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Abstract. The classical limit of the scaled elliptic algehwy, , (sl2)is investigated. The limiting

Lie algebra is described in two equivalent ways: as a central extension of the algebra of generalized
automorphic slvalued functions on a strip and as an extended algebra of decreasing automerphic sl
valued functions on the real line. A bialgebra structure and an infinite-dimensional representation in

the Fock space are studied. The classical limit of elliptic algew,g(;[z) is also briefly presented.
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1. Introduction

The elliptic aIgebraAq,p(Elz) has been introduced in the paper [FIJKMY]. Its
definition was induced mostly by the bosonization formulas for massive integrable
field theories, proposed in [L]. Then it was shown in [JKM] that within the frame-
work of the representation theory of the algelig, (3[2), which is a scaling limit

of the algebrad, ,(sl2), one can obtain integral representations for the correlation
functions in theX X Z-model in massless regime.

The structure of the algebpaﬁ,,,(glz) is rather unusual. For its precise definition
one should introduce a continuous family of generators being Fourier harmonics
of the Gauss coordinates of tlieoperator. The elements of the algebra are formal
integrals over the generators with certain conditions on analyticity and on asymp-
totics of the coefficients. Next, both algebrdg, (sl2) andA,,(sl2) are not Hopf
algebras but form a Hopf family of algebras (see Section 4) and even at level
when these algebras become usual Hopf algebras, they do not have the structure
of a double which can be reconstructed either in the Yangian fimit O from
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Ay (sl2) orin the quantum affine limitp — 0) of A, ,(sl2). We are interested

in corresponding properties of the limiting (with respectAQ,n(sAtz)) classical
algebraan(gtz) which we consider in details. We observe also the elliptic case and
the rational degeneration of Lie algelrgsiz).

The limiting algebraa,(sl;) can be described in two ways. First, it can be
realized as a central extension of the algebra of automorphi@gled generalized
functions on a strip. The cocycle is given by an integral of a form which includes
derivatives over the period (over the elliptic nome in case,(dl,)) instead of
derivatives over spectral parameter. These algebras are isomorphic for different
strips. In contrast to [RS] and [U], there are natural isotropic subalgebras only in
the limitn — 0 (p — 0 in case ofa,(sl2)). Nevertheless, at = 0 we have Lie
bialgebra which includes according to Sokhotsky formulas the usual currents on
the line (on the circle in case af(sl2)).

On the other hand, we can describe the Lie algeptel,) in terms of Fourier
harmonics of the generating functions fo,r(?[z). This language is a variant of
the usual description of a current algebra in terms of Fourier modes for the case
of vanishing at infinity currents on the real line. The structural constants of the
algebraap(gtz) or a, (sl) become standard (do not dependpanr 1) in terms of
Fourier components of the generating functions, but the cobracket has a nontrivial
form.

We would like to emphasize the ideology for the description of the algebra
ap(sl2) which we keep throughout the paper. The algefa&l,) cannot be
described in terms of a discrete basis like Taylor coefficients of the analytical
functions. In order to define an analog of a basis we are forced to use the lan-
guage of Fourier harmonics on an open line. Since we continuously get in this
way many generators we should specify which integrals over them belong to the
algebra. Equivalently, we fix a region for a spectral parameter where the generat-
ing functions are meromorphic. In representation theory it means that their matrix
coefficients remain meromorphic in this region. Then we define an analytical con-
tinuation of the generating functions to larger domains of the spectral parameter.
For the definition of this analytical continuation, as well as for the definition of the
central extension, we need the language of a generalized function on a strip. Our
construction of the algebr@(glz) includes essentially all this stuff.

The ideology has been borrowed from [KLP] and the main motivation of writing
this paper was to clarify this ideology. We also present an example of an infinite-
dimensional representation of the algelara.?[z) in the Fock space. One can
see that this representation requires a description which differs from the usual
construction of the integrable representationéfgf
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2. The Lie algebraa,,(glz) of the generalized automorphic functions on a
strip

2.1. THE ALGEBRA ag (sl) AND ITS CENTRAL EXTENSION
Lete, f, h be standard generators of Lie algekia

[h,e]:Ze, [haf]:_zfa [e,f]:h,

andn = 1/¢ € R be a positive real parameter. Consider the meromogphi@lued
functions ofz € C with the period 2/n which satisfy the following asymptotical
and automorphic conditions:

(1) e(z) =—e(z+i/n), [f(z)=—f(z+i/n), h(z)=nh(z+i/n),
) le(z +iy)| < Cce ™l

r—+00

flx+iy)l < Cce™ (e +iy)| < C.

r—+o0

One can verify that the functions

el2)=ew SNTIEZG 50 weq @)
shmn(z — a)
cth’zn(z — b)
= - >0, b 2.2
1) = 1o SEIREl nzo, bec 22)
h(z) =h®cth'mn(z —c), n>0, ceC (2.3)

satisfy the condition$t) and(11) and their finite linear combinations form a Lie
algebra denoted b (sl2).

