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REPRESENTATIONS OF QUADRATIC FORMS

AND THEIR APPLICATION TO

SELBERG'S ZETA FUNCTIONS

Dedicated to the memory of Taira Honda

YOSHIYUKI KITAOKA

Let M and L be quadratic lattices over the maximal order of an
algebraic number field. In case of dealing with representations of M
by L, they sometimes assume certain indefiniteness and the condition
rank L-rank M > 3. In this case, representation problems are reduced
not to global but to local problems by virtue of the strong approximation
theorem for rotations and of the fact that for regular quadratic spaces
£7, V over a non-archimedian local field there is an isometry from U to
V if dim V — dim U > 3. On the contrary, global properties seem to be
strongly concerned if we omit one of those two assumptions. As an
example we prove in § 1 that there is a sublattice of codimension 1 which
characterizes L in a certain sense. In §2 we prove as its application
that certain Selberg's zeta functions are linearly independent.

We denote by Q, Z, Qp and Zp the rational number field, the ring
of rational integers, the p-adic completion of Q, and the p-adic comple-
tion of Z. We mean by a quadratic lattice L over Z (resp. Zp) a Z (resp. Zp)-
lattice in a regular quadratic space U over Q (resp. Qp), and by definition
rank L = dim U. For a quadratic lattice L over Z (or Zv) we denote by
Q(x) and B(x,y) the quadratic form and the bilinear form associated
with L (2B(x, y) = Q(x + y) — Q(x) — Q(y))> and by dL the determinant
of (Bieiyβj)) where {et} is a basis of L over Z (or Zp). dL is uniquely
determined for a quadratic lattice L over Z, and for a quadratic lattice
L over Zp> dL is unique up to the squares of units in Zp. For two
ordered sets (a19 a2, , an), (bu b2, , bn), we define the order (a19 a2, , an)
< Φu 62, , bn) by either at = bt for i < k and ak < bk for some k < n
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or at = bt for any i.

Let L be a quadratic lattice over Zp then L has a Jordan splitting

L = Lx -_]_ L2 _J_ J_ L&, where Z^ is a ^-modular lattice and aί < α2

< < ak. We denote by tp(L) the ordered set (a19 , au , α&, , αft).
rank Z,i rank £&

For simplicity we denote tp(ZpL) by tp(L) for a quadratic lattice L over

Z.

§ 1 . LEMMA. Lei L be a Zp-lattice in a regular quadratic space U

over Qp then L has a Zp-submodule*} M satisfying the following con-

ditions 1), 2):

1) dM Φ 0, rank M = rank L — 1, and M is a direct summand of

L as a module.

2) Let U be a Zp-lattίce in U containing M then U = L if dU

= dL, omcί tp(L0 > tp(L).

Proof. Firstly we assume that L is modular then we may assume

that L is unimodular without loss of generality by scaling. Let U be

a lattice in question in 2) then dU = dL, tp(U) > tp(L) imply that U

is also unimodular. Suppose that L has an orthogonal base, that is,
n n-1

L = J_ ZpVf We put M = _[_ Zpvt then M satisfies 1), and M is uni-

modular. Hence M splits U and L' = M J_ aZpvn for α e Qp. Since L'

is unimodular, a is a unit. This means 1/ = L. If L does not have

an orthogonal base, then p = 2 and L = _]_ Z2[^i,i;<], where Z2[uifVi] =
ί l

J J) for ί < ft, and Z2[w», vt] s ( f 2 J ) (c = 0 or 1). Put M = *1 Z 2 [^, t J

J_ Z2[^fc + v j then Q(uk + vk) = Ac + 2 Φ 0 implies dM Φ 0. The rest
ft-l

of 1) is obvious. Since a unimodular lattice J_ Z2[uiy v j splits L, L' and
ί = l

M, we may assume k = 1 to prove 2). Now we have L = Z2[w, v], ikί
= Z2[% + v]9 where Qiu) = Q(v) = 2c, 5(^, v) — 1, and L ; is a unimodular

lattice containing u + v. Since Q(^ + v) = 2(2c + 1), u + v is maximal

in U. Hence U = Z2[u + v,au + bv] for some a, b in Q2. From the

assumption that U is unimodular follows that B(u + v, au + bv) =

(a + 6)(2c + 1) is a unit and Q(au + bv) = 2c(a2 + b2) + 2ab is in Z2.

