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HOLOMORPHIC MAPPING INTO ALGEBRAIC
VARIETIES OF GENERAL TYPE

PEICHU HU

§1. Introduction
We will study holomorphic mappings
f: M—> N

from a connected complex manifold M of dimension m to a projective
algebraic manifold N of dimension n. Assume first that N is of general
type, i.e.

e dim HYNV, K
m B

koo

’;v) >0,

where K, — N is the canonical bundle of N. If K, is positive, then N
is of general type.
In 1971, Kodaira [6] obtained that

TurEoREM A. Any holomorphic mapping f: C™— N has every-where
rank less than n.

P. Griffiths & J. King [2], [3] furthermore proved that

TueoreM B. If M is a smooth affine algebraic variety, then any holo-
morphic mapping f: M — N whose image contains an open set is necessarily
rational.

In 1977, W. Stoll [6] extended Theorems A, B to parabolic manifolds
M. To state it, we let M possess a parabolic exhaustion r and denote

(1) v =dd°r, g=dlogz N (dd°logr)™!.
For a form ¢ of bidegree (1,1) on M, write

(2) Ao =t g A, T(r,s;go)zj:_A_%i")_dt

M(t]
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if the integrals exist, where M[t] = {x € M: z(x) < #*}. Suppose throughout
that L is a positive holomorphic line bundle over N with a hermitian
metric p along the fibers of L such that the Chern form c¢(L, p) > 0. The
characteristic function of f for L is defined by

(3) T(r,s) = T(r,s; f*c(L, p)) .

TueoreM C. If M is a parabolic manifold and if F is an effective
Jacobian section such that

(i) F is dominated by t with Y as dominator, there exist positive
constants ¢, ¢, ¢; such that for ¢ > 0

(4) T(r,s) < c,log Y(r) + ¢, Ric.(r, s) + celogr
with the exception of a set of values (r) of finite measure.

The condition (i) implies m > n = rank f ([8], Lemma 18.1). We re-
move this restriction (see [4]). To state the generalization of the Theorem
C which we shall prove, we take a positive form  of class C= and bide-
gree (1,1) on N and set

(™) if m<n
V= {f*(w) A if m>n

where 2 be a positive (m — n, m — n)-form of class C* on M. Then the
form

(6) %, = f*(Ric ") — % Ric+,  where b = min (m, n),
is well-defined. Take a holomorphic form B of bidegree (m — 1, 0) on M.
Define

Yy = YV (B) = mi,_f*(y) AN BA B,
e; = e/ (y) = f*(Ric y") — nRic ¥,

where i,_, is defined in Section 3. Then X, (Ay) = Z,(¥), e, (hy) = e,(y)
for positive functions 2 of class C* on N. Define » by -, = pf*(y) A v

and denote
1
7 B = = 1
(7) () =5 [ logro,
(8) E/(r,s) = T(r,s; e,) + nB{, p;
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where B(t)|; means B(r) — B(s). For + = ¢(L, p), we obtain that

THEOREM 1. If there exists an effective Jacobian section of f and if
rank f = b = min (m, n), then exist positive constants ¢, and c, such that
for ¢ >0
(9) ¢, T(r,s) < nRic, (r,s) + E[r,s) + c,clogr
with the exception of a set of values (r) of finite measure.

CoroLLARY 2. If M is smooth affine algebraic variety, any non-degen-
erate holomorphic mapping f: M — N with

(i) fim £49) o
- logr

is necessarily rational.

To draw geometrical consequences, here assume that M and N are
hermitian manifolds. Relative to the local coordinates z* let

(10) dsy = > h,,dz'dz’ 1<i,j<m

o
be a positive definite hermitian metric on M with the associated 2-form
(1) o =Y=1 S h,det A dz' .

27 @i

Similarly, let

(12) dsi = 3 h.dw*dw' 1<k I<n
kyl
be a positive definite hermitian metric on N, with the local coordinates
w*, and
(13) v =Y=1 S dw A do’

2z  ®1
be the associated 2-form. Define the function u on M by
(14) \!/‘ 5= uSDm .

Then we have

(15) 99 log u = Ricy — 2 f*(Ricy) + 270V — 14
n n

When m < n,
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u = det (ﬁ”)

(16) ~ det (hy,)

is geometrically the ratio of the volume elements, where

under the mapping f. If m = n, (15) implies the Chern formula [1]
amn %A log u = R — Tr (f*(Ricy)) ,

where 4 is the Laplacian in M and R denotes the scalar curvature of M.