The algebra&?,(?[z) can be described by means of the generating functions
depending on the generating parameter

ép(u) = e®%, hy(u) = h ® imn cthon(z — u),
. (2.4)
falw) = f @ g s
which satisfy the commutation relations
[ﬁn(ul)a én(u2)]
= 2imy et~ u2)eg (1) — G ), (2.5)
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[ETI (ul)v fn (UZ)]
~ 2imn ~

= —2imn cthon(uy — u2) f (u2) + N fn(u1), (2.6)

o) ) = s () = 1)) @7)

The Lie algebraég (3[2) are isomorphic for different (finite) values of parameter
1. An isomorphism

Tyt 89 (sl2) — @ (sl2) (2.8)
comes from the gauge transformation
a(u) = Aa(Au). (2.9)

In terms of generating functions (2.4) the isomorphism (2.8) looks as follows:

! ! ! !
ey (u) = n—én (n—u> , by (u) = n—hn (n—u> ,

) :77’~ :77, oA (2.10)
pet) =50 ()

LetlTt C Cbeastrip-1/n < Imz < 0. Inthe sequel we need an interpretation
of the elements of the algebﬁ%(glz) as of the generalized,-valued function on

the striplT*. This description reads as follows. Lgtbe the space of basic functions
s(z) analytical in a stridl™, continuous in the closur@ " of IT* and decreasing
in the closed stri[ﬁJr faster than some exponential function:

Is(z+iy)| < Cce®l a>o

r—+o0

We treat si-valued functions (2.1)—(2.3) agslalued functionals on the space
K and denote them by, (2), hy(2), f+(2). A pairing (a4, s) € slp, a € 62(5[2),
s € K is defined as

/_o:o dza(z)s(z). (2.11)

Let us denote the described space of generalized functim%%@. It inherits

the structure of Lie algebra; (sI2). As before, we compose the distributions into
generating functions which we now denotedyy(u), by (u), andf; (u):

ey (u) :e®m777, hy(u) = h ® imncthan(z — u),
shrn(z — u) (2.12)
filw) =& —

shmy(z —u)
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An index+ now reminds us that the contour of integration in the pairing (2.11) lies
above the pole. For a fixedu € IIT these generating functions are distributions
from the spaced(slz).

The algebrag (slp) is a Lie bialgebra. The cobrackéts given by the relations

d(eq(u)) = hy(u) A ey (u),
5(f+(u) = filu) A by (u), (2.13)
O(hy(u)) = 24 (u) A fy(u)
The algebraxg (sl2) possesses an invariant scalar produit
™ 2 Ul —u
(o) Fouz)) = oA () s )
= 2mn?(u1 — u) cthan(ug — up). (2.14)

Note that this scalar product differs from the one used in [RS]. We will specify
below the subalgebras afg(glz) which become isotropic in the rational limit
n — 0. R

The Lie algebrag (slz) of generalized automorphit;-valued functions on the
strip admits a central extension. It can be defined by a ‘strange’ cocycle

B(z ® ¢(2),y ®1(2))

2
n dip(2) dso(z))

- — 2.1
e (B e v B2 ) . (2.15)
where(, ) is the Killing form, z, y € sl,. The integration in (2.15) goes anticlock-
wise along the boundadll of the stripIl which consists of the real axis and of
the line Imz = —1/n. The commutation relations of the extended algeh(al,)
are (@ = u1 — up)

2imn

[ht (ua), €4 (u2)] = 2imn cth(mnu)ey (uz) — e+(ua),

shrnu
)
s (), 1 (uz)] = =20 Cth(mrpu) 4 (uz) + G (),

17N

e (ua), [+ (u2)] = (hy(u1) = hy (u2))

shrnu

ch 1
sk mu shrnu
™u

sk mu

[hy (u1), hy (u)] = 2iemn? < — Cthﬂ'nu) . (2.16)
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Unfortunately, we do not know how to extend the Lie coalgebra structure (2.13)
from the algebrai%(slz) to its central extension,(slz). We return to this point
later in Section 4.

The isomorphism (2.8) induced by the gauge transformation (2.9) has a natural
prolongation to the central extended algely&l,). It preserves the pairing (2.14)
and multiply the cobrackef: a9(slz) — ad(sl2) — a9(slz) by a factorn/n'. So
we have actually the unique algebraic structure realized in different spaces of
distributions.

2.2. ANALYTICAL CONTINUATION AND SOKHOTSKY 'S FORMULAS

For a periodic function (over variablg of the type

_ 17N _ ) _

alu) =e® shrn(z —a) or a(u) =h®imncthrn(z —u) or
_ 17N

alw) = /@ shrn(z —u)’

let us denote by:_ (u) the distribution whose value on a basic functidn) € K
is given by the integral

/F dza(z)s(z),

where the contour is a line parallel to the real line such that the polis the first
pole ofa(z) located above the contoiit Then foru € II- = {0 < Imz < 1/n}
we have by definition

e—(u) = ey (u—if/n), h_(u)=hy(u—i/n),
f-(u) = —fi(u—i/n).

The distributions (over the variablg e4 (u), f+(u) andh(u) admit analytical

continuations over the parameter For instance, the analytical continuation of

e_(u), f—(u) and ofh_(u) to the region of parametere II* are the distributions
of the typea_(z) defined as

(2.17)

—i/n+o0

(a_,s) = / dza(z)s(z).