Put a + b = x then x is a unit. Q(au + 6v) = 2(2c — l)α2 — 2(2c —

We mean a finitely generated module by a module for brevity in this paper.
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+ 2cx2 e Z2 implies a e Z 2. Hence we get a,b e Z2, and U = L. Coming
k

back to general cases, let L be a quadratic lattice and L = _j_ Lί9 where
i = l

Lt is pαί-modular and ax < < ak. Denote by Mk a submodule of Lk

Ί c - l

which satisfies 1), 2) in case of L = Lk in Lemma and put M = _]_ Li _J_ Λfft.

Obviously M satisfies the condition 1). Let U be a lattice in question

in 2) then from the assumptions tp(U) > tp(L), U z> M follows that Lγ

splits L,M and 1/ (82:15 in [2]). Hence we have only to prove the

Lemma for the orthogonal complements of Lx in L,L' and M. By in-

duction it suffices to prove it in case of k = 1. This was proved firstly.

We call M a characteristic submodule of L.

THEOREM. Let L be a Z-lattice in a regular quadratic space U over

Q; then L has a Z-submodule M satisfying the following conditions 1), 2):

1) dM Φ 0, rank M = rank L — 1, and M is a direct summand of

L as a module.

2) Let U be a quadratic lattice over Z in some regular quadratic

space U' over Q satisfying dU = dL, rank U = rank L, tp(L') > tp(L)

for any prime p. If there is an isometry ψ from M to U such that <p(M)

is a direct summand of U as a module, then Lr is isometric to L.

Proof. Let rank L = 2 by scaling we may assume that a matrix

\W 2 ') c o r r e s P o n d i n g t° L satisfies that a',bf,cr are integers such that

(α/, b'', &) = 1, af > 0. From the classical theory we know that there is

an element u in L such that Q(u) = 2p, where p is a prime with (p, 2dL)

= 1. Hence L has a matrix ( ^ o ) where 0 < b < p. Let e be an

integer such that e2 = — dL mod p and 0 < e < p. From dL = Ape — b2

follows b = e or p — e. If there is an integer x such that dL = 4p# — e2,

then there is no integer y satisfying dL = 4p# — (p — e)2. Therefore

the condition 0 < b < p determines b uniquely. Now we put M = Z[u].

e Q), since U contains a primitive vector v! with Q(^0 = QW = 2p.

ίβ(ίΌ > tβίί') implies 6", c" e Zα for any prime q. Hence b", c" are in-

tegers, and we may assume 0 < b" < p. As above we have b" = &.

Hence Z/ is isometric to L. Let rank L be larger than 2. By scaling
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we may assume that the scale of L is in Z, and L is not negative de-

finite. For brevity we denote ZPN by Np for a quadratic lattice N over

Z. For a prime p dividing 2dL we can take an element vp in Lp such

that vp is in the orthogonal complement of a characteristic submodule

of Lp. Put Q(vp) = upp
rp, where Q is the quadratic form associated with

L and up is a unit of Z p , and r p > 0. We take a prime g such that

(g, 2dL) = 1 and q J] pTp = Q(Vj) mod I1 for any prime I dividing 2dL and
p\2dL

a sufficiently large fixed integer t. Put α = q f| p r* then Q(LP) con-
|2ZZ

tains a for a prime p|2dL, since a~ιQ{vp) is a square of a unit of Z p .

If a prime p does not divide 2dL, then L p is unimodular and Q(LP) = Z p

(92: lb in [2]). Therefore from the non-negative-definiteness of L follows

that U = QL represents a by virtue of the Minkowski-Hasse theorem.

Since a~ιQ(yp) is a square of unit of Zp for p dividing 2dL, we may

assume that Q(vp) = α and the orthogonal complement of vp in Lp is a

characteristic submodule of Lp. We can take an element v in U such

that Q(v) = a, and v and i;p are sufficiently near if p \ 2dL. Put S —

{p v & Lp, and σpv e Lp for a rotation σp with ordp θp{σp) = 1 mod 2}, where

θp stands for the spinor norm then p \ 2dL if p e S. We take a prime

hφ2 such that h = Π 2>mod(2dL)ί and ( ~ " α d L ^ = 1. Put w =
pes \ h /

where a is a rotation of U whose spinor norm is h f] p (101: 8 in [2]).
pes

For a prime p with p\2hqdL there is a rotation σp such that σpσ~ιu

= σpi? e L p and ordp^P(<7P) = 0 or 1 mod2 according to p g S or p e S

respectively, and then ordp θp(σpσ~ι) = 0 mod 2. Hence there is a rotation

27P such that θp(qp) = 1, %,(M) e Lp by virtue of 92: 5 in [2] for p \ 2hqdL.

