the household to industry, both
large scale and small. Pipes running full have piqued the interest of researchers for
well over a century due to the geometric simplicity of this flow; the many important
applications of this flow, and also the lack of a unifying theory able to explain what
is observed outside of simple laminar flow. For example, transition to turbulence in
pipe flow observed by Osborne Reynolds in the late 19th century (Reynolds 1895) is
still not completely understood to this day (Barkley 2016, provides a comprehensive
review of current understanding). Pipes running partially full have received far less
attention, yet this type of flow also has many important engineering applications in,
for example, the nuclear and petro(chemical) industries, the transport of food and
personal care products and the transport of wastewater in sewer flows. Typically, these
applications involve non-Newtonian fluids and/or the transport of solids in solution.
When solids are held in solution, they can be pumped, transported and stored with
much less manual handling of the material of interest. During this process, a balance
must be struck between clogging of the pipe network due to particulate deposition
and unnecessary diluteness. In industries where the handling of hazardous materials
are required (e.g. removing waste material during the decommissioning of nuclear
power plants) neither outcome is desirable: a clogged pipe network would lead
to overpressure and failure, however, unnecessary diluteness simply leads to the
generation of more waste product that requires storage. As such, a safety margin is
introduced by pumping the fluids in pipe networks that are only partially filled.

Fundamentally, the flow in a partially full pipe is different from the pressure-driven
flow of a full pipe. In the fully developed flow of a full pipe, resistance is balanced by
the pressure drop and the velocity profile becomes invariant with streamwise distance.
When this flow is laminar, we have the celebrated Hagen–Poiseuille flow (Hagen 1839;
Poiseuille 1840) for which exists an exact solution of the governing equations from
which we have the velocity distribution. When the flow is turbulent, we have semi-
empirical relationships that describe the velocity profile i.e. the logarithmic law of the
wall (Izakson 1937; Millikan 1938).

When a pipe is flowing partially full, there is the presence of a free surface and
the velocity distribution depends on the flow depth. As a result, the location of the
maximum velocity no longer coincides with the pipe centreline, however, it is also not
necessarily at the free surface. Yoon, Sung & Lee (2012) measured the streamwise
velocity distribution in a partially full pipe flow across transitional and turbulent
Reynolds numbers and reported that the maximum velocity tends to be at the free
surface when the flow depth is shallow and as the flow depth increases beyond
half-full, the location of the maximum velocity moves away from the free surface
towards the pipe centreline. This so-called ‘velocity dip’ phenomenon is known
to occur in rectangular open channels and is caused by the presence of secondary
currents when the free surface width B to depth d ratio is small (B/d< 5) as reported
by Nezu (2005).

In contrast to full pipe flow, a theoretical solution for laminar pipe flow running
partially full has only recently been reported in Guo & Meroney (2013) and
subsequently in Fullard & Wake (2015) who support their findings with numerical
simulations performed using the commercial fluid dynamics code ANSYS Polyflow.
No experimental validation of this solution is yet available. Furthermore, other
numerical simulations remain limited to laminar flows (Davis & Mai 1991; Ng,
Lawrence & Hewitt 2000) and high fidelity direct numerical simulations
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(DNS) – readily available for turbulent pipe flow running full (Wu & Moin 2008;
Chin et al. 2010; Wu, Baltzer & Adrian 2012; Ahn et al. 2013; El Khoury et al.
2013) – are lacking in the partially filled case. Experimental work focused directly
on smooth-walled circular cross-section pipe flow running partially full is generally
limited to studies of the bulk-flow behaviour, for example: Krishnakumar & Fields
(1982) investigated the minimum flow rate required to fill horizontal and vertical
flowing pipes; Clausnitzer & Hager (1997) studied the characteristics of the jets
discharging from partially filled pipes, Stephenson (1957), Swaffield & Bridge (1983)
reviewed frictional losses in partially filled conduits and Enfinger & Kimborough
(2004), Enfinger & Schutzbach (2005) assessed the value of the Manning co-efficient
for circular open channels. Measurements of the velocity distribution in partially full
pipes/culverts are sparse: Knight & Sterling (2000), Sterling & Knight (2000) report
the mean streamwise velocity distribution measured using a Pitot-static tube for a
smooth circular pipe running partially full as part of a larger study on the effect of
sediment bed height; Ead et al. (2000) report the mean streamwise velocity profiles at
the centreline of a corrugated culvert; Clark & Kehler (2011) report the mean velocity
distribution and turbulent stress profiles in a corrugated culvert using acoustic Doppler
velocimetry (ADV) and Yoon et al. (2012) the mean streamwise velocity distribution
in a smooth circular open channel measured using particle imaging velocimetry (PIV).

Knight & Sterling (2000) and Yoon et al. (2012) are the studies most closely related
to this current work as both consider partially filled pipe flow over smooth walls and
both studies report the measured mean streamwise velocity distributions for several
flow depths. The presence of mean secondary motions are inferred from observation
of the so-called velocity dip. In both those studies, the pipe flow facilities were gravity
fed and, as such, flow depth and Reynolds number were not controlled independently
with Reynolds numbers increasing between two- and fourfold between the lowest and
highest flow depths. For example, Yoon et al. (2012) reports data at 5693 < ReH <
18974 for flow depths between 30 and 80 % and according to Yoon et al. (2012), this
threefold increase in Reynolds number covers flow regimes that are both transitional
and fully turbulent. Knight & Sterling (2000) reports higher Reynolds number data,
64 900 < ReH < 150 000 for flow depths between 33 and 83 %. All measurements
reported in both studies were conducted in the subcritical flow regime i.e. where the
Froude number (Fr) is less than one. The current study will also be conducted in a
smooth wall partially filled pipe, however, as our facility is pressure driven, we are
able to control Reynolds number independent of flow depth (albeit for a limited range).
Hence, we can investigate turbulent partially filled pipe flow at a nominally constant
Reynolds number of ReH≈30 000±5 % and are able to isolate the effects of changing
flow depth from Reynolds number. Further, we also conduct velocity measurements in
the laminar flow regime and compare our results to the theoretical solution recently
reported by Guo & Meroney (2013).

The aim of the current study is to investigate laminar and turbulent flow in a
partially filled pipe, and here, we limit ourselves only to the study of single-phase
Newtonian fluids. The large field-of-view (FOV) stereoscopic PIV (S-PIV) snapshots
provide insight into the instantaneous events that result in the time-average secondary
flows which are absent when the pipe is running full. We approach the problem
from a wall-bounded turbulence research perspective (rather than that of hydraulics
engineering) with a focus on turbulent flow structures whilst trying to place this
work in the larger context of more recent developments in the former field: that of
large-scale coherent turbulent motions.

In this paper we refer to both Cartesian and cylindrical coordinates where x, y
and z refer to the streamwise, spanwise and vertical directions with respect to the
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FIGURE 1. Cross-section of pipe showing definitions of depth and free surface width.

pipe vertical bisector; u, v and w the respective velocity components in Cartesian
co-ordinates and r and θ represent the radial and azimuthal directions defined from the
pipe centre axis. The paper is structured as follows: § 2 is a discussion of geometric
considerations for the operation of partially filled pipes and introduces the definitions
of the Reynolds number that shall subsequently be used; § 3 covers the experimental
apparatus and methods; § 4 is a discussion of the limit imposed by the Froude number
on the parameter space that we are able to explore, § 5 reports inferred friction factor
data (estimated using the steady-flow energy equation) for a range of Reynolds
numbers, flow depths and bulk Froude numbers. We then follow by comparing our
measured streamwise velocity distribution in laminar partially filled pipe flow with the
theoretical distributions first reported by Guo & Meroney (2013) in § 6 and then the
turbulent flow velocity measurements are presented in § 7. The large-scale structure
of the turbulent flow is considered first by presenting pseudo-instantaneous velocity
fields in § 8 and then the average flow structure inferred from two-point velocity
correlations are discussed § 9. Finally conclusions are presented in § 10.

2. Geometric considerations for partially filled pipes
Figure 1 is a cross-section of the flow in a partially full pipe where we define

the pipe radius as R, flow depth along pipe vertical bisector as d and free surface
width as B. Since flow depth varies across the free surface, we also introduce the
hydraulic radius Rh = A/Pw where A and Pw are the flow cross-sectional area (which
is dependent on depth in a partially filled pipe) and the wetted perimeter, respectively.
From figure 1 it follows that;

cos θ =
R− d

R
, (2.1)

where θ has the range of 0◦–180◦, defined from bottom-dead-centre to top-dead-centre
of the pipe cross-section. Flow cross-sectional area, A, and perimeter, Pw are;

A= R2(θ − sin θ cos θ), (2.2)
Pw = 2Rθ, (2.3)

respectively, and finally hydraulic radius as a function of pipe radius and θ is;

RH =
A
Pw
=

R(θ − sin θ cos θ)
2θ

. (2.4)
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With the hydraulic radius RH defined, we can then define the hydraulic Reynolds
number;

ReH =
4RHUb

ν
, (2.5)

where Ub is the bulk velocity and ν the kinematic viscosity. Or alternatively using
hydraulic diameter DH = 4RH;

ReH =
DHUb

ν
. (2.6)

Reynolds number defined using the hydraulic diameter as the length scale is typical
practice in open channel flow, however, to facilitate a direct comparison with full pipe
flow, we propose a Reynolds number based on equivalent diameter, DEQ, which is
the diameter of a full pipe that would have the same flow cross-sectional area as the
partially filled pipe flow used in this study i.e.;

DEQ = 2

√
A
π
, (2.7)

leading to an equivalent Reynolds number

ReEQ =
DEQUb

ν
. (2.8)

From mass conservation;
ṁ= ρAUb. (2.9)

Combining (2.9) with (2.6) and rearranging we can write Reynolds number as a
function of mass flow ṁ, pipe radius and θ .

ReH =
2ṁ
µRθ

. (2.10)

As there is a free surface present, the Froude number Fr will be another important
non-dimensional group. For free surface flows, the bulk Froude number can be defined
as;

Fr=
Ub

√
(g×Dm)

, (2.11)

where Ub is bulk velocity, g gravitational acceleration and Dm=A/B is hydraulic mean
depth (French 1985). Here we are considering only cylindrical pipes of constant cross-
sectional area and so the Froude number can be re-written in terms of pipe radius R
and θ . Referring to figure 1;

R2
= (R− d)2 + (B/2)2, (2.12)

which can be rearranged to obtain;

B= 2R sin θ. (2.13)

Combining (2.9) and (2.11);

Fr=
ṁ
ρ

√
B

gA3
. (2.14)
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Plenum
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Pulsation dampers Tank

Pump

PIV systemPressure measurementFlow

FIGURE 2. Schematic of VLSPF facility.