—i/n—o0

Due to the relations (2.17) this analytical continuation preserves the structure of
Lie algebra. The analytical continuation of the commutation relations (2.16) yields:

[e+(u1), f+(u2)]

= S gy ) — hs(02) + Bles (), f2) -
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[ha(u1), ha(uz)] = B(ha(u1),hs(u2)) -,

. 2i
[ha(u1), et (u2)] = 2imncthrn(ur — u2)et (uz) — il

)ei (ul)a

shrn(uy — up

2imn

[hi(ug), fa(uz)] = —2imncthrn(ug — up) fx (uz) + fx(u1),

shrn(u1 — u2)

lex(ua), f4(u2)]

- Wi) (he(w2) = b (u2)) + Blew(wa), f(u2)) -

[ha(u1), hs(u2)] = B(hi(u1),hs(u2)) - c,

2imn

[h(u1), ex (u2)] = 2imncthmn(uy — uz)ex (uz) — mf&(ul)a
[t (u1), f5 (u2)] = —2imn cthmn(us — u2) f+(u2)
2imn

mfi(ul)a (2.18)

where(u = u1 — u2)

hmnu 1
B o (mnuchmnu >
(), fi(uz)) = i ( st mnu shrnu

m(u £ i/n) chrnu 1
Ble+(u1), f+(u2)) Z7W72< nlu ifn) hu > ,

sk wnu shrnu

Blha (un), ha (u)) = 2imrf? ( LUCI cthmyu) ,
sk mu

mn(u £ i/n)

B(ht(u1), hx(ug)) = 2imn® ( sk nu

— Cthwnu) .

The pairing (2.14) also admits an analytical continuation:

_mnP(ug — up £ i/n)
(e+(u1), f+(u2)) = shrn(on — )

(ha(ua), he (u)) = 2mn?(uy — up = i/n) cthrn(ug — ug). (2.19)
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The definition of the distributions (u), f+(u), hi(u) gives possibility to
apply Sokhotsky’s formulas. They can be written as follows:

e(u) = et (u) —e—(u), f(u) = fi(u) — f-(u),

h(u) = hy(u) —h_(u), (2.20)
where

e(u) =2me®d(u), f(u)=2rf® §(u),

h(u) = 2rh ® d(u). (2.21)
On the other hand, we also have the relations

_ i e(z)
ex(u) = 2 Jr. dzshwn(z —u)’

_in f(z)
flu) = 2 Jr, dzshwn(z —u)

hi(u) = % . dzh(z) cthon(z — u), (2.22)

where the contour, is a line parallel to the real axis and lying above the paint
andI'_ is also a line parallel to the real axis but the pains above it.

The relations (2.20)—(2.22) show that the algebra of formalalued currents
on the line is embedded into the analytical continuation of the Lie algxa,l()f&):

[h(u), e(v)] = 26(u — v)e(v),
[A(u), f(v)] = =26(u — v) f(v),
le(w), f(v)] = d(u — v)h(v) + ¢ 8 (u —v),

[h(u), h(v)] = 2¢- &' (u — v). (2.23)

3. The Lie algebraa,,(.?[z) in terms of Fourier harmonics

Leteéy, fr andfy, A € R be the symbols satisfying the following relations
[ilka éu] = Zé)\-HM
[y, ful = —2f 40

[é/\a fu] = il/\‘HL +c- >‘6(>‘ + /J')a
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[has ] = 2¢- A6(X + p). (3.1)

Leta, be a vector space which consists of the expressions of the type

o0 exg(N) ng hag"(
/700d/\1+e*/77’ /m 1+e*/’ ][ OI>‘1 ek/n (3-2)

whereg()), ¢'(N), ¢” (1) are quasi-polynomials

z/\uj z)\u]
Z Py Z Q;(\
ZR z)\u]

u; € II'T andP;(X), Q;(N), R;(\) are polynomials.

We state that the brackets (3.1) define a Lie algebra structure on thewmpace
which is isomorphic ta,(sl2).

The isomorphism can be established in the following way. We realize the sym-
bolsé,, f\ andh, as the following functionals on the spakeof basic functions

s(z):

(3.3)

(éx, f(2) =e® / dzs(z) e, (3.4)
(@) =fo [ e, (35)
(x, £(2)) = h @ /O:o dzs(z) 2. (3.6)

Then the expressions (3.2) are in one-to-one correspondence with distributions
from a,) (slo) defined by the functions (2.1)—-(2.3). Since both brackets (2.5)-(2.7)
and (3.1) fore = O are pointwise brackets obsValued functions, they coincide for
¢ = 0. One can easily check that the cocycles in (2.16) and in (3.1) also coincide.

In the language of Fourier harmonics we can define a natural extension of the
algebrau, (slp). This extension consists of the following expressions

o
/ dAérg(A / dAfrd ][ Mg ( 3.7)
—0o0
where these functions satisfy the following conditions:

g(A)andg’(\) are analytical in the strip— 7 < Im(\) < 77,
g"(p) is analytical in the strip — 27y < Im p < 277,
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except the poinix = 0 where the functiory” (i) has a simple pole. Besides,
the functionsj()), ¢'(A\), §”()\) should decrease faster than some exponent when
Re\ — +o0:
g()\) < Ce—a\ReA\’ g/()\) < Ce—ﬁ|RE)\" g/l()\) < Ce—’y‘ReA|

for somea, 3,y > 0.

This extended algebra is well-defined and the arguments are the same as in
[KLP]. We do not reserve any special notation for the extended algebra. It plays
the same role as, (sl>).

