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Abstract

It is shown that if m, n are relatively prime positive integers, then the variety consisting of those
soluble groups of exponent mn in which any subgroup of exponent m or n is abelian has a basis of
two-variable laws.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 10.

Since the paper of Higman (1959), it has been of interest to ask which varieties
have a 2-variable basis for their laws. In this note, we show that certain
metabelian varieties are defined by 2-variable laws.For unexplained results and
notation on varieties of groups see Neumann (1967), while for other group-theo-
retical results see Gorenstein (1968).

THEOREM. Let m and n be relatively prime positive integers. Then the following
set of laws forms a basis for the laws of the variety %, N, \/ A, A,

() x™ = 1.

@ [x™y"" = 1.

A%y =1

@ lx ), x =1

Let B denote the variety defined by the laws (1)-(4), and let U denote the
variety %, %A, \/ A A, . We prove that 1 =0 in a series of lemmas. Note
however that the laws (1)-(4) hold in %%, and in %A, %, so we have U < 8.

LemMA 1. (a) Groups in B of exponent dividing m or n are abelian.
(b) Finitely-generated soluble groups in B are in 1.

(¢) 2-generator groups in B are metabelian.
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Proor. The law (3) reduces to [x, vy} = 1 in a group of exponent dividing m, as
does the law (2) in a group of exponent dividing n. Hence (a) holds.

Let G € B be a finitely-generated soluble group. Then G is finite. Now
F(G) = F, X F,, where F, has exponent dividing m and F, has exponent
dividing n. Let G; = G/ F, for i = 1, 2. Then G is a subgroup of G, X G,, and it
suffices to show that G, and G, lie in 1.

Now F(G,) has exponent dividing n, by law (1) and part (a). But if g € G, has
order dividing »n then again by law (1) (g, F(G,)) has exponent dividing n, and
so by (a) is abelian. Hence every element of G, of order dividing n centralizes
F(G)). But C;(F(G))) < F(G,) (Gorenstein (1968), Theorem 6.1.3), so F(G))
contains all the elements of G, of order dividing n. Hence G,/ F(G)) has
exponent dividing m, and so by part (a) is abelian. Then G, € %, %, < U. An
exactly similar argument shows that G, € %, %, < U. Hence G € 1.

By Theorem 2.1 of Higman (1959), (c) is a consequence of the law (4).

LEMMA 2. [x™, (x"Y] = lis a law of B.

PrOOF. First we show that [x™, (x")'] = 1 is a law of U. In other words, we
must show that it is a law in %,%, and in %, %,. In % A, a commutator ¢ has
order m, and so since (m, n) = 1, ¢ is an nth power. Also nth powers commute.
So [x,y,z"]=1is a law of A, %, But [x™, (x"Y]=[x"y", x"P, so
[x™ (x"yY]}=1lisalawof A %A, .

Similarly [z™, [x, y]] = 1 is a law of A X,,.. But [x™, (x")’] = [x™, [x", ¥]], so
[x™, (x"yY] = lisalaw of A, A,,. Hence [x™, (x")] = lis a law of U.

But now suppose G € B does not satisfy [x™, (x")] = 1. Then G contains
elements g, h with [g™ (g")*] % 1. But by Lemma 1 (b) and (c) (g, h) € W
Hence [g™, (g")"] = 1, a contradiction. Hence [x™, (x"Y] = 1 is a law of B.

LeMMA 3. B contains no non-abelian simple group.

PROOF. Suppose G € B, G a non-abelian simple group. Then we deduce some
properties of G.

WIfge G, theng”=1lorg" = 1.

Forif g € G with g” # 1 and g” # 1, then by Lemma 2, C;(g™) contains all
conjugates of g”. But G is simple, so G is generated by the conjugates of g”.
Then g™ is central in G, which is absurd, since G is a non-abelian simple group.