Substituting (2.2) and (2.13) to obtain Froude number as a function of mass flow, R
and θ ;

Fr=
ṁ
ρ

√
2R sin θ

gR6(θ − 1
2 sin 2θ)3

. (2.15)

Clearly, the Reynolds number and Froude number cannot be varied independently
in a single facility; we shall discuss the physical implications of this interdependence
in the context of a partially filled pipe in § 4.

3. Experimental set-up

Measurements were conducted in the very-large-scale pipe flow (VLSPF) facility
at the University of Liverpool, the same facility used in the work of Dennis &
Sogaro (2014). The modular working section is made from a set of precision bore,
cylindrical borosilicate glass tubes with inner diameter of D= 100.4± 0.1 mm. Each
glass tube is paired with a set of machined-to-fit stainless steel female/male flanges;
and each tube is set in the matching flange pair on a jig using Devcon rubber to
form the individual working-section modules. Each module has a pressure tapping
inserted into the downstream flange at either the 1 o’clock or 11 o’clock position
when looking down the axis of the pipe. These modules are aligned with a laser and
bolted together so that the working section totals L = 23.3 m in length resulting in
a length-to-diameter ratio L/D = 233. Flow to the working section is supplied by a
progressive cavity pump (Mono Type-101) fed from a 500 l stainless steel header
tank. Prior to entering the working section, the working fluid is passed through
three pulsation dampers and a Coriolis-type mass flow meter (Endress and Hauser
Promass 63) and fed into a cylindrical plenum where the flow is fully reversed and
passed through a set of screens to remove any residual swirl before reaching the
working-section inlet. After the working section the fluid is fed back to the header
tank through a flexible rubber hose, thus completing the flow loop. A schematic of
the rig is shown in figure 2 – it is essentially an extended version of the facility
reported in detail by Escudier, Presti & Smith (1999).

The pipe flow working section is horizontal and designed with full pressurised pipe
flow in mind, so in order to control Reynolds number and flow depth independently,
we used the following procedure: (i) the header tank was filled to a prescribed level;
(ii) the pipe was then filled to the desired level under the action of hydrostatic pressure
by allowing air to escape the pipe working section through the pressure tappings;
(iii) once the desired initial depth was achieved, the pressure tappings were sealed
to trap the remaining air in the pipe working section; (iv) the pump speed was then
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adjusted and the height monitored until the desired Reynolds number and flow depth
was achieved.

As the pressure tappings in the working section were mounted at either the 11
o’clock or 1 o’clock positions, we could not measure the pressure drop in the fluid
phase of the pipe when running partially full. Instead we relied on measurements of
flow depth and mass flow rate to calculate bulk velocity, Ub, Reynolds and Froude
numbers. With optical access to most of the pipe working section, flow depths were
measured periodically at various distances from the inlet using a graduated scale. Due
to the absence of pressure-drop measurements in the fluid phase, we used the change
in flow depth between x/D= 10 and 210 to estimate an inferred friction factor (see
§ 5 for methodology).

Stereoscopic particle imaging velocimetry (S-PIV) measurements are conducted in
the radial–azimuthal (r–θ ) plane with the cameras and laser light sheet orientated
in a similar manner as van Doorne & Westerweel (2007). The measurement plane
is located at x = 220D downstream from inlet and the remaining set-up is identical
to that reported in Dennis & Sogaro (2014). The flow is seeded with silver-coated
hollow glass spheres with an average diameter of 10 µm to facilitate the use of PIV.
Particle images are captured using a pair of high-speed CMOS cameras (Phantom
Miro M110) each with sensor resolution of 1280× 800 pixels and a 12-bit dynamic
range. At full resolution, images can be acquired at a repetition rate of f = 1600 Hz
which, given the range of Reynolds numbers we are able to run the pipe partially
full, is more than sufficient to obtain time-resolved data which can then be used
to reconstruct the pseudo-instantaneous three-dimensional flow field using Taylor’s
hypothesis (Taylor 1938) which was shown by Dennis & Nickels (2008) to be a
valid estimate for the large-scale motions which are of primary interest in this study.
The measurement plane is viewed through a prism filled with the same working
fluid as the pipe facility using Nikon Micro-Nikkor 60 mm camera lenses at an
f -number of 4.0 with Scheimpflug mounts used to allow stereoscopic imaging. The
cameras were synchronised with the laser light pulses emitted from an Nd:YAG
laser (Lee Laser LDP-100MQG DUAL). A custom made two-level calibration target
made up of a lattice of dots of known spacing with a x = 3 mm axial offset is
imaged prior to the flow measurements using S-PIV and reconstruction of the three
component vector fields from the particle images were performed using Dantec
Dynamics DynamicStudio 2015a with a final interrogation window size of 32 × 32
pixels and 50 % overlap which yielded an approximate measurement resolution of
l= 2 mm.

Owing to the large diameter (D = 100 mm) of the VLSPF facility, the viscosity
of the working fluid had to be increased to reach the laminar flow regime. As
such, the laminar flow velocity measurements were carried out using a 70:30 % by
weight glycerine–water mixture, which had a dynamic viscosity of approximately
µ= 19.0 mPa s and density ρ = 1180 kg m−3 at a temperature of T = 20.0 ◦C. The
mean streamwise velocity distribution for the laminar flow was calculated from 300
independent PIV image pairs acquired over a duration of 300 s with the Reynolds
number kept below ReH < 500 for all flow depths investigated. For turbulent flow
velocity measurements, the working fluid was replaced with water. The Weber number
We=ρU2

bB/σ was estimated (using σ = 72.7 mN m−1 (White 2006, p. 51) the surface
tension of water at T = 20.0 ◦C), yielding We ≈ 131 at d/D = 44 %, decreasing to
We ≈ 60 at d/D = 80 %. Hence, inertial forces remain prevalent relative to surface
tension in the turbulent flow regime for the flow depths tested. The experimental
conditions and S-PIV parameters for turbulent flow measurements are summarised in
table 1.
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d/D ReH ReEQ Fr Ub Vector fields TUb/R PIV
(%) (mm s−1) (s−1) realisations

44 29 300 20 700 0.52 311 1 38 253 6 150
52 30 100 21 300 0.43 289 1 34 680 6 000
62 31 000 22 300 0.36 268 2 27 470 10 250
70 30 300 22 500 0.30 252 2.5 24 797 12 300
80 28 500 22 100 0.25 234 2.5 23 026 12 300

44 29 400 20 800 0.53 311 382 484 29 725
62 31 300 22 500 0.37 273 291 558 29 725
80 28 700 22 100 0.25 236 255 474 25 625
100a 35 000 35 000 N/A 350 500 512.4 21 268

TABLE 1. Experimental conditions for turbulent flow velocity measurements.
aData from Dennis & Sogaro (2014).

4. Influence of Froude number on pipe filling
The Froude number plays an important part in open channel hydraulics and is

associated with the state of the flow. When the Froude number is less than one, the
flow is subcritical and when greater than one the flow is supercritical (White 2008).
Local flow depth versus local Reynolds number and corresponding plots of local
Froude number versus local Reynolds number are plotted for two axial locations
situated at x/D= 210 and x/D= 230 from pipe inlet in figures 3 and 4, respectively.
These axial locations were chosen as they are the closest to the S-PIV measurement
plane which we can directly measure the flow depth using a graduated scale. (The
S-PIV measurement plane itself is encased in a fluid-filled prism which is used
to reduce the effect of refractive index changes during S-PIV imaging). In these
figures, each symbol represents a (measured) time-averaged value of local flow depth
versus local Reynolds number or local Froude number versus local Reynolds number
and each different symbol shape represents an independent set of measurements
where the initial flow depth was set by choice. For example, the filled circles (u)
represent a set of measurements where the initial flow depth was set to nominally
d/D= 50 % (i.e. with the pump turned off, the pipe working section was allowed to
fill under hydrostatic pressure to d/D=50 %). The pump speed was then incrementally
increased, and for each increment, the flow depth and mass flow rate are recorded over
a period of 5 minutes and time averaged to compute d/D, ReH and Fr; after which
the pump speed was increased to the next predetermined level and measurements of
flow depth and mass flow were again recorded. This process was carried out without
attempting to maintain a constant flow depth (i.e. draining the pipe flow working
section for each increment in pump speed), hence, the slight variation in level from
d/D≈ 50 % at ReH ≈ 2000 to d/D≈ 55 % at ReH ≈ 20 000. The entire process is then
repeated for different initial flow depths, i.e. filled upside-down triangles (s) represent
measurements where the initial flow depth was d/D ≈ 70 % and filled squares (p)
represent measurements for initial depth of d/D ≈ 80 %. In these figures, grayscale
symbols are measurements from the current study and magenta and green symbols
are the data of Knight & Sterling (2000) and Yoon et al. (2012), respectively. Each
line represents Fr = 1 for the different pipe diameters for each of the data sets:
(black, solid) D = 100 mm, VLSPF facility used in this study; (magenta, dot-dash)
D = 25 mm for Yoon et al. (2012) and (green, dashed) D = 244 mm for Knight &
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FIGURE 3. (Colour online) (a) Local flow depth and (b) local Froude number as a
function of local Reynolds number ReH taken at x/D= 210. Grey scale symbols: current
study; green (×): data from Sterling & Knight (2000) and magenta (?): data from Yoon
et al. (2012). Lines represent locus of points for Fr = 1 calculated for pipe diameters,
D = 50 mm (magenta, dot-dash); D = 100 mm (black, solid) and D = 244 mm (green,
dashed).
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FIGURE 4. (a) Local flow depth and (b) local Froude number as a function of local
Reynolds number ReH taken at x/D= 230. All symbols coloured by depth.

Sterling (2000). The loci of Fr= 1 can be determined by setting the left-hand side of
(2.15) to unity and solving for the mass flow rate given 06 θ 6 180◦ for a prescribed
pipe radius R.

It can be seen in figure 3(a) that for flow depths d/D . 40 %, the data collected
from the VLSPF facility collapse onto a curve that represents a constant value of
Froude number (Fr ≈ 0.6) – the value of which changes with axial location due to
variation in depth and velocity. This can be seen clearly in figure 4(a), where as the
Reynolds number is increasing, the data tend to a higher constant value of Froude
number. We can see from figure 4 that the flow is weakly supercritical (Fr > 1)
at x/D = 230 for depths d/D . 40 %. Whenever the flow is supercritical (Fr > 1),
standing waves appear on the free surface at the pipe exit (see for example: figure 5).
Knight & Sterling (2000) and Yoon et al. (2012) conducted their experiments in
gravity-driven facilities with different pipe diameters than used in this study, however,
their data also appear to collapse onto corresponding lines of constant Froude numbers
(see figure 3a), similar to the behaviour observed when the VLSPF facility is running
at less than d/D= 40 %. This suggests, under certain conditions, the flow at the end
of our pressurized facility behaves in the same way as a flow discharging from a
gravity driven facility.
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FIGURE 5. (Colour online) Photo of example standing wave at pipe exit when flow is in
super-critical regime.