Let D, be the zero divisor of +,, which independent of the choices of
v and X. Then X, determines an element [X,]e H}.(M — D,, R), the de
Rham cohomology group of closed C= differential forms modulo exact
ones. We extend the Chern Theorems [1] on holomorphic mappings of
hermitian manifolds of the same dimension to non-equidimensional cases.
This includes a non-equidimensional version of the Schwarz lemma,
which says that if M is the unit m-ball and N is almost einsteinian with
v/ =1 Tr(x,) > 0, the mapping f does not increase volume.

The author learned about value distribution theory from Mo Ye and
Yum-Tong Siu, whom he wishes to thank for sharing their insights with
him. Also he would like to thank the referee for his suggestions to cor-
rect errors in this paper.

§2. The Ricci form and proof of the formula (15)

As usual, we let

d=o+7 and de=Y—1@G 9.

Az

Then
ddc — '\/" 1 a"‘

0.
2

The Chern form of the line bundle L for the hermitian metric p is de-
fined by

c(L, p) = — dd*log|s| on U
for all open subsets U in N and all se H (U, L). Let ¥ be a volume form
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on N. This is the same as a metric on the canonical line bundle K,
which is denoted by p,. In terms of complex coordinates w!, - - -, w", such
a form is one which can be written

V=1 qu A dw’

1 2

=

T (w) = p(w)P(w) where O(w) = )

I

and p is real >0. In practice one often has
o(w) = Aw)|gw)f*,

where g is holomorphic not identically zero, q is some fixed rational
number >0 and 1 is C~ and >0. We define the Ricci form of ¥ to be
the Chern form of this metric p, on K, so

Ric¥ = c(Ky, py) = dd°log p = dd°log 2,

which is independent of the choice of complex coordinates, and defines a
real (1, 1)-form.

Now we prove the formula (15). It is well known that the Ricci form
of M for the metric ds% is of

(18) Ricy, = — 9o log det (h,,).

Then we have
1 m ¢ 1 .
(19) Ric o™ = dd*log det (h,;) = T T Ric,, .
It follows that
1, = f*Ric ") — 1;_ Ric
_ f*<‘2’,;71f“T RicN) ~ (dd*log u + Ric g™,

which implies (15) by (19).
For convenience, we let X =1 if m < n, so that

= PR AL

Hence when m < n, u is independent of the choice of X and of the ex-

det ( w* )
0zt

pression (16). Thus

2

U = det (iikl)
det (hu)
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if m =n. When m > n, u = u, depends on the choice of ¥ with
Upy = hu,,

where A is a function on M. Locally we may choose an orthonormal co-
frame 6,, - - -, 6,, for M such that

=1

It is well-known that ds? induces an intrinsic connection on M and we
let

Qu = é Z Rijklak AN 51

ks

~

be the curvature. Then

. m 1
Ricy = ZQH = — R0, N 0,,
i=1 2 ki
where
Rkl - Zl R'Hkl
From them we form the scalar curvature
R = 3 Ry .
k=1
Similarly, let o,, - -+, w, be an orthonormal co-frame for N such that

dsi = i: Oy,
k=1
and let S, S;; and S be the curvature tensor, the Ricci tensor and
scalar curvature of IV respectively. We put
du = Z (ub, + 6,0,),
dou = — dou = 3 u,0, N\ 0,.

2V

Then the Laplacian of u is defined by
du =43 uy,.

If u> 0, we find

(20) Alogu:%du——%—zzi}u,ﬁi.
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Under the mapping f let us set
(21) o, =30, 1<i<n.
i=1

If u> 0, it follows from (15) that

(22) 1 jlogu=R—-2b 5 Spana. + 222,,
2 n ki, n

where

(23) A, =2zv =1 Tr ().

When m = n, (22) implies (17).

To draw geometrical conclusions we start with some definitions: f is
said to be degenerate at p e M, if u vanishes at p, totally degenerate if u
vanishes identically, volume decreasing or volume increasing according as
u<1or u>1for a X. Proceeding in similar manner as Chern [1], we
have

ProposiTiON 3. Let f: M — N be a holomorphic mapping, where M, N
are hermitian manifolds of dimension m and n respectively, with M compact
and N einsteinian. Let R and S be their scalar curvature respectively.
Then we have

1) IfR>0,S8<0, 2, >0, then f is totally degenerate.

(2 If R<0,S >0, 4, <0, then there is a point of M at which f is
degenerate.