If p = fe, then there is a rotation 27̂  such that ΎJP(U) e L p since Q(^) = a

is a unit of Z p and Lp is unimodular. Since ηp(u) splits Lp and its

orthogonal complement Np in Lp is a unimodular lattice with ( ~~ v j

= ί - ^ j = 1, iVp is isotropic. Hence we may assume that the spinor

norm of ^ is 1 by virtue of 55:2α in [2]. For p\2dL put ηp = σ~1;

then ^p(^) is sufficiently near to vp and θp(ηp) = 1. By the strong ap-

proximation theorem regarding the set {p prime =£ q} as an indefinite

set for C7, there is a rotation η such that 37 and ηp are sufficiently near

at both p dividing 2dL and p satisfying ueLp for p Jf 2qdL, and ^ =
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Lp otherwise. Put η(u) = w then Q(w) — a and w e Lp if p Φ q. Since

η and σ~ι are sufficiently near for p \ 2dL and w = ^σO) is sufficiently

near to vp for p 12dL, hence the orthogonal complement of w in L p is a

characteristic submodule in Lp. Moreover for p J(2qdL Lp is unimodular

and Q(w) is a unit of Z p . This implies that the orthogonal complement

of w is also a characteristic submodule in Lp. Put M — {x e L x _\_ w}.

Then a submodule ikf of L satisfies the condition 1) and dM = <f m, where

q is a prime with q \2dL and a prime p12dL if p\m, and r > 0, and

moreover Mp is a characteristic submodule of L p for p Φ q. Let U be

a quadratic lattice in question in 2). Since U represents M and eZZ/ =

dL, U' = QZ/ is isometric to Z7 = QL. Hence we may assume that U

is in U and U D M. Since Mp is a characteristic submodule of Lp for
w - l

p Φ q, L'p — Lp for p Φ q. Take a basis {wj of Lα such that Mq = J_ Z^^^
ί = l

O = rankL) and ordα Q(w^) < < ordα Q(wn_i) then a matrix correspond-

ing to Lq is

6χ 6n_! bn

where α̂  is a unit of Z c and 0 < rλ < < rn_λ. Since the determinant

of this matrix is a unit of Zq, we see easily rλ — = rw_2 = 0. By
n-2

taking wn — 2 a^biWi instead of wn, we may assume that & ! = . . . =

6π_2 = 0 in the matrix. Then Nq = Zq[wn_19wn] is unimodular and — diVg

= 6JUi — ttw-i&Tϊ^7*71"1. If τn_i > 1, then bn_x is a unit, and —dNq is a

square of a unit of Z g . If rn_λ = 0, then Mα is unimodular. Hence Lα

has a basis ^, , zn such that zt J_ Ze[«n.!, «n] for ί < n — 2, QOw-i) —

Qfe) = 0, B(zn_l9zn) = 1 and Mα = Zβ[^, ,s«_2>2n-i + ^ β ^ n l , where wβ

is a unit. Since L^ is unimodular and contains Mq primitively, we get

L'q = Zq[z19 - ,zn_2] _L ifg, where Z α is unimodular and zn_x + wgg
r«n is

primitive in Kq. Put Xα = Zq[zn^ + uqq
rzn9czn^ + dzn] (c,de Qq); then

Q(czn_λ + dzn) e Zβ, β(«n-i + uqQ
rZn> ^n~i + dzn) is a unit, if r > 0. If

r = 0, then c, eZ e Zβ. Hence we have Kq — Zq[zn_ly zn] or Zq[q~rzn_19 qrzn].

From w \_M and («n - 1 — uqq
rzn) _J_ Mα follows that two symmetries

τW9 τZn_1-.Uqqrzn are equal. Therefore we see Zq[q~rzn^, qrzn] = τw,Zα[^7l_1, «n].
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Thus we get U = L or τwL since L'p = τwLp = L p for p ^ q, and L'β = LQ

or τwLq. This completes our proof.

For brevity we call M a characteristic submodule of L.