When we have supercritical conditions the flow, of course, cannot discharge from
our pressurised pipe facility. In fact our pressurised pipe facility begins to fill for
constant pump speed and neither the mass flow rate nor the flow depth can be kept
at a constant level. It was observed that over the course of 10 minutes the flow depth
would increase approximately 1 mm (1 %), but the mass flow rate would increase on
the order of 10 %. This sets one of the physical limits we have on the parameter space
in which we can operate the VLSPF rig partially full. The other physical limitation
is taken from the pipe inlet: when the Reynolds number is increased for any given
flow depth; the free surface must rise at the pipe inlet to preserve equilibrium. Thus
when the pipe is nearly full, the usable range of Reynolds numbers is limited by
the pipe filling at the inlet and when the pipe is very shallow it is limited by the
flow becoming supercritical at the exit. Between these limits, approximately bounded
by 40 % . d/D . 85 %, we have essentially independent control over flow depth and
Reynolds number, albeit for a decreasing Reynolds number range with increasing flow
depth.

5. One-dimensional steady-flow energy equation estimate of friction factor
By assuming that the flow is one-dimensional, we are able to estimate the mean

total resistance due to fluid friction in partially filled pipe flow using the steady-flow
energy equation;

P1

ρg
+

V2
1

2g
+ d1 =

P2

ρg
+

V2
2

2g
+ d2 + hf , (5.1)

where P is pressure, V the local bulk velocity, d the local depth (measured along the
pipe vertical bisector), g gravitational acceleration, ρ fluid density and hf the frictional
losses, with subscripts indicating different streamwise locations. P, V and d are time-
averaged values and, as we do not have high resolution measurements of surface
fluctuations, we have assumed that the free surface level fluctuations are small relative
to flow depth (which we can confirm from visual observation). With optical access
to the working section, we are able to measure the flow depth at various locations
along the pipe axis as outlined in § 3. From the flow depth we have the flow cross-
sectional area and thus can deduce the local bulk velocity from the mass flow meter
readings. Finally we measure the pressure in the air phase by connecting one port
of a differential pressure transducer (MKS Baratron 398HD-01000SP05) to the pipe
working-section pressure taps and leaving the other port open to atmosphere. In so
doing it was observed that the air phase pressure was nominally constant (to within
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FIGURE 6. (Colour online) Inferred friction factor versus Reynolds number at x/D= 210,
(a) using DH and (b) using DEQ (insets show the variation of DH and DEQ with flow
depth d/D, respectively). Grey scale symbols: friction factor from partially filled pipe
flow coloured by depth. Blue outlined symbols highlight data where d/D = 50 ± 2 %.
Red circles: friction factor calculated from pressure-drop measurements in VLSPF facility
running full. Green (×): data from Sterling & Knight (2000) and magenta (?): data from
Yoon et al. (2012). Solid black line: Blasius correlation – f = 0.316Re−1/4 and dashed
lines: ±15 % error to Blasius correlation.

measurement uncertainty). Therefore, if we consider a streamline on the free surface,
and rearrange (5.1), we obtain a simple relation for the estimated friction loss in the
fluid phase;

hf =
V2

1 − V2
2

2g
+ (d1 − d2), (5.2)

from which we can obtain a friction factor, fH , based on hydraulic diameter DH;

fH =
hf

L
DH,avg

V2
avg

2g

, (5.3)

and similarly a friction factor, fEQ, based on equivalent diameter DEQ

fEQ =
hf

L
DEQ,avg

V2
avg

2g

. (5.4)

This ‘inferred’ friction factor measured at x/D = 210 is plotted against both local
hydraulic Reynolds number and local equivalent Reynolds number in figures 6(a)
and 6(b), respectively. Each grey scale symbol represents a series of measurements
with different initial water depths and all symbols are shaded by depth. The magenta
stars and green crosses are data reported in Knight & Sterling (2000) and Yoon et al.
(2012), respectively. The solid black line is the full pipe flow correlation of Blasius
f = 0.316Re−1/4 with error bars of ±15 % represented by the black dashed lines.
Friction factor values calculated from pressure-drop measurements when the VLSPF
facility was running full are plotted as red circles for comparison.

It would appear that the friction factor is no longer a simple function of Reynolds
number (regardless of the definition used). When the friction factor is plotted against
ReH as in figure 6(a), we see that the friction factor approaches the Blasius correlation
for full pipe flow with decreasing depth which is somewhat expected – at the
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FIGURE 7. (Colour online) Inferred friction factor versus Froude number at x/D=210. (a)
using DH and (b) using DEQ. Grey scale symbols: friction factor from partially filled pipe
flow coloured by depth. Green (×): data from Sterling & Knight (2000) and magenta (?):
data from Yoon et al. (2012). Solid black line: f ∼Fr−1/2 and dashed black line f ∼Fr−1.

shallow flow limit, the flow is similar to wide open channel flow and approaches
two-dimensional flow. When the pipe is running nearly full, the flow is highly
three-dimensional and we see that the friction factor is increasing with flow depth
for constant Reynolds numbers. In laminar flow, the velocity is unidirectional i.e.
(v = w = 0) but varies spatially over the cross-section of the pipe, however, the
friction factor still decreases with Reynolds number at approximately Re−1 as in
a full pipe (trend line not shown in figure 6). The data from Yoon et al. (2012)
are in the transitional regime and appear to follow the same trends as our inferred
friction factor for the same Reynolds numbers. The data from Knight & Sterling
(2000), however, do not appear to show a dependence on flow depth. In figure 6(b),
where we have rescaled the inferred friction factor data and Reynolds number with
the equivalent diameter defined in § 2, a different trend emerges. Generally speaking,
the Blasius correlation for full pipe flow over-predicts the inferred friction factor for
d/D . 50 % and under-predicts the inferred friction factor for d/D & 50 %. It is not
clear why this is the case, but it does reveal that the friction factor versus Reynolds
number scaling for full pipe flow does not appear to hold for partially filled pipe
flow (based on our estimate of friction factor).

We replot the inferred friction factor data as a function of Froude number in
figure 7, where the friction factors in figure 7(a) are calculated using hydraulic
diameter and in figure 7(b), friction factors are calculated using the equivalent
diameter. The Froude number is calculated from the local bulk velocity and local
hydraulic mean depth at x/D = 210. Our inferred friction factor appears to show
two distinct trends. The data collapse well for Froude numbers between 0.1 . Fr . 1
where the friction factor appears to scale with Froude number according to f ∼Fr−1/2.
There is more scatter in the data for Fr< 0.1, but in this region friction factor appears
to scale as f ∼Fr−1 albeit with only a very limited amount of data. These trend lines
are drawn in figure 7 as solid and dashed lines, respectively. From figures 6 and 7 it
is clear that the friction factor in pressure-driven partially filled pipes is a function of
both Reynolds and Froude numbers, although it is unclear as to why the data reported
in Knight & Sterling (2000) and Yoon et al. (2012) do not show the same trends.
This discrepancy may be due to some inherent difference between gravity-driven and
pressure-driven flows or it may be that our method for estimating friction factor is
too simplistic to capture certain subtle aspects of the flow.

Due to the relatively large uncertainty associated with this indirect method of
obtaining the friction factor we refrain from presenting the velocity data scaled using
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wall variables and only non-dimensionalise our velocity data using outer variables;
the appropriate scaling for the large-scale turbulent motions.

6. Laminar flow
The velocity profile in a full laminar circular pipe flow (Hagen–Poiseuille flow)

is a textbook solution to the equations of Newtonian viscous fluid flows (White
2006). However, until only recently, there were no theoretical solutions for laminar
flow in partially full circular pipes. Guo & Meroney (2013) were the first to realise
a theoretical solution by introducing a free surface correction function linearly
superposed onto the classical Hagen–Poiseuille flow. Their theoretical velocity
distribution (included here for completeness):

U =
sin θ sin(η− θ)

2(cosh ξ − cos η)
−

sin 2θ
2

∫
∞

0

sinh k(π+ θ − η) cos kξ
sinh kπ cosh kα

dk, (6.1)

is solved in a bipolar coordinate system, (ξ , η), where k is the transform variable for
ξ . The relationship between bipolar and Cartesian (y, z) coordinate systems is;

y
R
=

sin θ sinh ξ
cosh ξ − cos η

, (6.2)

and
z
R
=

sin θ sin η
cosh ξ − cos η

. (6.3)

The work of Guo & Meroney (2013) was subsequently extended by Fullard & Wake
(2015) who predicted that the velocity dip phenomenon would first appear for flow
depths in excess of d/D = 86 % and that the maximum velocity increases with fill
depth up to a maximum of around d/D = 77 %. In this section we report measured
streamwise velocity distributions for a range of flow depths in the laminar regime
and attempt to experimentally verify the theoretical solutions put forward by Guo &
Meroney (2013) and Fullard & Wake (2015). We take advantage of our one symmetry
plane and symmetrise the measured streamwise velocity distributions about the pipe
vertical bisector before comparison to the reported theoretical solutions. The Reynolds
number for the laminar flow velocity measurements was kept below ReH = 500 so that
we are far away from transitional Reynolds numbers; the maximum root mean square
streamwise velocity fluctuations were no more than 4 % of Umax (within the expected
noise level of the S-PIV measurement system) so we can safely assume that the flow
is indeed laminar.