All the structures of the Lie algebt@(ﬁz) can be reformulated in the language
of Fourier harmonics. The invariant scalar product (2.14) now looks standard:

(@ fu) =6+ 1), (b, hy) = 26(A+ p) (3.8)

and the cobracket for level O algebt%a(glz) S

m ~
dey = —%][ drh, A éx—, (cthT/2n +th(XA —71)/2n),
o 1 [o© ~ ~
5y = —5][ drfxr Ay (cthr /27 +th (A — 7)/27) ,
—00

Shy = — ][jo dré; A fa_r (th7/2n +th(A —7)/2n). (3.9)

The generating functionsy (u), f+ (u) andh(u) are treated now as generating
integrals foréy, f», hy. As follows from (3.4)—(3.6) and from (2.12),

AU
i/ dreM— 2

AU
i/ dre 1+eﬂ/ﬂ

.
ho(u) = + ]€ et (3.10)

and the currents(u), f(u) andh(u) are total Fourier images @, fy, fx:
= [ e fw = / drf €M,

h(u) = / Ay @M. (3.11)
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4. The representation theory

As we already mentioned in the Introduction, the matrix elements of the gener-
ating functionsh (u), e4(u), f+(u) become the meromorphic functions in the
representations of the algebr,;(?[z). Let us define representations of this algebra
using the description given by (3.7). Assign to each element defined by (3.7), for
example,[*_ d\g(\)é,, the operator-valued function:

é(u) = / T dag(V)é, €M

We will say that a representation of the algelydsl,) is well-defined if the
operator-valued functioa(u) becomes a meromorphic function in the variable
u € C in some neighbourhood of zero.

4.1. REPRESENTATION OF THE ALGEBRA, . (sl2) AT THE LEVEL 1

The goal of this subsection is to construct an infinite-dimensional representation of
the algebramc(ﬁz) atlevelc = 1. For a description of this representation we need
a definition of the Fock space generated by a continuous family of free bosons. We
borrow this definition from [KLP].

Letay, A € R, A # 0 be free bosons which satisfy the commutation relations

[ax,a] = 6N 6(+),  a(V) = 5.

We define a (right) Fock spag@ég, ) as follows.#,,,) is generated as a vector
space by the expressions

0 0
[ fl(Al)aMdkl...[ FaO)an, dAn|vag,

where the functiong;(\) satisfy the condition
fil)) < ce?, X — —oo,

for e > 0 and f;(\) are analytical functions in a neighbourhoodof except
A = 0, where they have a simple pole.
The left Fock spacétzm is generated by the expressions

+o0o “+o00
(vad /O gi(M)ar, dA ... /O an(An)an, di,

where the functiong; (\) satisfy the conditions

gi(N) < Ce \N—= +oo,
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andg;(t) are analytical functions in a neighbourhoodrof excepth = 0, where
they also have a simple pole.
The pairing(,) : ’HZ(A) ® Hqny — Cis uniquely defined by the following
prescriptions:
() ((vad,|vag = 1,
(i) ((vad [ drg(Nax,  [2 duf(m)auvag) = fo B529(0) f(=Na(),
(i) the Wick theorem

and contouC' shown in Figure 1.

G -

Figure 1.

Let the vacuumsvad and|vac satisfy the conditions
axlvac=0, A >0, (vaday =0, X<O0,

and f(X) be a function analytical in some neighbourhood of the real line with
possible simple pole at = 0 and which has the following asymptotical behaviour:

FO) <e N5 +o00

for somee > 0. Then, by definition, an operator

F = :exp(/:roo dAf(A)aA):

o0

acts on the right Fock spagg, ) as follows.F = F_F',, where

0
F_:exp</ dAf(A)aA> and

F, = lim eef(f)aﬁexp</ dAf(A)aA).
e—0 €

An action of operatorF’ on the left Fock spacé{:;m is defined via another
decompositior¥” = F_F, , where

F, = exp(/OJroo dAf(A)aA) and

F_ = lim /(=99 exp ( / T f(A)a,\> :

e—0 _ 00

https://doi.org/10.1023/A:1000645909064 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000645909064

CLASSICAL LIMIT OF THE SCALED ELLIPTIC ALGEBRA 217

These definitions imply that the above-defined-actions of the operator
—+00
F = :exp(/ dAf(A)aA>:

onthe Fock spaces,y) ande(A) are adjoint and the product of normally ordered
operators satisfy the property [JKM]

:exp </O:O dAg1(N) ax> L lexp </O:O duga(p) “u) :

= exp </ ma(k)gl(k)gz(—ko

é 211
x exp ( [ o:o dA(g2(\) + gz(A))aA> 3 4.1)

PROPOSITION.The generating functior(@.2)satisfy the commutation relations
(2.18)and define a highest weight, levietepresentation of the algebig, .(sl2).