Remark. Our proof shows:

Let the scale of L be in Z and rank L > 3 if a direct summand Λf

of L satisfies

1) Mp is a characteristic submodule of Lp if p\2dL,

2) eZM = grm, where q is a prime with q Jf 2dL, r > 0 and 2912dL

if a prime p divides m,

then M is a characteristic submodule of L.

If we can take r = 0 or 1, then p(M) is a direct summand of 1/ as

a module in the assertion 2) if ^(M) is a submodule in ZΛ If rank L

Φ 3 and L is indefinite, then we can easily show to take r = 1. In de-

finite cases analytic methods will be required.

§2. Let S,T be n x n rational symmetric matrices. We say that S,T

are equivalent if and only if there is an element U in GL(n, Z) such

that S[U] = T. For a rational symmetric matrix S = (s^) we define a

quadratic lattice L = Z[eλ, , βn] by 5(βi, β̂ ) = s o . L is called the

quadratic lattice corresponding to S. Then dL = \S\.

LEMMA. Let St be positive definite rational matrices with \Si\ — d

and rank = n, and suppose that they are not equivalent. Put Θ(Z> St)

= 2 e

πίtI{Simz\ where G runs over Mntn^(Z)9 and Z{n~l) = ιZ, imZ > 0;

then θ(Z,Si) are linearly independent.

Proof. Obviously we may assume that St is integral. Denote by

Li the quadratic lattice corresponding to Si then dLt = d. Put Θ(Z9 SJ

= Σιaί(τ)eπίtHTZ) F o r \τ\ =£ °> ai(τ) i s t h e number of isometries from

the quadratic lattice corresponding to T to Lt. Suppose that Θ{Z9S^) are

linearly dependent and 2ϋ Ciθ(Z,Si) = 0 with each ct Φ 0. Let 291?p2, ,

Pt be all primes dividing 2d9 and Ax be the set of Lt whose tPl(Lt) is

minimal in the set {tPl{L^}. Inductively we define the set Ak+1 as fol-

lows Ak+1 is the set of Lt whose ίPl!+1(£/<) is minimal in {tVkJrX(L^) Lt e Ak}.

For Li in A£ we take a characteristic submodule M^ such that (Λf4)p is

a characteristic submodule of (LJp if p\2d, and ίZM̂  = gj'm4, where qt

is a prime with qt \2d, and p\2d if a prime p divides m, (Proof of
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Theorem in § 1). Put r = min ri9 and for some Lt in At and its Char-
l 4l i e 4«

Mi

acteristic submodule Mi we have dMt = gϊmt. If there is an isometry

σ from Mt to L ,̂ then σ is extended to the isometry from QLt to QLj9

and σ~\Lj)Pl D ( M ^ . By definition of a characteristic submodule we

get σ~\Lj)Vl = (Lί)Pl and L^ is in Ax. Inductively we obtain σ"\Lj)p =

(L t)p for p |2d and L3 is in Aέ. Suppose that σ(Mt) is not a direct summ-

and of Lj then there is a direct summand N of L^ such that N Q σ(Mt)

and rankiV = rankM*. From σ~\Lj)p = ( L ^ for p|2cZ follows (Mt)p c

σ~\N)p c (L^)p. Hence we have (ikf̂ p = a~\N)p for p|2eZ since (ΛQP is

a direct summand of (L^p, and cZiV = qtmi9 r' < r — 2 < r. Hence 2V

is a characteristic submodule of Lj if n > 3 (Remark in § 1). This con-

tradicts the minimality of r. In case of n = 2, from the classical

theory we can take r< = r = 1. Hence / < 0 is a contradiction. There-

fore σ(Mί) is a direct summand of Z^. Hence Lj is isometric to Lt by

virtue of Theorem in § 1. This means that we have α<(Γ) ^ 0 and α/T)

— 0 if y ^ i for the matrix corresponding to Mt. This contradicts ĉ  Φ 0.

Remark 1. Put 0P(Z, S<) = Σ e3ritr(<SiC<?:]Z), where G runs over primitive

matrices in Mn%n_λ{&). The proof of Lemma states that θp(Z,Si) are

linearly independent.