Measured streamwise velocity profiles along the pipe vertical bisector non-
dimensionalised using hydraulic diameter, DH , and bulk velocity, Ub, are plotted
in figure 8. Here, we can see that at our lowest flow depth of d/D= 24 % which has
a corresponding free surface width B/D= 0.85, the maximum velocity is Umax≈ 1.6Ub
and the location of Umax appears at the free surface. As the flow depth is increased
we continue to approach a maximum streamwise velocity of Umax = 2Ub with the
location remaining at the free surface. At d/D = 60 %, the maximum streamwise
velocity is Umax ≈ 2Ub at the free surface and remains close to this value until
d/D & 85 %. Beyond this flow depth, the maximum streamwise velocity appears
below the free surface in what is commonly referred to in open channel flow literature
as the ‘velocity dip’ phenomenon (Nezu 2005). The measured values of maximum
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FIGURE 8. Streamwise mean velocity profiles at pipe vertical bisector U/Ub.
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FIGURE 9. (a) Maximum streamwise velocity normalised by bulk velocity Umax/Ub as a
function of flow depth. (b) Location of maximum streamwise velocity as a function of
flow depth.

streamwise velocity are plotted as a function of flow depth in figure 9(a) and the
corresponding distance from the free surface plotted in figure 9(b). We can see in
figure 9(a) that the maximum velocity increases with flow depth before plateauing
between 60 % . d/D . 85 % before decreasing again for d/D = 90 %. The slight
increase in Umax/Ub between d/D = 90 and 95 % is due to a large relative error
in flow rate measurements as when the pipe is running very full (d/D & 90 %) the
bulk velocity is kept very low to prevent the pipe filling at inlet (see § 4). This
small discrepancy should not take away from the trends observed: that the value of
Umax/Ub increase with flow depth before plateauing and then decreases again after
the appearance of the ‘velocity dip’. In figure 9(b) we show the location of the
maximum streamwise velocity in terms of distance from the free surface. We note
that for flow depths d/D . 85 % the distance of the maximum velocity to the free
surface has taken on a small finite value (they should be zero) and this is due to
the difference between our measurement of flow depth and how close the S-PIV can
resolve velocities near the free surface. Overall, our measurements are in excellent
agreement with the prediction of Fullard & Wake (2015) who report that the velocity
dip only appears in laminar partially filled pipes for flow depths d/D> 86 %.

In figure 10 we plot the measured velocity profiles rescaled using Umax together
with velocity profiles calculated from the theoretical solution reported in Guo &
Meroney (2013) for each corresponding flow depth tested. The black symbols are
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FIGURE 10. Streamwise mean velocity profiles at pipe vertical bisector U/Umax: BlackE:
experimental data and solid lines (−): theoretical profiles. (a) d/D = 24 % (ReH = 426);
(b) d/D= 33 % (ReH = 438); (c) d/D= 40 % (ReH = 471); (d) d/D= 46 % (ReH = 464);
(e) d/D= 50 % (ReH = 446); ( f ) d/D= 60 % (ReH = 409); (g) d/D= 70 % (ReH = 371);
(h) d/D= 80 % (ReH = 332); (i) d/D= 85 % (ReH = 422); ( j) d/D= 90 % (ReH = 383)
and (k) d/D= 95 % (ReH = 232).

the experimental data and the solid black lines are the theoretical distributions. We
have very good agreement between experiments and theory, with the majority of
each measured profile within ≈ ±3 % of the theoretical profile (i.e. within 5 % of
Umax); where the largest discrepancies between experiments and theory are near the
wall where it is well known that uncertainties in PIV measurement techniques will
necessarily increase due to the inhomogeneous displacement of paired particle images
in the presence of the mean velocity gradient (Raffel et al. 2007). At a flow depth of
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FIGURE 11. Streamwise mean velocity profiles at pipe vertical bisector U/Umax.

d/D= 95 % (figure 10k) the largest discrepancy between the measured and theoretical
profiles is near the free surface which can be accounted for by the influence of
surface tension. For this case (where free surface width B approaches zero), the
Weber number estimated using We = ρU2

bB/σ (where σ is surface tension) was less
than unity suggesting that surface tension is important.

If we now show the profiles in figure 10 all together as in figure 11 a peculiar
trend emerges. The profiles tend to collapse onto a single curve for z/DH < 0.2 then
the data branch off and follow two distinct curves for 0.2 . z/DH . 0.5. The lower
of these two branches contains the data for all flow depths up to d/D = 50 % in
addition to d/D = 95 % and the upper branch contains all data 60 % 6 d/D 6 90 %.
To make sense of this behaviour, it is perhaps best to consider the whole velocity
distribution for each flow depth which we plot as contours in figure 12. Here, the
filled contours are the experimental data and the solid blue line contours are the
theoretical distributions (with symmetry along the vertical bisector, we plot only
half of the theoretical distributions to improve visibility). The full laminar pipe flow
velocity distribution has been included for comparison. It can be seen in figure 12
that we have very good-to-excellent agreement between the measured and theoretical
distributions for all flow depths tested. We can see that for all flow depths prior to the
appearance of the ‘velocity dip’ the maximum streamwise velocity appears at the free
surface along the vertical bisector. For flow depths up to half-full, the contour lines
resemble concentric circles that terminate at the free surface, and thus the effect of
the free surface is minimal. When the flow depth is 50 %. d/D. 85 % the maximum
streamwise velocity still appears at the free surface and thus we see that the contour
lines no longer assume the shape of concentric circles. As such, when scaled with
Umax and DH the mean velocity gradient along the vertical bisector must be steeper
in order for the maximum velocity to appear at the free surface, hence the upper
branch in figure 11. When we approach full pipe flow, the velocity dip appears and
the maximum velocity moves away from the free surface hence dropping the velocity
profile for d/D = 95 % back onto the lower branch in figure 11. Interestingly, the
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FIGURE 12. (Colour online) Contours of U/Umax = [0 : 0.1 : 1]. Filled contours:
experimental data and solid blue lines: theoretical distributions. (a) d/D = 24 % (ReH =

426); (b) d/D = 33 % (ReH = 438); (c) d/D = 40 % (ReH = 471); (d) d/D = 46 %
(ReH = 464); (e) d/D= 50 % (ReH = 446); ( f ) d/D= 60 % (ReH = 409); (h) d/D= 70 %
(ReH = 371); (i) d/D= 80 % (ReH = 332); ( j) d/D= 85 % (ReH = 422); (k) d/D= 90 %
(ReH = 383) (l) d/D= 95 % (ReH = 232) and d/D= 100 % (ReH = 575).

full laminar pipe flow velocity profile lies between the two ‘branches’. Our measured
velocity distributions compare very favourably with the theoretical solution of Guo &
Meroney (2013) and largely confirm their conclusion that the free surface correction
term has only a small effect when the pipe is less than half-full and that the velocity
dip phenomenon is only seen when the pipe is running very full for laminar flow
due to the absence of secondary currents.
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FIGURE 13. (Colour online) (a–c) Mean velocity profiles taken along pipe vertical bisector
(y/R= 0) for flow depths d/D= 44 %, 62 % and 80 %. Black circles are for current study:
ReH ≈ 30 000. Grey squares are data published in Yoon et al. (2012) for flow depths
d/D= 40 %, 60 % and 80 % at ReH = 9766, 16 088 and 18 974, respectively.

7. Turbulent flow
7.1. Mean velocity field

We demonstrated in § 6 that for a laminar partially filled pipe flow the ‘velocity dip’
phenomenon only appears for flow depths d/D & 85 %. Our experimental data agree
well with the theoretical solutions of Guo & Meroney (2013) and Fullard & Wake
(2015) and serve as validation of our experimental set-up and measurement technique.
In this section we will present the measured velocity distribution for turbulent partially
filled pipe flow for flow depths between 44 % 6 d/D 6 80 % at a nominally constant
Reynolds number of ReH ≈ 30 000. Figure 13 compares our measured streamwise
velocity profiles along the pipe vertical bisector with those published in Yoon et al.
(2012) where black circles are data from the current study and blue squares are those
data from Yoon et al. (2012). There is some discrepancy between our data and the
Yoon et al. (2012) data for d/D ≈ 40 % (figure 13a) but this is likely due to their
significantly lower Reynolds number (ReH = 9766 versus ReH ≈ 30 000 in current
work) which they claim puts their flow into the transitional regime. For flow depths
d/D≈ 60 % (figure 13b) and d/D≈ 80 % (figure 13c) we have better agreement (both
data sets are measured in fully turbulent flow) and clearly the maximum streamwise
velocity appears below the free surface for these cases. Furthermore, our data acquired
in the VLSPF facility reveal that the mean streamwise velocity gradient approaches
zero near the free surface as expected.

The mean streamwise velocity profiles measured at the pipe vertical bisector in this
current work are shown together in figure 14. These data are presented using both
Umax and Ub as the velocity scale and the flow depth d, pipe diameter D and hydraulic
diameter DH are used as length scales. The full pipe flow velocity profile (taken from
data acquired in the VLSPF facility by Dennis & Sogaro 2014) is included for
comparison. Regardless of the scaling employed, three things are immediately clear
from figure 14.

(i) For all partially filled pipe runs (44 % 6 d/D 6 80 %), we observe the so-called
‘velocity dip’ phenomenon where the location of the maximum streamwise
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FIGURE 14. (a–c) Mean streamwise velocity along vertical bisector scaled with maximum
streamwise velocity Umax and (a) flow depth d; (b) pipe diameter D and (c) hydraulic
diameter DH , respectively. (d–f ) Mean streamwise velocity along vertical bisector scaled
with bulk velocity Ub and (d) flow depth d; (e) pipe diameter D and ( f ) hydraulic
diameter DH , respectively. (E): d/D = 44 %; (@): d/D = 52 %; (6): d/D = 62 %; (A):
d/D = 70 %; (C): d = 80 % and (?): d/D = 100 %. Grey scale shading increases with
increasing flow depth.

velocity occurs below the free surface. This is in contrast to the laminar flow
results presented in § 6 where a velocity dip only occurs for d/D > 85 % in
agreement with theoretical prediction.

(ii) The streamwise velocity becomes almost invariant with wall distance when
nearing the free surface (best viewed when scaled with flow depth d in
figure 14a,d) implying that there is zero mean shear and that the air/fluid
interface in our pipe working section represents a ‘true’ stress free surface.

(iii) Unsurprisingly neither of the six available scaling permutations can collapse the
data over the whole profile, indicating some kind of mixed scaling.