_in€’ dz . (/Oo iAz@)
et(u) = Il v py :exp n dre L
in e’ dz ) ( /00 Z-)\ZZa,\>_
= : — —): 4.2
fa(u) 2 Jr, shan(z —u) exp . dré R (4.2)
hy(u) = i][oo A2
SR B 1— e\’

The contourg™ in (4.2) are the same as in (2.22) ap Euler constant. The
action of the total currents(u), f(u) andh(u) has a simple form

o 2
e(u) = € :exp </ dX e““%) a
flu) =€ :exp(—/ d\ e““%):,
h(u) = 2/ day e,

5. The algebraAh,ﬂ(Elz) and its classical limit

5.1. THE DEFINITION OF Ay, , (sl2)

The algebrad,, , (s2) is a scaling limit of the elliptic algebrd, ,(sl2) [FIJKMY]
atp, ¢ — 1. This algebra has been investigated in [KLIZum(E[z) is generated by
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the central elementand by certain integrals over Fourier harmoriigsfy, A, for
¢ = 0andey, fy, ) for ¢ # 0 (see [KLP]) of the matrix elements of tiieoperator
L*(u,n) orits analytical continuatiod ~ (u, n):

L~ (u,n) = o, Lt (u—i(1/n + he/2),n)o,. (5.1)
OperatorL* (u, n) satisfies the relations
R (ug —uz,n') L7 (u1,m) L3 (u2,n)
= Ly (uz,n) Ly (ug, m)R* (ug — uz, 1), (5.2)
g-detL(u,n) =1,

where

! Ui

=—— ¢h>0.
1+ nch ¢

n

The last inequality means that in the representations the central eleisesgual
to some numbet such thatic > 0. TheR-matrix in (5.2) reads as

R+(u777) = T+(U)R(u7n)7 R(Uﬂ?) = Q(Uaﬁ)R(Uaﬂ)a

10 o 0
_ 0 b(u,n) clu,m) O
R(u,n) = ’
() 0 c(u,m) blum) O
0 0 o 1
_ D)L+ inu) 73 Ry (u,n) Ry (ih — u, )
o0 1) = = G i) le Ry(0,m) Ry (i)
Rl T'(2phn + inu)T(1 + 2phn + inu)
P\t 1) = T'((2p + )hn + inu)T(1+ (2p — Dhn + inu)’
shrnu
blu, ) = ———F———
(u,n) shrn(u — ih)’
_ —shimph Ty u

and the quantum determinant is

g-detL(z,n) = Li1(z — ih,n)L22(2z,n) — L12(z — ih,n) L21(z,m).  (5.4)
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Relations betweeh* (u) and L~ (u) can be obtained by means of the analytical
continuations of the relations (5.2).
In terms of the coordinates of the Gauss decomposition

U u+ih)) "t
L+ () = (1 fi( )> ((k+( + ih)) 0 ) ( 1 0>’ (5.5)
0 1 0 ki (u) er(u) 1

the relations (5.2) read as follows & u; — up):

shimnh -

shimn'h
T2, (ug) iy (u2),

eq(u1) f+(u2) — f4(u2)ey (u1) = Shou

B shrnu

shrn(u + ih)hy (u1)es (uz) — shan(u — ih)es (u2)hy (u1)

= sh(imnh){hy(u1), ey (u1)},

shrn'(u — ih)hy (u1) f1 (uz) — shan' (u + ih) f1 (u2) by (ug)
= —sh(imn'n){hy (u1), f+(u1)},

shrn(u + ih)ey (u1)es (u2) — shan(u — ih)eq (u2)ey (u1)

= sh(imnh) (es (u1)? + ey (u2)?),

shry’ (u — in) f4 (ua) f4 (u2) — shmy’(u + ih) f4 (u2) f1 (u1)
= —sh(imn' ) (f1 (u1)® + f1(u2)?),

shrn(u + iB)shrn (u — ih)hy (u1)hy (u2)
— ho (ua)hy (ug)shmy (u + ih)shmn(u — ih), (5.6)
where
h (u) = ky (u) " kg (u + b)Y

- o _ sin 'k
hy(u) =k B) Yy (u) = 12
+(u) = ky(u+1ih)" "k (u) o sin h

ho(u).

The commutation relations (5.6) should be treated as the relations for the generating
integralse (), f4(u), hy (u) of elementsy, fy, hy.

The commutation relations for the operafor(u) entries can be obtained from
(5.6) by analytical continuation as was done in case of commutation relations
(2.18).
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The Hopf structure 0045,1/5(3[2) is defined in the following sense. Consider

the family of the algebraﬂm/g(.?[z) with fixed »0 and variabl€ = 1/n. Then the
operations

Ac=c1+e=c®1+1xc,
2
ALfi(u,8) = Y Lifi(u +icah/2,€) © L (u — icah/2, & 4 hey) (5.7)
k=1

define a map
Anye(slz) = Ay 1/¢(slo) ® Ap 1/ (e her) (@) (5.8)

which is coassociative and is compatible with the commutation relations (5.2). The
coproduct in terms of the generating functidns(u), e4 (u), f+(u) is given in
[KLP].