To obtain an upper bound for the scalar function w, Chern impose
some conditions on the domain manifold M and the image manifold N.
The first property is:

(DOy). M is exhausted by a sequence of open submanifolds

McM,cM,c..-CM
whose closures M, are compact, such that: (1) to each @« = 1,2, --- there
is a smooth function v, > 0 defined in M,, which satisfies the inequality

24) é-dv., < R+ Kexp(v,/m),

where K is a given positive constant; (2) v,(p;) — oo, if p, is a divergent
sequence of points in M,.
For example, the unit ball M = D, defined by
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r=zz-+ -+ 2,2, <1

in the m-dimensional number space C™ with coordinates (z, - - -, 2,) has
the property (DOy), with

(25) )Jp — 10g< 1 - rZ )Zm

pz_rz

in the exhaustion submanifolds D, of D,, where D, be defined by r <p
(<1), and K = 2m(m + 1). The unit ball is einsteinian with its scalar

curvature R = — 2m(m + 1) under the kahlerian metric
1 — 4rt =
(26) ds}, = T Zk: dz,dz, + maror.

(IM,). N is said to have the property (IM,) (or almost einsteinian), if
@7) S Sutl < — % $68,  forall ..
For the rest of this section we let m < n. Define
Ay = ;‘;aiﬁtk.

Then we have
(28) u = det (Ajk) .

By Hadamard’s well-known determinant inequality we have

L5 App > (det (40P = wim.

m j.k
Hence Cauchy-Hélder’s inequality implies
(29) (e < L5147 < L5 jayr

n ik n %
It follows from (22) that if N have the property (IM,) and u > 0 we have
(30) %A log u > R + (m"nd)Kum + 2™ 5 .
n

Now proceeding in similar manner as Chern [1], we have

ProprosiTiON 4. Let f: M — N be a holomorphic mapping, where M
and N are hermitian manifolds of dimension m and n having the properties
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(DOy) and (IMy,) respectively, with K, = (n*/m**)K and m < n. If 2, >0,
then u < exp (v,).

ProposiTioN 5. Let f: D, — N be a holomorphic mapping, where D,
is the unit m-ball with the standard kdhler metric and where N is an
n-dimensional hermitian einsteinian manifold with scalar curvature < —
2nf(m 4+ 1)/m'* and n > m. If 2, >0, then f is volume-decreasing.

§3. Notes on parabolic manifolds

From now on, we will study value distribution on the holomorphic
mapping f: M — N. Let L, — M be the pull-back of L — N and s, the
pull-back of se H'(N, L). Then K, ® (K}, is called the Jacobian bundle,
its holomorphic sections over M are called Jacobian sections. A Jacobian
section F is called effective if the set F-%0) of zeroes is thin, its zero
divisor D, is called the ramification divisor of f for F. Let A2(U) be the
vector space of forms of class C* and degree p on U C N. Define

i, = ([ii)"(_ 1)pe-vrp!

Then a Jacobian section F operates on forms of degree 2n as follows:
Take ¥ e A®(U) with U = f-(U) #+ @. Relative to the local coordinates
z' and w* of M and N respectively, write

F—gdz A --- /\dz"”@(—aﬂ/\ /\L) g e Hol (0),
ow' ow™/r
Vo= ihdw A - Adw AdTA - A di
Then
FI0) = iy(hof)lgPdz A - Ade™ AdZ A -« A d".

If M is Stein and if f has strict rank min (m, n), effective Jacobian sec-
tions exist (see [8]).

Assume that r is a parabolic exhaustion of M, i.e.,, a proper map z:
M — R* of class C~ which satisfies

dd°logrz >0,
(dd°z)™ £ 0 but (dd°logz)" =0,
M[0] has measure zero .

For any regular value r of r, then
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=[
aMLr]

is a constant. Take a positive form 2 of degree 2m and class C* on M.
Define v by v™ = vf2. The Ricci function of z is defined by

(31 Rie, (r, s) = T(r, s; Ric Q) + B(, v)[;,
which does not depend on the choice of 2. Let D be a divisor on M
and set D[r] = D N M[r]. We define

n(t, D) — t2—2mJ‘ l‘}m—l ,

Dft]

N(r,s; D) = Jr n(t, D)—%t—.