We see in figure 14(a) that the partially filled pipe flow data collapse with the full
pipe profile and that the location of Umax is at half the flow depth (z/d ≈ 0.5) for
runs where d/D > 50 %, whereas when the pipe is less than half-full, the maximum
streamwise velocity is closer to the free surface. This observation is reinforced in
figure 14(b) where the location of Umax increases monotonically with flow depth
towards z/D= 0.5 for the full pipe flow when the velocity profile is scaled with pipe
diameter D. In figure 14(c), the length scale is the hydraulic diameter, which is harder
to interpret because it is non-monotonic with flow depth, (see inset in figure 6a), but
appears to be the most appropriate length scale for the partially filled pipe flow. From
figure 14(d) we can see that the proportion of the velocity profile that is above the
mean velocity i.e. U/Ub > 1 increases with flow depth, but remains constant with
regard to pipe diameter D (figure 14e); and in this figure the effect of the free surface
becomes clear; near the no-slip wall, in what would be considered the ‘inner region’
of the full pipe flow (z/D. 0.2), the symmetry plane of partially filled pipe (vertical
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FIGURE 15. Contours of time-averaged streamwise velocity normalised with bulk velocity
U/Ub for flow depths: (a) d/D= 44 %; (b) d/D= 52 %; (c) d/D= 62 %; (d) d/D= 70 %
and (e) dc = 80 % at ReH ≈ 30 000. The time-averaged in-plane motion is superimposed.
( f ) (E) maximum magnitude of in-plane motion, VS,max, and (@) the total non-dimensional
mean axial vorticity, |Ωx| ×D/Ub, as a function of flow depth d/D and aspect ratio B/d.

bisector) behaves in a very similar manner to that of axisymmetric pipe flow. As the
free surface is approached, the mean velocity profiles for the partially filled pipe flow
is distorted and ‘peels off’ the full pipe flow profile with this peel-off delayed with
greater flow depth. Figure 14( f ) displays the velocity profiles scaled with Ub and DH .
With no appreciable trends, it would appear that this choice of scaling variables is
the least appropriate of our permutations.

The distortion of the mean streamwise velocity distribution is, of course, not
confined only to the vertical bisector. Figure 15 shows filled contours of the
time-averaged streamwise velocity, along with the corresponding in-plane velocity
vectors. We have exploited the symmetry of the flow about the vertical bisector to
improve the statistics. These plots clearly show the ‘velocity dip’ phenomenon where
the maximum streamwise velocity occurs below the free surface even when the flow
depth is d/D< 50 %. None of the velocity contours for U/Ub> 1 resemble concentric
circles, a result of breaking azimuthal symmetry due the presence of the free surface
and an indication of the three-dimensional nature of the flow. A mean secondary flow
is observed near the free surface with each of the counter-rotating rolls filling the
half-width of the pipe. Due to the absence of streamline curvature (as we have a
straight pipe run) the secondary flow observed here is driven by turbulence anisotropy
and spatial gradients of the Reynolds shear stresses (the latter of which is not present
in axisymmetric full pipe flow). These secondary flows are often referred to as
Prandtl’s secondary flow of the second kind (Prandtl 1952). While secondary flows
have been inferred from the distortion of the mean streamwise velocity distribution
(i.e. ‘velocity dip’ phenomenon) in partially filled pipes (Knight & Sterling 2000;
Yoon et al. 2012), direct measurements are uncommon. Only Clark & Kehler (2011)
report experimentally measured secondary flows (using ADV), although that study was
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conducted in a corrugated metal culvert and flow depths did not exceed d/D= 52 %.
Here we observe the presence of large-scale counter-rotating rolls near the free
surface region up to flow depths of d/D = 80 %. Unlike fully turbulent flow in
straight pressurized ducts of non-circular cross-section where the measured secondary
flow cells appear in pairs about corner bisectors (see for example: Gessner & Jones
1965; Perkins 1970; Demuren & Rodi 1984; Khalifa & Trupp 1988), or in rectangular
and compound open channels where multiple pairs of secondary flow cells are set-up
depending on the particular geometry and/or aspect ratio (see for example: Tominaga
et al. 1989; Nezu & Nakayama 1997; Tamburrino & Gulliver 1999; Nezu 2005) the
mean secondary motion observed here manifests only as a single pair of vortices
mirrored about the pipe vertical bisector (insofar is what our S-PIV measurements
can resolve), a result consistent with the study of Clark & Kehler (2011) in circular
corrugated culverts.

To characterise the strength of the mean secondary flow we calculate the
maximum in-plane velocity which, following Johnston (1978), is defined as:
VS,max = |

√
V2 +W2|max. We also characterise the secondary flow strength using

an integral measure which we have chosen as the magnitude of the mean axial
vorticity, |Ωx| (the total mean axial vorticity will be zero as the secondary flow cells
have opposing sense of rotation, so we sum the magnitude of the mean vorticity
calculated for half of the pipe on either side of the vertical bisector). Each of these
quantities are plotted in the bottom right corner of figure 15 against both flow
depth d/D and flow aspect ratio B/d, where circles represent VS,max, and squares
represent |Ωx|, respectively. Here we see that 0.03 . VS,max/Ub . 0.04 (equivalent
to 0.02 . VS,max/Umax . 0.03) which lies within the range of values reported in the
literature, for example, Nezu (2005) reports VS,max ≈ 0.02Umax for laser Doppler
anemometer (LDA) measurements in a rectangular open channel, Owolabi, Poole &
Dennis (2016) report VS,max≈ 0.03Ub for LDA measurements in a marginally turbulent
square duct and Clark & Kehler (2011) reports values of up to VS,max ≈ 0.05Umax for
their ADV measurements in a circular corrugated culvert. In the current study, VS,max
appears to increase weakly from d/D= 44 % to 60 % before plateauing, however, the
total increase is small (≈1 %Ub). When considering the mean axial vorticity |Ωx| we
see a clear monotonic decrease with flow depth. Since |Ωx| = |Γ |/A, where Γ is
circulation and A the flow cross-sectional area, we can surmise that the average mean
secondary flow strength is approximately constant (which we have confirmed from
calculating Γ ) and that the mean axial vorticity decreases with increasing flow depth
due to the attendant increase in flow cross-sectional area. Interestingly, the centres of
secondary flow cells appear to remain at a constant distance from the free surface.

Figure 16(a) plots the distance from the free surface of the secondary flow cell
centres (circles), as well as the distance from free surface of the maximum streamwise
velocity (squares). While the secondary flow cells remain near the free surface 1Z ≈
0.1D, the distance from the free surface of the position of the maximum streamwise
velocity increases linearly with flow depth. In figure 16(b) we plot the distance from
the vertical bisector of the secondary flow cell centres (circles) and the location of the
maximum streamwise velocity (squares). We see that the secondary flow cell centres
move slightly apart with increasing depth for the range of depths tested 44 %6 d/D6
80 % and in showing that the location of the maximum streamwise velocity lies on
the vertical bisector we simply confirm that that is the symmetry plane for this flow.

7.2. Streamwise Reynolds normal stress and turbulent kinetic energy
In this section we examine the spatial distribution of the streamwise Reynolds normal
stress u2 and the turbulent kinetic energy TKE = 0.5(u2 + v2 + w2). We have again
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FIGURE 16. (a) Distance to free surface and (b) distance to vertical bisector of the
secondary flow cell centres (E) and location of maximum streamwise velocity (@). All
normalised by pipe diameter D.
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FIGURE 17. Contours of time-averaged streamwise Reynolds normal stress normalised
with bulk velocity u2/U2

b for flow depths: (a) d/D=44 %; (b) d/D=52 %; (c) d/D=62 %;
(d) d/D= 70 % and (e) d/D= 80 % at ReH ≈ 30 000.

exploited symmetry about the vertical bisector, and furthermore, as our primary
interest is in the large scales, a median filter with a kernel size of 0.06 × 0.06D
was employed to smooth the distributions for presentation. The spatially filtered
streamwise Reynolds normal stress normalised with bulk velocity u2/U2

b is shown as
filled contours in figure 17. The filtering will attenuate the small scales and hence
the magnitude of the measured Reynolds normal stress (and TKE), however, since
our Reynolds number is constant, the effect of spatial filtering is constant for each
of the flow depths and we focus only on the spatial distribution of the stresses
relative to a full pipe flow. In a full pipe flow (at comparable Reynolds numbers
Reτ = RUτ/ν ≈ O(102–103) where Uτ is the friction velocity), it is known that the
streamwise normal stress peaks at a inner-scaled wall distance of z+ = zUτ/ν ≈ 15
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(where z = R − r), before decreasing with wall distance until plateauing within the
logarithmic region and then monotonically decreasing to a minimum at the pipe
centreline. Although the measured magnitude of the near wall peak in streamwise
Reynolds normal stress varies in the literature (see, for example: Hultmark, Bailey
& Smits 2010; Ng et al. 2011; Örlü & Alfredsson 2013), the general shape of
the distribution as described is confirmed from many experimental (for example:
Lawn 1971; Perry & Abell 1975; Durst, Jovanovic & Sender 1995; den Toonder &
Nieuwstadt 1997; Monty et al. 2009) and DNS databases (e.g.: Sillero, Jimenez &
Moser 2013; Chin et al. 2015). As a full pipe flow is, of course, axisymmetric, the
spatial distribution of any turbulence statistic can only depend on the wall distance.
In a partially filled pipe, we break azimuthal symmetry and our only symmetry plane
is the vertical bisector. The effect of broken symmetry on the streamwise Reynolds
normal stress is immediately clear in figure 17 where there is now a pronounced
azimuthal variation. By referring back to the streamwise velocity distributions in
figure 15 we can see that the streamwise Reynolds normal stress is minimum where
streamwise velocity is maximum. The regions of maximum streamwise Reynolds
normal stress appear around the periphery of the pipe as expected and not near the
free surface which will have much less mean shear than near the no-slip boundary.
Interestingly, the regions of high stress (dark shaded regions) do not form a continuous
band around the azimuth of the pipe near the wall even when far away from the free
surface. For flow depths d/D> 50 %, the regions of maximum stress are at the bottom
of the pipe θ = 0◦ and also off to either side θ ± 90◦. In a region close to the θ ± 45◦
bisectors, the stress is lower. Figure 18 shows contours of the filtered turbulent
kinetic energy normalised with bulk velocity, TKE/U2

b . The distribution of TKE is
qualitatively very similar to the distribution of the streamwise Reynolds normal stress
indicating that streamwise normal stress remains the dominant component even with
a mean secondary flow present. In the TKE distributions, the most energetic locations
are found near the pipe bottom θ = 0◦ and towards the sides θ ± 90◦ with low energy
near the free surface and near the θ ± 45◦ bisectors. This is the same pattern as for
the streamwise Reynolds normal stress distributions and indicative of a preferential
arrangement of the turbulent motions in the presence of the mean secondary flow.