5.2. QASSICAL LIMIT (h — 0) OF THE ALGEBRAA,, , (sl2)

Let L*(u,n) = 1+ hL*(u,n) + o(h?). Itis easy to calculate that

R(u,n) = 1+ hro(u,n) + h(imy cthrnu)id @ id + A1 (u, n) + o(h?),
R(u,n') = 14 hro(u,n) + h(imn cthrnu)id ® id + k2 (u, ) + o(h?),
i)((Z’,Z)) = 1+ Wo(u ) + o),
where
cthrnu 0 0
0 0 (shanu)~1 0
e T A 0 0 &9
0 0 0 cthrnu

is a trigonometric solution to the classical Yang—Baxter equations,

Tl(uv 77) - Tg.(uv 77)

0 0 0 0
Ty mpuchmpu 1
9 0 cthripu st nu st shmnu
=17
hrnu 1 U
o TOUENTIU _ cthrnu — =51 0
St mnu shmnu TSR ™mu

0 0 0 0
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and
2

17 U
u,n) = —— | cthanu — .

This expression can be found from the integral representation of the fgatoy).
We now obtain from (5.2) the relation

(L7 (u1), L3 (u2)] = [L] (u1) + L3 (uz), ro(u1 — uz,n)]
+(r1(us — uz,n) — ri(u1 —uz,m))ec
—oo(u1 — uz2,n)c-id ®id. (5.10)

These commutation relations can be found without calculation of the expansion
of the ratio of scalar factorg(u,n’)/o(u,n). The role of the factowo(u,n) is

to transform the matrix in front of the central element to a traceless matrix. This
condition fixes the factosp(u, n) uniquely. Using the freedom

’f'o(U, 77) - 'FO(uv 77) = TO(ua 77) + H(u) id® Id,

let us make the new-matrix 7o(u, n) traceless. Then the commutation relations
(5.10) can be written in the form

»dro(ur — uz,n)
dn '

We will use this observation in the last section calculating the classical limit of the
quantum elliptic algebra, , (sl2).

Lete (u), f+(u) andh. (u) be formal integrals of the symbals, £y, kx given
by the formulas (3.10) with the spectral parameter being a complex numbér.
By direct verification, we can check that if the complex numberinside the strip
IT*, then elements, (u), £ (u), ho (u) belong taw, (slz). If the complex numbes
isinside the stripl~, then the elements_(u), f— (u), h_(u) also belong tay, (sl2).
Thus we can treat the integrals (u), f+(u), hs(u) as generating functions of
the elements of the algebua,(glz) analytical in the strip§I*. We can state the
following:

[£7 (u1), £3 (u2)] = [£7 (u1) + L3 (u2),7o(us — uz,n)] + 1

PROPOSITION.The commutation relation&.10)for the Gauss coordinates of
the L-operatorL™ (u, n)
hy(u)/2 f+(u) )

er(u)  —hy(u)/2

are |somorph|c to the commutation relatio(16)and the generating functions
e (u), fi(u), hy(u) satisfy these commutation relationsjf, fx, h satisfy the
relations(3.1)

£+(u7 6) = (
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In order to prove this proposition we should use the Fourier transform calcula-
tions and fix in (5.10) either Iny (IM w2 or Im wq)Im us.

We conclude that the algehia(sly) is a classical limit of the algebtdy, , (sl2).
Simple calculations show that fer= 0 the cobracket Oﬁn(;\[z) defined by the
usual prescription

5(z) = lim Alz) - A=)

B0 h ®.11)

coincides with cobracket (2.13).

For ¢ # 0 there is no reason to define an object like (5.11) since we have no
ways of identifying the tensor components in the imagéoNevertheless, if we
follow the standard prescription (5.11) we get the following map:

Ses () = hw) A ) + e (et nzde&gu)) ’

5 0) = Folo) Ay ) + e (5 L g2 g;“’) . G12)

) =2es ) 10 e (0 P

which can be also rewritten in Fourier harmonics as follows:

déy = —%][ drh, A éx_.(cthr/2n +th(A—1)/21)
—00

A AN .
+§th <%> (&Y A C,

5f, = _%][ drfa_r A by (cthr/2n +th (A — 7)/2n)

A AN
+Eth (Z) f/\ A C,

(5.13)

Shy = — ][ dré, A frr(thr/2n +th (A — 7)/21)

A AN
—cth{ — | A .
+2C (2’17> ANE

6. The rational degeneration

The affine algebras with a bialgebra structure usually appear as classical doubles
and thus are factorized into a sum of isotropic subalgebras. It is not true for the
algebraag(glz). Nevertheless, as follows from the definition of the elements of the

algebrau,, (slo) (3.2) and the generating functions (3.10), each substrip of the strips
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I1* defines a subalgebra of the algeb,y(a?lz). Itis clear from (3.2) that in terms of
Fourier components, these subalgebras are distinguished by different asymptotics
of the functionsg()), ¢'()), ¢”(\) at A\ — +oo. Let us consider the substrips

I+ c o+

1 . 1
H*:{—2—77<|mu<0}, H:{0<Imu<z} (6.1)

and restrict the generating function$ (u), f*+(u), h*(u) ontoII* ande™ (u),
f~(u), h~(u) ontoII~ respectively. Let us denote corresponding subalgebras of
ay(sl2) asa,l (sl2) anda;; (slp).

JUU S

14er/n
et
1+e=A/n

Figure 2.

Then in the limitny — +0 these subalgebras become isotropic subalgebras of
the loop algebraly, the generating functions of these subalgebras will be defined in
lower and upper half-planes and their expressions turns into the Laplace transform
via formal generators (see Figure 2).