If we define v by v" = vF[¥] for an effective Jacobian section F and a
positive volume form ¥ of class C* and degree 2n on N, then

(32) Ric, (r, s) = T'(r, s; f*Ric ¥)) + B(t, v)|; + N(r,s; D)

(For a detailed proof see [8] Theorem 15.5).
Take an effective Jacobian section F and a positive form + of class
C= and bidegree (1,1) on N. Define u, and u, by

(33) vt = Uy, vt = u,Fly].
By the definitions of 7 and +;, we have

= unfE) A
Let D, be the zero divisor of ;. Then

(34) S,(r,s) = N(r,s; D;) — wN(r,s; D,) + B( , L;) ,

Uy s

1s defined such that
(35) E(r,s) + S/r,s) = (1 — n) Ric, (r, s) + nB(t, ;-

In fact, the form v, determines a section s, of K, such that +, = |s,}
for a volume form Q and a hermitian metric p along the fibers of K,,.
Then by Green Residue Theorem [9]

(36) T(r,s; dd*log|s,[) + N(r,s; D;) = B, |s,});

for all regular values s and r of z with 0 <s <r. Since
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Ric ¥, = dd°log|s,|} + Ric 2,
we have
(87)  Ric.(r,s) = T(r, s; Ric Q) + B(t, u,-|s, )| (by (31)),
= T(r,s; Ric ;) + N(r, s; D,) + B(t, uy)|; (by (36)) .
It follows from (32) that
(38) Ric, (r,s) = T(r, s; f*Ric ™) + B(t, w)|; + N(r, s; Dy) .

Multiply (37) by n and minus (38) to obtain (35).

Let D be a divisor given by the zeroes of a holomorphic section « e
H°(N,L). Since a and ix (1 # 0) define the same divisor and N is com-
pact, we shall assume that |a(x)|, < 1 for x e N, i.e., the metric p is dis-
tinguished. Assume that «, 0. The proximity form is defined by

m(r, D) = B(r, |a,|") > 0.
Then we have F.M.T. for any effective divisor (see [3], [8])
(39) N(r, s; D)) + m(t, D)|; = T(r,s),

where D3 be the divisor of «, e HY(M, L,).
The following Lemma is well-known (see Nevanlinna [7]):

LEmMA 6. Let h(r) >0, g(r) > 0 and a(r) >0 be increasing continu-
ous functions of r where g'(r) is continuous and h'(r) is piecewise continu-

ous. Suppose moreover that r(dr/oc(r)) < oo, Then
K'(r) < g'(r)a(h(r))

except for a union of intervals I C R* such that L dg < oo.
We use the notation
e a(r) < b(r)
to mean that the stated inequality holds except on an open set I C R*
such that Jlrgdr < oo for e>0.

LemMmAa 7. Let ¢ >0 be a form of bidegree (1,1) on M such that
T(r, s; o) exists. Let u>0 be a function on M such that

w" <o ANVt
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Then
Il B(r, u) < %{(1 + 2¢) log T(r, s; ¢) + 4elogr}.
Proof. Define

B(r,u) = 1 uo .
¢ Janrr]

Since

0<r™A(r, uy) =m ur™-dr N\ g = 2m Jr {J ua'}tzm"dt
o Wanrey

M[7]

= 2mc fr B, wytm-1dt < r*mrA(r, ©),
]
B(t, u) exists for almost all t>0. Now

—2—B(r, u) = %j log us < log B(r, u)
¢ .

aM[r]

implies
H(r) = JT tt-indt Jc rim-lexp <£ B(r, u))dr
s 0 ¢
7 t A
< j f1-2m g f =1 B(r, u)dr
s 0

— LJ AL w® = Y 10 s w) < L T, s 0).
2me Js t 2me 2mec

Taking A(r) = H(r), g(r) =r"*¢/(1 + ¢), a(r) = r* with ¢>0 and 1> 1, we
obtain from Lemma 6 that

. H'(r) = ri-» j; r’-1exp (%—B(r, u))dr < re(h(r))?

< ri(T(@r, s; p)l(2mo)).
Keeping the same « and g and taking A(r) = r*™ ‘H'(r), we find

e Lot a) = 28 <r )

< ri{rerm o (T(r, 55 )/(2mo))'y,
which implies
40) ||. B(r,u) < é{zz logT(r,s;0) + e+ 2m — 1) + (¢ + 1 — 2m)) logr

— Alog (Zmo)}.
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Take 0 <6 <min(1,¢) such that (4 + 6) + 6@m — 1) <6e. Let 2 =1+
8/2. Then 2 <1+ 2 and

e+ 2m—1) 4 e+ 1——2m=-;—{s(4+5)+5(2m— 1)} < 3e.
Hence Lemma 7 follows if r is large enough. g.e.d.