(11) Suppose that g, h are non-commuting elements of G of the same order,
and let H = (g, h). Then H is a Frobenius group, with (g> and <{h) as
Frobenius complements. In particular, there is an integer a with {g> = {(g*>
and g™h € H".
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Let g, h have order u. By (i), we may assume for definiteness, that p divides m.
Then by Lemma 1 (c), H is metabelian, and so finite. Again g and 4 are nth
powers. But H' is generated by elements [a, b] with a conjugate of g and b a
conjugate of 4. Then by law (3), these elements have order dividing n. Since H’
is abelian, it follows that H’ has exponent dividing n. Now by (i), H/H’ acts
regularly on H’. Hence H is a Frobenius group. Since H/H’ is abelian, it is
cyclic (Gorenstein (1968), Theorem 5.3.14(ii). See also Theorem 10.3.1).

Now by (i), HHn<g>=H n<h>=1, as (u, |H'|)=1. But H/H' =
{gH’, hH'», so H/H’ has exponent exactly u. Since H/H’ is cyclic, we have
|H : H'| = u, whence H = H'(g) = H'(h). In other words, {g) and (h) are
Frobenius complements. Then {(g)> and (k) are conjugate in H (Gorenstein
(1968), Theorem 6.2.1(ii)). Choose a € H with (h®> = (g>, say h® = g°. Then
g7%h = (h°)"'h = [a, h] € H’ as required.

(i11) G contains a non-cyclic abelian subgroup.

Let p be the largest prime dividing the exponent of G. Then G is generated by
elements of order p. Hence G contains a pair g, # of non-commuting elements of
order p. Let H = (g, h). Then by (ii) H is a Frobenius group, with H’ abelian.
Let C be a complement to H’ in H, and let ¢ be a prime dividing |H’|. Then
|C| = p, and C acts regularly on the abelian group O,(H"). Since ¢ < p, O,(H")
must be non-cyclic.

(iv) G does not exist.

By (iii), G contains a non-cyclic abelian subgroup, so for some prime p, G
contains the non-cyclic group of order p?. Hence choose g, # € G such that
(g, h) is non-cyclic of order p%. Suppose for definiteness that p divides m.

Let 4 = C;(g). By (i) 4 has exponent dividing m, so by Lemma 1 (a) 4 is
abelian. If a € 4* then again C;(a) has exponent dividing m, and is abelian.
Also 4 < Cg(a). So Cg;(a) centralizes g. Then C;(a) < A. Hence we have
A = C;(a)forany a € A*. In particular 4 = C(g™'h).

Now as G is simple, G is generated by elements of order p (for example, the
conjugates of g). Then there is an element k of order p in G — A4, as A4 is abelian
but G is not. Let H, = (g, k> and H, = {h, k). Then by (ii) there are integers
a, B with 1 < a, B <p such that gk € H| and h Pk € H;. Replacing g by g*
and h by h#, we suppose that g'k € H| and h~'k € H;. But H{ and H; have
exponent dividing n, so (g k)" = (h7'%k)" = 1. Then g 'k, h~'k are mth powers,
and so by law (2), [g7'%, k'h]" = 1. But since [g,h] =1, [g7%, k'h] =
[k,g'h). As k™ = (g7'hy" = 1, [g" %k, k'h]" = [k, g'h]" = 1, by law (3). Since
(m, n) = 1, we have [k, g'h] = 1. Then k € C;(g'h) = 4, contradicting the
choice of k.

LEMMA 4. I = .
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PROOF. Suppose U #= B. Then as U1 < B, there is a law of U which is not a law
of B. Hence there is a finitely-generated group G with G € B — lI. By Lemma 3
and Lemma 1 (b), all finite groups in 8 are in 11. Hence G is infinite. We show
first that G” is perfect. Since G/ G’ is finitely-generated and soluble, we have
by Lemma 1 (b) that G/G"” € 1. But all groups in 11 are metabelian. Hence
G" = G’ as required.

Now G/G" is finite, while G is finitely-generated. Then G” is finitely-gener-
ated. Now by Zorn’s Lemma, G” has a maximal normal subgroup N. Then
G” /N is a simple group, which is non-abelian since G” is perfect. But G” /N €
B, contradicting Lemma 3 and completing the proof.
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