Remark 2. Let the class number of even integral positive definite

quadratic forms over Z with det = 1, rank = 8k be h(8k). Then we have

h(8k) linearly independent Siegel modular forms with weight 4fc, degree

8k — 1 defined by Θ(Z, St) as above. The dimension of the space spanned

a(T}
by the corresponding Dirichlet series 2 ^ — , where a(T) = #{Z e

m>o (Γ) |Γ | s

MQJC^^Z) Si[X] = T} and T runs over the representatives of equivalence

classes of positive definite integral matrices, and ε(T) = the order of the

group of units of T, is equal to the dimension of the space spanned by

the Epstein zeta functions of St by Theorem 4 in p. 298 in [1] and it

ammounts to [fc/3] + 1, since the space of elliptic modular forms with

weight 4fc is spanned by theta functions, and its dimension is [fe/3] + 1.

Numerically we know h(8) = 1, fe(16) = 2, fc(24) = 24, Λ(32) > 8-108.

Let S = (Sij) be a positive definite real matrix with rank = n. L

denotes a Z-lattice Z[e19 , en] which has an inner product defined by

B(ei9 ej) = Sij. For a submodule M = Z[fί9 ,/m] of L we denote

det (B(fί9fj)) by c?M. Denote by z19 •,«„_! a system of n — 1 complex
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variables and by s19 -,sn a system of n complex variables, the two be-
ing related by the equations

ZJC = s*+i - Sfc + i , k = 1,2, . . . , n - 1 .

Now the Selberg's zeta function is defined by

ζ*(S S l, s2, •, an) = Σ (dl/n-i)--1 (dLn_2Y
Zn-*

where Lk runs over direct summands of LΛ+1 with rankL* = k and Ln

= L. This is absolutely convergent for Re zk > 1 (1 < k < ή) and sat-
isfies certain functional equations (Theorem 1. p. 263 in [1]). Our aim
in this section is to prove

THEOREM. Let S4 be positive definite rational matrices with rank = n,
\St\ — d. If they are not equivalent with each other, then ζ*(St s19 , sn)
are linearly independent as functions of s19 , sn. Especially the Selberg's
zeta function is a complete analytic class invariant.

Proof. Theorem is equivalent to the linear independence of ΘV{Z, S<)
by the Mellin transform in case of n = 2 and it is true by virtue of
Remark 1. Suppose that Theorem is true for n — 1 but false for n;
then there are positive definite rational matrices St with rank = n, \St\
— d; such that

Σ a£*(Si s19 - , sn) = 0 ,

where St are not equivalent with each other. Put

U,, \\ ΣΠ |
U k=l

where Y is positive definite and of rank = n — 1, U runs over the factor

set GL(n- l ,Z)/ "- e G L 0 ι - l , Z ) , Y = (Yk *) and ^ = sk+1

Wo,I 1 v* *;

— sk + J. This is a GrδBen-character in the sense of §10 in [1]. We
define a function ϋ^s) by2^00 = f ^ ( i ^

where JP is the Minkowski's domain of reduced matrices in the space
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of all positive definite matrices with rank = n — 1 and dv — \ Y\~n/2 f] dyst.

Putting

Γ>0

= f Σ atiOe-**™ \Y\ uO
J F T>0

ε(T) Jr(»-D>o

where Γ runs over representatives of equivalence classes of positive de-
finite rational matrices of rank = n — 1,

where cs is a certain complex number (p. 94 in [1]), thus we get

Rt(s) = jjC-Do-D/i^α-.). "jf Γ(s - c ^ ζ * ^ βί, , s'J ,
k = l

where s^ is defined by

Zu = β»+i - βί + i (fc < n - 1) , - s + Σ kzk/(n - 1) = < - <_x + | .
k = l

Hence our assumption implies 2 α^β^s) = 0. On the other hand, from
Remark 1 follows that Σ ^P(iY> St) = Σ a(T)e-2πtτ{TY) is not zero. This
yields that there is a To such that a(T0) Φ 0. Regarding Σ ai^ί(s) a s

Dirichlet series with respect to s, we obtain

where T runs over representatives of classes with \T\ = |Γ0|. This con-
n-2

tradicts our assumption since |T|~*-i ***/(n~1) w(T) is by definition the Sel-
berg's zeta function of positive definite matrix T^^K

COROLLARY. Let f(Z) = Σ a(T)e2πίtτ(TZ) be a Siegel modular form of
degree n. If the corresponding Dirichlet series

^ a(T)u(T)

ε(T)\T\s
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Σ
k 1with a GroBen-character u(T) as \T\k=1 ζ*(T; s19s2, , s j is zero as a

function of s, s, . , sn, then α(Γ) = 0 for T > 0.
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