§ 4. Holomorphic maps into algebraic varieties of general type

Proof of Theorem 1. By Kobayashi-Ochiai {5] and Kodaira [6], an
integer p e N exists such that L? is ample and ke N exists such that
H°(N, I) has positive dimension with I = K% ® (L?)*. Take «a e H'N, I).
Let D5 be the divisor of a,e H(M, I,) and let ¢ be a distinguished her-
mitian metric along the fibers of I. Then (39) implies

T(r, s; f*c, p)) = N(r, s; D) + m(t, D) .

A form ¥ > 0 of class C~ and degree 2n exists such that Ric ¥ = c(K,, py)
and p = (Pnr)k ® (p*)p. Hence

c, p) = kRic¥ — pc(L, p),
which implies
kT(r, s; f*(Ric ¥)) — m(t, D)|; = pT(r,s) + N(r,s; Dj).

A function v > 0 of class C= exists on M — F~0) such that v = vF[¥]
and such that

Ric, (r, s) = N(r, s; Dy) + B(t,v)|; + T(r, s; f*(Ric ¥))

from (32), where F is an effective Jacobian section of f. Define ¢ =
la;{*v=". Then

Ric, (r, s) + B(t, 0| = N(r, s; Dy) + T(r, s; f*Ric ¥))
_ %m(t, D) = N(r, s; D) + _}1€—N(r, s; D%) + %T(r, 5).

Therefore
(41) nN(r, s; D) + —‘Z— T(r, s) < Ric, (r,s) — S,(r,s) + B, QI ,

where ¢ = u,u;"¢ and

b =L, o).
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Define ¥ = |«[¥*¥. Then
Fl¥] = |a,[*F[¥] = &

Since ¥ is continuous and (L, p) >0, a constant 7, >0 exists such that
(r.e(L, p))" > ¥, which implies

u X [ff] < 1, FIOL, )]
V' i

ul’b =

Hence

gmm < Z = g fHe(L, ) A

0

It follows from Lemma 7 that

n

1 B(6 2 )| = nB 00 ) + o 71— B(s, )
< %q {1+ 2)log T(r, s) + Belogr} < —2%T(r, s) + 3ncelogr

if r is large enough. Therefore

(42)  |.nN(r,s; D)) + _2% T(r, s) < Ric. (r, s) — S(r, s) + nB(t, DI
+ 3nce logr.
Now (35) and (42) yield (9). q.e.d.

Remark. If F be dominated by r with Y as dominator, i.e.
w(FU1) " < YOIy At on M
Y
holds for all continuous form + > 0 of bidegree (1,1) on M, which implies
n(ﬁ&)lmv < Y(r).
Uy
Then
(43) S(r : Y(r)
(r,s) = — uN(r,s; D;) — —ul og ——= + nB(t, ;.

Hence (42) and (43) yield

Y(r)

He T(r s) < Ric, (r, s) + WE log =2 + 3ncelogr,
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which is the (4) in Theorem C.

Proof of Corollary 2. By Stoll [8], there exist effective Jacobian sec-
tions of f and holds the following

0 < lim Bic(n8)
r-e  logr

Then the condition (ii) and Theorem 1 imply

A(o0) = lim A(r) = lim T728) < o

T T log r
where A(r) = A(r, f*c(L, p)). Hence f is rational (see [8]). g.e.d.
Remark. The condition (ii) can be replaced by

(iiy E, = lim £An8) —nN@s; D)
oo logr

If M is smooth affine algebraic variety with m > n, then there exists an
effective Jacobian section of f and dominated by r with a constant domi-
nator Y = m. It follows from (35) and (43) that

lim E(r,s) — uN(r,s; D)) < lim (1 — n) Ric. (1, 9) <0.
oo log r oo logr

Hence (ii)’ holds for this case and Theorem B follows from Corollary 2.

Remark. If M = C™, then Ric,(r, s) = 0 where ¢ is defined by «(2) =
|zf. Now (9) yields

Ef > ¢;A(c0) >0,
because the line bundle L is positive and rank f = b. Hence we have

CoROLLARY 8. Let N be a connected, n-dimensional projective algebraic
manifold of general type. Then any holomorphic mappings f: C™ — N with
E, < 0 has everywhere rank less than min (m, n).

Theorem A follows from Corollary 8 and Remark above.

Remark. If + satisfies

T

by the proof of Theorem 1, Theorem 1 holds for such .
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