Figure 19 shows profiles of turbulence statistics (normalised with bulk velocity)
taken along the pipe vertical bisector scaled with the flow depth d. We can see
that each of the Reynolds normal stresses, u2; v2 and w2, as well as the Reynolds
shear stress −uw and TKE all peak at approximately z/d = 0.2. This in itself is
interesting because if we treat flow depth d as the outer length scale, then z/d= 0.2
would be notionally equivalent to z/δ = 0.2, typically considered the edge of the
outer region in canonical wall-bounded flows (where δ would represent the boundary
layer thickness for a two-dimensional boundary layer, equivalent to R and h, the pipe
radius or channel half-height, in fully developed internal flows). After peaking at
z/d ≈ 0.2, the streamwise Reynolds normal stress, u2, then decreases linearly with
depth between 0.2 < z/d < 0.5. v2 also appears to follow a near-linear decrease
between 0.2< z/d< 0.5. From figure 14(a) we can see that z/d≈ 0.5 coincides with
the location of maximum streamwise velocity. Interestingly, however, both u2 and v2

increase again slightly between z/d & 0.5 and the free surface suggesting turbulence
production due to the mean secondary motion. When we consider TKE plotted
in figure 19(d), this production becomes more apparent; the TKE profile peaks at
approximately z/d= 0.2 and then decreases linearly with increasing z/d until reaching
a minimum at around z/d= 0.5. For z/d> 0.5, a peculiar trend emerges; up to a flow
depth of d/D= 52 %, TKE remains constant from z/d= 0.5 until the free surface. For
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FIGURE 18. Contours of time-averaged turbulent kinetic energy (TKE) normalised with
bulk velocity TKE/U2

b for flow depths: (a) d/D= 44 %; (b) d/D= 52 %; (c) d/D= 62 %;
(d) d/D= 70 % and (e) d/D= 80 % at ReH ≈ 30 000.

flow depths greater than d/D= 52 %, the TKE increases between z/d = 0.5 and the
free surface, the magnitude of which is increasing with increasing flow depth. The
Reynolds shear stress −uw is plotted in figure 19(e). The profiles of −uw all peak
at approximately z/d = 0.2 and then begin to decrease with increasing z/d, and for
all flow depths except d/D = 44 % the Reynolds shear stress changes sign between
0.4< z/d< 0.6 which is approximately where the gradient in the streamwise velocity
profile becomes negative. From approximately, z/d= 0.5 to z/d= 0.75, −uw becomes
increasingly negative and the strength of the Reynolds shear stress increases with
increasing flow depth. This is not surprising as the mean streamwise velocity gradient
also increases with increasing flow depth. At z/d very close to unity, the Reynolds
shear stress returns to zero as expected. These findings are completely consistent with
the ADV measurements of Clark & Kehler (2011) for a partially filled corrugated
metal culvert and are markedly different to fully developed pipe flow and channel
flow (see, for example: Pope 2000, ch. 7). That the TKE and Reynolds normal and
shear stress distributions are different to canonical pipe flow is not surprising. By
reducing flow depth and introducing a free surface, the boundary condition for the
upper part of the flow changes from no-slip wall to that of no mean shear. When
z/d approaches unity, turbulence production tends to zero (at least along the vertical
bisector) leading to the reduction in the TKE, turbulence intensities and Reynolds
shear stress in the upper part of the flow. The streamwise component of turbulence
intensity is the strongest, followed by the spanwise and wall normal components.
Unlike fully developed pipe or channel flow, the mean fluctuations do not take on
the same value at the location of maximum streamwise velocity (i.e. centreline in a
full pipe) indicating that even along the symmetry plane, flow in a partially filled
pipe is highly anisotropic and also that there does not appear to be a quiescent core
region that one finds in full pipe flow or channel flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.345


Partially filled pipes: experiments in laminar and turbulent flow 491

0

0.2
0.4
0.6
0.8
1.0(a) (b)

(d) (e)

(c)

0

0.2
0.4
0.6
0.8
1.0

0

0.2
0.4
0.6
0.8
1.0

0

0.2
0.4
0.6
0.8
1.0

0
0.2
0.4
0.6
0.8
1.0

0.004 0.008

0.004 0.008

0.004 0.008 0.5 1.0 1.5 2.0 2.5
(÷ 10-3)

(÷ 10-3)
-1.5 -0.5 0.5 1.5

u2/U2
b

TKE/U2
b -uw/U2

b

√2/U2
b w2/U2

b

FIGURE 19. Profiles of (a) u2/U2
b ; (b) v2/U2

b ; (c) w2/U2
b ; (d) turbulent kinetic energy

TKE2/U2
b and (e) Reynolds shear stress −uw/U2

b along vertical bisector plotted as a
function of flow depth. (E): d/D= 44 %; (@): d/D= 52 %; (6): d/D= 62 %; (1): d/D=
70 % and (3): d/D= 80 %. Grayscale shading increases with increasing flow depth.

8. Instantaneous turbulent velocity fields
In this section we present example pseudo-instantaneous fields of streamwise

velocity fluctuations reconstructed using Taylor’s frozen turbulence hypothesis
(Taylor 1938). This method of obtaining spatial information from two-dimensional
three-component (2D-3C) PIV measurements was discussed in detail in Dennis
& Nickels (2008) and was shown to be valid for moderate projection distances.
In all pseudo-instantaneous fields which rely on Taylor’s hypothesis flow will
be from left-to-right with 1TUb/R increasing. Figure 20 shows azimuthal planes
at a constant wall distance of r/R = 0.80, where r is radial distance from pipe
centreline and R is pipe radius. In figure 20(a), which is taken from the full pipe
flow data set of Dennis & Sogaro (2014), we note the presence of very long,
streamwise-aligned streaky structure characterised by streamwise velocity fluctuations
alternating from positive–negative–positive (or vice versa) and with lengths O(10R).
As reported in that study, these features are the instantaneous signature of the large-
and very-large-scale motions (LSM/VLSMs) in pipe flows first reported by Kim &
Adrian (1999) and subsequently in both pipes and channels, from experimental and
numerical databases by Guala, Hommema & Adrian (2006), Balakumar & Adrian
(2007), Monty et al. (2007), Wu et al. (2012), Lee & Sung (2014) among others.
Dennis (2015) provides a recent review of coherent structures in wall turbulence
and we know that the aforementioned LSM and VLSMs in pipes and channels are
analogous to ‘superstructures’ that were reported in boundary layers by Hutchins
& Marusic (2007). The LSM/VLSMs and superstructures are known to exist up to
the edge of the inner layer in a range of canonical wall-bounded turbulent flows. A
recent numerical study by Lee, Ahn & Sung (2015) revealed subtle, yet important,
differences in the LSM and VLSM found in channels and pipes and that crucially, the
spatial extents of the large-scale coherent motions and their contribution to turbulence
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FIGURE 20. (Colour online) Slices of pseudo-instantaneous streamwise velocity fluctuation
u/U taken at constant radius r/R=0.80 for flow depths: (a) d/D=100 %; (b) d/D=80 %;
(c) d/D= 62 % and (d) d/D= 44 %.

statistics was dependent on wall geometry. When we reduce the flow depth we are
effectively changing wall geometry and boundary conditions. Figures 20(b)–20(d) are
the instantaneous fields at constant r/R = 0.80 for flow depths d/D = 80 %, 62 %
and 44 %, respectively. For each of these flow depths, the instantaneous signature of
the LSMs and VLSMs remain, although the velocity fluctuations appear marginally
weaker.

Figure 21 shows the plane along the vertical bisector for the same data sets. In
figure 21(a), where we plot the full pipe data, the top and bottom edge of this
panel is a no-slip boundary (pipe wall). The predominant feature here is that the
instantaneous flow structures are not wall parallel but appear to lift off the wall at an
angle. This inclination angle was originally studied using two-point measurements of
wall shear stress and streamwise velocity in boundary layer flow (Brown & Thomas
1977; Wark & Nagib 1991) along with flow visualisation studies (Bandyopadhyay
1980). Later, the structure inclination angle in boundary layers was studied using PIV
(by, for example: Adrian, Meinhart & Tomkins 2000b; Ganapathisubramani, Longmire
& Marusic 2003; Hutchins, Hambleton & Marusic 2005, among others) and was later
found to be common to boundary layers, pipes and channels (Christensen & Adrian
2001; Baltzer, Adrian & Wu 2013). Typically, inclination angles are reported to be
between 10 to 15◦ and it has been shown that the inclination angles are associated
with the formation of hairpin packets (Zhou et al. 1999; Adrian 2007). When the
flow depth is reduced, (figure 21b–d) the bottom edge is, of course, still a no-slip
boundary, but the top edge is now a nominally shear free boundary (free-surface).
At the bottom of the partially filled pipe where the flow is bounded by a no-slip
wall, the instantaneous structures remain similar to a full pipe flow. For example; if
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FIGURE 21. (Colour online) Slices of pseudo-instantaneous streamwise velocity fluctuation
u/U taken along pipe vertical bisector for flow depths: (a) d/D= 100 %; (b) d/D= 80 %;
(c) d/D= 62 % and (d) d/D= 44 %.

we concentrate on a small region in figure 21(b) between 11 < 1TUb/R < 14, we
can see a strong negative streamwise velocity fluctuation. This segment is shown in
figure 22. Streamwise velocity fluctuations with in-plane velocities superimposed are
plotted for a plane taken along the vertical bisector are shown in figure 22(a) and the
corresponding free surface parallel plane taken at a d/D= 0.76 (i.e. at a distance of
1Z/D = 0.04 from the free surface) is shown in figure 22(c). The corresponding
in-plane signed swirling strength, λS = λci × Ω/|Ω|, (coloured by the sign of
vorticity) with in-plane velocities superimposed are plotted in figures 22(b) and 22(d),
respectively. Following Adrian, Christensen & Liu (2000a), λci is the imaginary part
of the complex eigenvalue calculated from the two-dimensional velocity gradient
tensor in the plane of interest, and in order to recover sign information, we multiply
λci by the sign of the local in-plane vorticity Ω/|Ω| to obtain λS. In figure 22(a,b),
we see the signature of an LSM event extending from 11 < 1TUb/R . 13 with the
in-plane swirling strength in figure 22(b) indicating the location of several hairpin
vortex heads, which we can see are arranged in an inclined manner from the wall.
In the corresponding free surface parallel planes (figure 22c,d), we can see free
surface normal vortical motions termed ‘whirlpools’ by Banerjee (1994), one of the
dominant features of free surface turbulence in the absence of strong mean shear
(i.e. the lack of imposed shear, for example, in the case of wind blowing over the
surface of the ocean). These motions are attributed to vortices attached to the free
surface which have been shown in experiments (for example: Rashidi 1997; Kumar,
Gupta & Banerjee 1998; Nezu & Sanjou 2011) and DNS of wide open channels and
shear layers (Komori et al. 1993; Pan & Banerjee 1995; Tsai 1998) to be the legs of
horseshoe- or hairpin-vortex-like structures that form at the wall. These studies have
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FIGURE 22. (Colour online) Subset of data from figure 21(b). (a,c) Streamwise velocity
fluctuations with in-plane velocity vectors superimposed. (b,d) Swirling strength coloured
by vorticity with in-plane velocity vectors superimposed.

shown that when a hairpin-vortex-like structure forms at the wall, it rises up and
impinges upon the free surface, upon which the head of the hairpin vortex ‘splats’
and dissipates laterally, leaving behind the legs which remain attached to the free
surface and appear as coherent vertical vortical structures perpendicular to the free
surface. Another prominent feature of free surface turbulence is the appearance of
so-called ‘upwellings’ and ‘downdrafts’. Banerjee (1994) describes the signatures of
the ‘upwellings’ as regions on or very near the free surface where the ‘streamlines
radiate outwards’ and ‘downdrafts’ as regions where ‘streamlines converge forming
what look like lines of stagnation flow’. We can see from figure 22(c,d) that this
is indeed the case for the free surface in the partially filled pipe flow where the
signatures of upwelling and downdrafts are clear. When the flow depth is reduced to
d/D= 44 % as in figure 21(d), we see qualitatively very similar behaviour as shown
in figure 23 where we have again focused on one segment (4 < 1TUb/R < 7) and
plotted the velocity fluctuations and swirling strength in planes along the bisector
and in a free surface parallel plane at depth d/D= 42 % (1Z/D= 0.02). Again, the
signatures of whirlpools, upwellings and downdrafts are all present.