In this limit the family.Aj ,,(sl2) turns into the central extended Yangian double

—

DY (slp) [K, IK] defined in contrast to [K, IK] by means of.-operatorsL™ (u)
which are analytical in lower and upper half-planes respectively and generated by
the continuous family of formal generatots, fy, i, Which are formal Fourier
harmonics of the elements of theoperatorsL*(u) [KLP1]. The Lie algebra
a (3[2) turns at this limit into the central extension of-sfalued rational functions
vanishing abo; subalgebras; (slp) anda, (slo) turn into subalgebras of rational
functions analytical in lower and upper half-planes respectively.

The elements of the algehrgsi») can be identified withi,-valued distributions

PE) L PR, P
Qe TYeE "ok

where P(z), etc., are polynomials such that dé¢z) < degQ(z), degP’(z) <
degQ'(z) and deg”"(z) < degQ"(z). Subalgebras] (siz) andag (sl2) are dis-
tinguished by the contours in pairing the distributions (6.2) and the elements of
the space of the basic functions on the complex plane analytical in the lower and
the upper half-planes respectively and vanishing at infinity. For the elements of

e®

[®

(6.2)
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the subalgebra] (sl2), this contour is parallel to the real axis and lies above all
zeros of the polynomialQ(z), Q'(z) andQ"(z) and vice versa for the subalgebra
ag (sl2).

The central extention of the algebf§(§[2) is defined by the standard cocycle
and the commutation relations between the generating functions of the elements of
the algebralac(;[z) and can be formally obtained from the commutation relations
(2.18) at the limity — +-0:

7

lex (ua), f+(u2)] =

(hs(u1) — ha(u2)),

UL — UD
[ht (u1), ha(uz)] =0,
[ (1), e (02)] = —— (e (u3) — e (u1)),
)
s 1), (0] = (s 2) — fx (),
e ). 5 (u2)] = o () — (1) F s
UL — U UL — U
). s z)] = F oz
e (), e (2)] = —— (e (1) — e (u))
)
—2i

[ht (u1), f5(u2)] = (f5(u2) = fx(u1)).

Uy — u2

Subalgebrasaoi(glz) become isotropic and there is a nontrivial pairing between
these subalgebras:

i 2i
(hy(u1), h—(ug)) =

(ex(ua), f-(uz)) =

u1 —up’ u1l — u

The algebrai(sly) is a bialgebra with the cobracket:

S(ex () = £ha(u) A ei(u)iideisu) Ac,
37 () = ulw) A ()i T
d(he(u)) = £2ex(u) A fi(u):i:zdhzlciéu) A,
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The representation (3.10) in the form of Fourier integrals becomes the Laplace
transform (this can be visualized in Figure 1)

ex(u) = + /O AAEFNE0(N),  fulu) ==+ /O dAeFN FL0(N),
ho(u) = + /O A €T B(N),

so the formal generatos,, fA, hy at < 0 form the subalgebr@é(?[z) andeéy,
Fx, hy atA > Othe subalgebrag (sl2). The map (5.13) now becomes a cobracket

A ~
dey = —/ dr[é(r) —O(t — N)]hr Néx—r + %sgr(k)éA Ac,
0
A

5fy = —/O dr[0(r) — 0(r — N)]frer A hr + %sgr(A)fA Ac,

~ A ~ -~
Sha = =2 [ drlo(r) — 0r — Ner A Frr + 5 SOV A,
0

wheref()\) is the step function

1, X>0
o\ =<3, A=0
0, XA<O

and defines a Lie bialgebra structured(sl,) at arbitrary central element This
bialgebra is a classical double of one of subalgekidsi,).

7. The Lie algebraap(sly)

The structure of the Lie bialgebg, (siz)(at level 0) from Sections 1 and 2 can
be automatically generalized to the elliptic case. Using the Lie algebra of double
periodic automorphic functions which take valuesifn[RS], one can construct

on the half-parallelogram of the perioHs(0, 2K, iK', 2K + iK') the Lie algebra

of sl,-valued generalized function§(p = "7 = e~ ™X'/K). Let us introduce the

generating functions (u) of the elements of the algeba%(?[z):
of(u) =0, Qwa(z —u), o, () =0 (u—K'), a=123, (7.2)

whereo, are the standard Pauli matrices

01 0 —i 10
o1 = , o= , o03=
“\10 >~ \i o *" o1
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and functionsv,(u) are ratios of elliptic Jacobi functions of modulk$BE]:

1 _dan(u, k) _cn(u, k)
wlu) = sn(u, k)’ wa(u) = sn(u, k)’ wa(u) = sn(u, k)’
Because of the addition theorem for elliptic functions
wa(u —v)we(v) — wy(u — v)we(u) = we(u)wy(v) (7.2)

the generating functions? () satisfy the commutation relations:

[0 (u1), 07 (u2)] = 2 [iwa (U1 — u2)of (uz) — iwp(u1 — uz)oy (u1)]

:F

[U(:zt (ul) y Oy 5

(u2)] = 2 [iwa (u1 — u2)o (uz) — iwy(ur — uz)oy (u)], (7.3)
wherea, b, ¢ are cyclic permutations of 1, 2, 3. The cobracket
dog(u) = op(u) A oe(u) (7.4)

defines omg(gtz) a Lie bialgebra structure.