We next turn our attention to the in-plane motions in the cross-section of the
pipe. Figure 24 shows an example series of instantaneous velocity vector fields.
These data are independent of those which were shown in figure 22. Here, red and
blue filled contours represent streamwise velocity fluctuations with instantaneous
in-plane motion superimposed. It is apparent that there are large-scale coherent
vortical motions near the free surface and that these cellular structures persist for
some time. These are the so-called instantaneous ‘roll cells’ that are reported in
Onitsuka & Nezu (2001) who conducted PIV measurements in rectangular open
channels and found that these instantaneous roll cells appeared regardless of the
channel aspect ratio even in the absence of a long-time-average mean secondary
flow. In the example shown in figure 24, we can see that at 1TUb/R = 0 there is
a bursting event near the ‘corner’ where the no-slip wall meets the free surface on
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FIGURE 23. (Colour online) Subset of data from figure 21(d). (a,c) Streamwise velocity
fluctuations with in-plane velocity vectors superimposed. (b,d) Swirling strength coloured
by vorticity with in-plane velocity vectors superimposed.
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FIGURE 24. (Colour online) Example sequence of instantaneous flow fields for d/D =
44 % and ReH ≈ 30 000. Colour contours show instantaneous streamwise velocity
fluctuations u/U and arrows indicate the instantaneous in-plane velocities V and W.

the left-hand side of the pipe. This bursting or ‘upwelling’ then interacts with the
free surface and is dispersed laterally, forming a large streamwise-aligned vortex with
clockwise rotation. At 1TUb/R = 0.08, the upwelling remains and the instantaneous
roll cell moves towards the vertical bisector; at 1TUb/R= 0.16 the bursting motion
is no longer present but the instantaneous roll cell remains and continues to move
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laterally towards the vertical bisector while remaining near the free surface; and
from 0.24<1TUb/R< 0.4 the instantaneous roll cell continues towards the vertical
bisector whilst the signature of an upwelling appears again near the free surface
on the left-hand side of the pipe. Another prominent feature that we observe from
figure 24 is that the instantaneous roll cell described above coincides with regions
where the spatial gradients of streamwise velocity fluctuations are large. That the
‘core’ of the roll cell appears to track closely with u/U ≈ 0 as it moves from the
wall to the bisector implies that these coherent features play a significant role in the
transfer of streamwise velocity momentum. Reviews of open channel flow literature by
Nezu (2005) and Adrian & Marusic (2012) suggest that these instantaneous cellular
secondary currents are related to the mean secondary flows, but are difficult to detect
in the long time averages for wide channels (B/d > 5) as these features meander in
space and time. The aspect ratios for the flow depths tested in this study range from
1<B/d . 2.5 and so the appearance of a long-time-averaged mean secondary flow is
consistent with open channel flow where it was reported that a mean secondary flow
was only observed for aspect ratios B/d 6 5. Unlike rectangular open channels where
multiple pairs of mean secondary roll cells will appear depending on aspect ratio, our
S-PIV measurements have only been able to resolve one pair of rollers appearing in
the long-time average in the partially filled pipe. This pair of mean secondary flow
cells remains at a nominally constant distance from the free surface. We hypothesise
that this is a geometric phenomenon peculiar to partially filled pipe flow. As we have
seen, the instantaneous secondary cellular structures are associated with upwellings
that originate at the no-slip wall. Due to wall curvature, a bursting motion at the
no-slip wall will always be more likely to reach the free surface (and become an
upwelling) near the corners where the free surface and no-slip wall coincide. This is
a geometric constraint that is true except at the limits of very shallow flow depths
or very full flow depths. As the upwelling impinges upon the free surface, lateral
spreading occurs and an instantaneous roll pair forms. Since the upwellings are more
likely to occur in the ‘corners’, one of the instantaneous roll cells is bounded by the
no-slip wall and dies out, but the other is free to move laterally towards the vertical
bisector. We postulate that this geometric constraint is the reason that only one pair
of roll cells is observed near the free surface in the long-time-averaged velocity
field and may also provide an explanation for the sense of rotation of the roll cells
themselves.

9. Streamwise velocity correlations
So far, we have discussed the signatures of coherent structures in the instantaneous

fields only on a qualitative basis; and have seen that when we are close to the no-slip
boundaries but far from the free surface, the flow appears similar to full pipe flow with
the footprint of LSM and VLSM structures apparent in the instantaneous snapshots.
When we are close to the free surface, we observe free-surface-turbulence-like
phenomenon, namely upwellings, downdrafts and whirlpools. The upwellings and
downdrafts appear one after another in the streamwise direction with Adrian &
Marusic (2012) reporting that these structures correspond to the LSM in pipes or
bulges in turbulent boundary layers. To establish average structure characteristics we
utilise the two-point spatio-temporal correlation of streamwise velocity fluctuations
calculated using (9.1), where the zero subscripts denote the centre of the correlation
and the streamwise extent is inferred using Taylor’s hypothesis.

Ruu(1x, 1y, 1z)=
u(x0 +1x, y0 +1y, z0 +1z)u(x0, y0, z0)

u2
rms

. (9.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.345


Partially filled pipes: experiments in laminar and turbulent flow 497

We begin by examining the two-dimensional spatial correlation in the radial–
azimuthal plane calculated from S-PIV snapshots acquired at a low repetition rate
(refer table 1). Figures 25–27 display the two-point correlations calculated at a
constant wall distance of r/R = 0.8 at the vertical bisector; a 45◦ bisector; 10 % of
flow depth from free surface and at 10 % of flow depth from free surface along
the vertical bisector for flow depths of d/D= 44 %, 62 % and 80 %, respectively. In
these plots, red indicates a positive correlation and blue a negative correlation with
Ruu =±0.1 highlighted with the solid and dashed black lines, respectively. When we
are at r/R= 0.8 along the vertical bisector (the symmetry plane in this flow), we see
that the correlated regions are symmetric; a region of positive correlation, flanked
by regions of negative correlation. At first glance, this is similar to what has been
reported in full pipe flow, channel flow and turbulent boundary layers, respectively,
(for example: Monty et al. 2007; Bailey & Smits 2010; Dennis & Nickels 2011a) and
is the correlation pattern associated with hairpin vortex packets. When we move to
the correlation calculated at r/R= 0.8 along a 45◦ bisector, we begin to see the effect
of broken azimuthal symmetry. The full pipe flow is axisymmetric and, as a result,
the correlation calculated at a given wall distance is the same at every azimuthal
position, and the symmetry plane of the correlated region must pass through the
pipe centreline. For partially filled pipes, this is no longer the case. We see that
along the 45◦ bisector, the correlated regions are no longer symmetric. The positively
correlated regions begin to ‘lean’ away from the free surface and the regions of
negative correlation are no longer the same size. The leaning is most pronounced at
d/D= 44 % and barely noticeable at d/D= 80 %. Interestingly, the asymmetry in the
regions of negative correlation appear most pronounced at d/D = 80 % suggesting
that although proximity to the free surface plays a large part in the distortions of
the coherent structures relative to a full pipe flow, the mean secondary flow, present
for all flow depths tested, is also important. We postulate that the mean secondary
motion, which imposes a weak large-scale recirculation such that fluid near the
vertical bisector moves away from the free surface towards the bottom of the pipe
and fluid near the bottom of the pipe moves along the pipe wall up towards the free
surface, interacts with and distorts not only the individual hairpin-vortex-like coherent
motions near the wall, but may also interact with the concatenation and alignment
of the hairpin vortices during the formation of hairpin vortex packets that make up
the LSMs and VLSMs. This could be why the correlations, which are the averaged
signature of the large-scale coherent motions (at the reference location that correlation
is computed) exhibit this pronounced asymmetry. When we are at r/R= 0.8 and 10 %
of depth from the free surface, we can see a distinct change in the correlation
attributed to the difference in boundary conditions. For flow depths d/D= 44 % and
62 % the region of negative correlation on the free-surface side disappears completely
while at d/D = 80 % there is only a very weakly anti-correlated region on the free
surface side. The implication here is that the large-scale streaky structures, such as
hairpin vortex packets and LSMs, that are a hallmark of wall turbulence characterised
by regions of alternating streamwise-aligned low speed and high speed streaks, are
not formed at the free surface (due to the lack of, or very weak, mean shear relative
to the no-slip wall) and that streak-like structures observed in the free surface parallel
instantaneous fields (i.e. figures 22c,d and 23c,d) originate from the wall. This
becomes clear when we consider the correlation at 10 % flow depth along the vertical
bisector. At this point in the flow, we approach zero mean shear, (referring to the
mean streamwise velocity profiles in figure 14), and there only exists a positively
correlated region. The absence of negatively correlated regions implies that the pattern
of alternating low and high speed streaks does not exist here.
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(a) (b) (c)

(d) (e) ( f)

FIGURE 28. (Colour online) Contours of Ruu for flow depths (blue): d/D= 44 %; (red):
d/D= 62 % and (black): d/D= 80 %. Full pipe Ruu plotted in green for reference. (a–c):
correlation calculated along vertical bisector for wall distances r/R = 0.8, 0.6 and 0.4,
respectively. (d–f ), correlations calculated along 45◦ bisector for wall distances r/R= 0.8,
0.6 and 0.4, respectively.