In analogy with the trigonometric case the algebgé;[z) admits a central
extension given by the two-cocycle:

1 dz <dz/)(z)

Bl® ey o 9) = 5 [ o0 (B0 - w252 )

wheredlIl is the boundary of the period’s half-parallelogréafy 2K, iK', 2K +
iK'). The cocycle property is a consequence of the addition theorem (7.2). The
values of the cocycle on the generating functions are

Blo(m), o (ug)) = " Daltd 2] 75)

the values of the cocycle for the other combinations of generating functions one can
find by applying the automorphic conditions (7.1) to (7.5). The central extended
Lie algebraap(;[z) is defined in terms of generating functions subjected to the
commutation relations (7.3) together with the relations (7.6) instead of trivial ones.

[0 (u1), 05 (u2)] = ¢+ B(oy (u1), 05 (u2)),
[0 (u1), 07 (u2)] = ¢+ B(oy (u1), o7 (u2)). (7.6)
It should be mentioned that in terms of Fourier harmonics

+ i i
of (u) = — 201 7
K o P

Z .
p_ 1 e27rzéu’
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; V4

+ _ ¢ P il
o, (u) = — o 3

’ K ézo;d P+l ’

- ¢

+ v ¢ D Tilu
o3 (u) = — Z 03— & )
K £ even P+ 1
the commutation relations (7.3), (7.6) become the relations for the generators of

central extended loop algebsh:

[Uf, Uf] = 2i8abcof+£ +c- B(Uf, Jf) (7.7)
with the standard cocycle

B(og,0) = ka0,

But, as well as in the trigonometric case, it is not sufficient to write down the
relations (7.7) for the description of the Lie algeb;&?[z). One should specify the
elements ofi, (sl2) to be a series of the formal generatofswith coefficients of the

type (3.2) and (3.3), which appear after Fourier decomposition of the generalized
functions from the spaasg, (3[2). In terms of Fourier harmonics, the cobracket (7.4)

is given by the relations

k

+1 o
5(o%) = . N
2= 2 Grne—p=
i+i=k

k
ky p"+1 i A
o) = 2 G ne

2,]
it+j=k

The central extended algebrﬁ(.?[z) can be written in--matrix formalism. Let

3
r(u) = we(u)o, ® 0q (7.8)
a=1

be an elliptic solution of the classical Yang—Baxter equation and

( o3 (u) of (u) —iog (u) )
i |

L (u) =
“ Wticiw)  —oi(w)
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whereo ! (u) satisfy the commutation relations (7.3) and (7.6). Theatrix (7.8)
is traceless and the commutation relations (7.8) and (7.6) can be written in the
following form:

+ + + + 1 dr(ua — u2)
[£7 (u1), £3 (u2)] = [£] (u1) + L3 (u2),r(u1 — u2)] + ?T -c. (7.9)
This representation allows us to demonstrate that the Lie algglfsa) is a
classical limit of the quantum elliptic algeby, , (si2) [FIIKMY]. Indeed, in the
‘RLL formalism, the algebrad, ,(sl2) is defined by the relations

R(v; 1, 7)Lf (u1) L3 (uz) = L3 (uz) L1 (ua) R(v; b, 7), (7.10)

wheren is a deformation parameter aftiv; i, 7) is the Baxter ellipticR-matrix
[B]

0
p(v) 0

The normalization factop(v) provides the crossing symmetry and unitarity con-
ditions and

a(v;h,7) = sn(h+v), b(v;h,7) = sn(iv),
c(v;h,7) = sn(h), d(v;h,7) = ksn(h)sn(iv)sn(h + iv). (7.11)

In (7.11) siiz) = sn(z, k) is Jacobi’s elliptic function of modulus. The modular
parametef = K’/K is defined by the half-periods andK’ and related td: in
the standard way. In (7.16Y is the following expression:

7 = 7 + ahe, (7.12)

wherec is the central element ar@inumbera depends on the half-peridd and
modulusk.

To obtain the commutation relations (7.9) from (7.10) first we have to use the
Landen transform

1—k 1+ k N
s e SR CRuot

applied to the matrix elements of thle-matrix and then the imaginary Jacobi
transform which connect the elliptic functions of argumanand supplementary
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modulusk’ with those of argument and modulusk (see details in [B]). The
R-matrix in this new parametrization reads:

3
R(u; ¢, 1) = p(u) |1+ Z Wa(u)o, ® 04|,
a=1

where

s k) o, — SMC, k) dn(usC, k)
. 27 sn(utC, k) dn(C, k)’

~osn(utC, k)’

_sn(¢, k) en(u+(, k)
~ sn(u+¢, k) en(¢, k)

3

and had been used by E. Sklyanin in [Sk]. Since Landen transform do not affect
much the modular parametethe prescription of the central extension (7.12) will
be the samer* = 7 + (¢/K.

After all the transformations, the classical limit of the quantum relations (7.10)
means that — 0. In this limit L*(u) = 14+ ¢ L (u) + o(¢?), R(u;(, 1) =
[L4 ¢r(u,7) + Cra(u, ) + 0o(C3)], R(u; ¢, 7%) = [L+ Cr(u,7) + (3 (u, 7)+
o(¢%)] and

’F]_(U,T) - 7‘1(U,7') = %%

so (7.9) appears as the first nontrivial coefficient of the Taylor expansion of (7.10)
with respect tal. Since the classicalmatrix is traceless, the scalar facju)
does not contribute towards the calculation of (7.9) (compare with Subsection 4.2).
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