Figure 28 shows the two-dimensional two-point streamwise velocity correlations
computed at wall distances of r/R= 0.8, 0.6 and 0.4 along the vertical bisector and a
45◦ bisector. Here solid lines represent Ruu = 0.1 and dashed lines Ruu =−0.1. Green
represents the full pipe flow; black d/D= 80 %; blue d/D= 62 % and red d/D= 44 %.
It is immediately clear that the size of the correlated regions (from which we infer the
average structure size) decreases with flow depth at each position. In figure 28(a,b)
we see that at r/R= 0.8 and 0.6 along the vertical bisector the positively correlated
regions are compressed in the radial direction and remain around the same size
in the azimuthal direction. Regions of negative correlation are compressed both
radially and azimuthally; with no negative correlation observed in figure 28(b) for
d/D= 44 %. At r/R= 0.4 along the vertical bisector (figure 28c) only the full pipe
flow exhibits regions of negative correlation and even the region of positive correlation
for d/D= 44 % ‘splats’ onto the free surface. In figures 28(d)–28( f ) the correlation
is calculated at the same wall distances but along a 45◦ bisector. As already noted,
we have broken azimuthal symmetry and the correlated regions lean away from the
free surface at all flow depths except for the full pipe. In terms of size, a similar
picture to that along the vertical bisector emerges; the positively correlated regions
are compressed radially, but remain largely the same size azimuthally and regions
of negative correlation are compressed in both the radial and azimuthal directions.
For d/D = 44 %, the region of negative correlation disappears by r/R = 0.6, and
by r/R= 0.4, the remaining region of positive correlation is ‘splatted’ onto the free
surface in much the same way as correlations computed along the vertical bisector. As
the LSM and VLSM motions are known to carry a large proportion of the Reynolds
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shear stress and turbulent kinetic energy, the modification in the size and shape of the
coherent motions shown here (especially along the 45◦ bisector) coincides with the
preferential arrangement of the streamwise normal stress and TKE discussed in § 7.2.

In closing this section, we turn our attention very briefly to the three-dimensional
(3-D) correlations calculated from the high speed S-PIV data collected at d/D= 44 %;
62 %; 80 % and 100 %. Without the advantage of azimuthal symmetry (for the partially
filled pipe) we require a very large amount of independent measurements to obtain
converged 3-D correlations, so whilst we are confident that the general shapes are
correct, the data do not appear to be fully statistically resolved. Furthermore, whilst
Taylor’s hypothesis has been shown to be a valid estimate for projecting temporal
information into the spatial domain, the choice of the ‘correct’ convection velocity
is ambiguous (we have selected the bulk velocity for convenience). The choice of
convection velocity is further complicated by the fact that the spatial distribution of
the mean streamwise velocity in partially filled pipes is distorted relative to a full pipe
flow and therefore the ratio of bulk velocity to local mean velocity is no longer only
a function of the wall distance. We, therefore, limit ourselves only to a qualitative
comparison of the change in structure lengths across flow depths, where we have used
Taylor’s hypothesis to infer spatial information from the planar S-PIV measurements.
A detailed statistical analysis of the LSM and VLSM in the vein of, for example,
Dennis & Nickels (2011b) and Lee et al. (2015) is beyond the scope of this paper,
but is the subject of future work.

Figure 29 shows isosurfaces of Ruu = 0.15 in red and Ruu = −0.1 in blue,
respectively, where the correlation is calculated at r/R = 0.8 along the vertical
bisector for flow depths of d/D= 100 %; 80 %; 62 % and 44 % from top to bottom.
Visualisation using isosurface representation is slightly subjective as one must select
an appropriate threshold level. We have chosen to display isosurfaces of Ruu=0.15 and
Ruu =−0.1 for clarity; for example if were to halve the threshold level, disconnected
regions of correlation appear away from the main regions suggesting the data are
not statistically well resolved enough at very low threshold levels. However, since
we have nominally the same amount of data for each flow depth, and our choice
of threshold level remains constant, the threshold level itself does not significantly
impact the conclusions to be drawn in this section. As we have already shown
with the 2-D correlations there is a decrease in the radial and azimuthal size of the
correlated regions with decreasing flow depth. In figure 29, we can now see that
along the pipe vertical bisector there is an essentially monotonic decrease in the
length of the correlated regions with decreasing flow depth as well. However, the
change in length for the region of positive correlation is minimal between d/D= 62 %
and d/D = 44 %, although the regions of negative correlation are clearly reducing
in size with decreasing flow depth. This plot reveals much the same trends as the
2-D correlations: that the coherent structures near the wall along the vertical bisector
in partially filled pipe flows are compressed when compared to the axisymmetric
full pipe flow and that at this location the structures become increasingly small
with decreasing flow depth. The likely cause is that along the vertical bisector of
the partially filled pipe, there is a mean downward velocity owing to the secondary
flow which is interacting with the coherent motions near the bottom of the pipe and
suppressing their growth.

When we move around the periphery of the pipe wall to a 45◦ bisector, a
different trend emerges. We plot isosurfaces of Ruu calculated at r/R = 0.8 at a
45◦ bisector in figure 30. As in figure 29, Ruu= 0.15 is shown in red and Ruu=−0.1
in blue. Here, the length of the correlations does not appear to reduce monotonically
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FIGURE 29. (Colour online) Correlation of streamwise velocity fluctuations Ruu at the pipe
vertical bisector and height of r/R= 0.8. Top to bottom: flow depths d/D= 100 %; 80 %;
62 % and 44 %. Red isosurface: Ruu = 0.15 and blue isosurface Ruu =−0.1.

with depth. Furthermore, the correlated regions at d/D= 62 % and d/D= 44 % appear
flatter and more distorted than those at d/D= 80 %, and there is a clear asymmetry
between the regions of negative correlation consistent with the 2-D correlations. One
thing to bear in mind is that we are much closer to the free surface for a flow
depth d/D = 44 % than d/D = 80 % and this is even more true when considering
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FIGURE 30. (Colour online) Correlation of streamwise velocity fluctuations Ruu at a 45◦
bisector and height of r/R= 0.8. Top to bottom: flow depths d/D= 80 %; 62 % and 44 %.
Red isosurface: Ruu = 0.15 and blue isosurface Ruu =−0.1.

the flow along a 45◦ bisector. Also, at this point in the flow, the mean secondary
motion is no longer downwards, but more rather upwards following the curvature of
the pipe wall. This results in a distortion of the shape of the correlated regions as
already shown in two dimensions, but also the alignment is altered, for example, in
figure 30 at a flow depth of d/D= 80 % the region of negative correlation nearer to
the free surface lags behind the region of negative correlation closer to the vertical
bisector. The reason for this misalignment is not clear at this time; and we have
not observed a particularly strong meandering motion in the instantaneous fields
(figure 20b), however, as we already mention when discussing the 2-D correlations
in figures 25–27, this lead/lag in the anti-correlated regions may be indicative of the
mean secondary motion influencing the formation of hairpin packets which are the
building blocks of the LSMs and VLSMs. One thing that is clear at this stage is
that the correlation lengths are longer along the 45◦ bisector than along the vertical
bisector. These 3-D correlations suggest that the general structure of the coherent
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motions is similar to full pipe flow with regions of positive correlation flanked by
regions of negative correlation, but that the size and the shapes of the correlated
regions (from which we infer coherent structures) varies along the periphery. This
implies that on average the coherent motions in partially filled pipe flow are modified
and distorted throughout the entire flow field and this effect is not only confined
to near the free surface. That the distortion and attenuation of coherent motions in
partially filled pipes depends on flow depth and azimuthal location (which may be
thought of as a local flow depth) indicates that the LSMs and VLSMs no longer
scale simply on pipe radius R as in the canonical pipe flow.

10. Conclusions

Stereoscopic particle imaging velocimetry was used to measure the velocity
distribution in the radial–azimuthal plane in both laminar and turbulent partially
filled pipe flow. The measured laminar flow velocity distribution was in very good
agreement with a recently published theoretical solution (Guo & Meroney 2013) and
the maximum streamwise velocity in the laminar flow region remained at or close
to the free surface for flow depths up to d/D ≈ 85 % in good agreement with the
prediction from theory. Turbulent flow velocity measurements were conducted at a
nominally constant Reynolds number of ReH ≈ 30 000 for five flow depths between
44 % . d/D . 80 % with the bulk Froude number less than unity in all cases so we
have a sub-critical fully turbulent flow. The mean streamwise velocity distribution
was heavily distorted relative to laminar partially filled pipe flow with the maximum
streamwise velocity appearing below the free surface for all depths tested. A distortion
of the mean streamwise velocity distribution is often associated with the presence of
a mean secondary flow which we confirm by examination of the in-plane velocity
components. Unlike mean secondary flows reported in open channels and square ducts,
the mean secondary flow pattern that we were able to resolve in this study manifested
as only a single pair of rolls reflected about the pipe vertical bisector, each of which
filling the half-width of the pipe. Furthermore, the secondary flow cells which had
essentially the same strength, remained at a constant distance from the free surface
with decreasing flow depth. The spatial distributions of streamwise Reynolds normal
stress and TKE revealed a preferential arrangement in contrast to the axisymmetric
full pipe flow. Snapshots obtained from high speed PIV revealed the instantaneous
signatures of large-scale coherent motions (LSMs and VLSMs) that are found to
be ubiquitous in wall-bounded turbulent flows; and free surface parallel snapshots
revealed the presence of upwellings, downdrafts and whirlpools, the hallmarks of
free surface turbulence in the absence of a strong imposed mean shear. Two point
correlations of streamwise velocity fluctuations suggest that the LSM and VLSM
type motions are present in partially filled pipe flow, but are distorted by proximity
to the free surface and the presence of the mean secondary flow. For example, in
the bottom of the partially filled pipe, the general pattern of the correlation with a
positive region flanked by negative regions is the same as a full pipe flow, however,
the correlations become compressed and distorted as we move around the periphery.
When we approach the free surface, for example, in the corner where the free surface
and no-slip wall meet, the pattern of the correlation changes; the region of positive
correlation remains, but a region of negative correlation only forms on the side of the
no-slip wall. This implies that the streaky structures in wall turbulence cannot form
at the free surface due to the absence of mean shear and that the coherent motions
observed at the free surface (i.e. the upwellings, downdrafts and whirlpools) must all
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originate from the wall, a result consistent with open channel flows. These results
also demonstrate that the LSMs and VLSMs no longer scale simply with the pipe
radius R which is the natural outer length scale for canonical pipe flow.
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