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ON GROUPS OF FIBONACCI TYPE

by A. M. BRUNNER
(Received 24th March 1975)

1. An embedding

Let w = w(ay, gy, ..., a,_,) be a word in the free group freely generated
by ay, a,,...,a,_;; let w; denote the word w(a;, a;,,, ..., @;;,—1), Where the
subscripts j in a; are reduced modulo n; and let

Gn;w)=(ay, a,...,8,_;: wi=1; i=0,1,...,n—1).

Amongst the groups G(n; w) are those said to be of “Fibonacci type” (see
(2)). The Fibonacci groups are the groups F(r,n)= G(n; w), where w =
asa,...a,,a,' (see (3).
Now let
E(n;w)={a,b; b"=1,w(ae ay,...,a,-)=1),

where here a; denotes the element b~'ab’ (0 < j=<n —1). Then, it is a direct
consequence of the Reidemeister-Schreier subgroup theorem (see Theorem
2.9 of (4)) that G(n; w) is embedded as the least normal subgroup of
E(n; w) containing the element a; one choses the elements 1, b,...,b" " as
Schreier coset representatives.

It is often easier and more instructive to consider E(n; w) rather than
G(n; w). Apparently this was the case in R. C. Lyndon’s proof that F(r; n)
is infinite if n = 11. As G(n; w) is a normal subgroup of index n in E(n; w)
it is infinite if E(n; w) is infinite, finite of order s/n if E(n; w) is finite of
order s. Also, G(n; w) inherits subgroup properties. In any case, E(n; w) is
a two-generator two-relator group whose relators can often be easily
transformed into simple and workable forms.

This approach may be used to give a simple solution* to part of
Problem 3 of (3) (another solution is given in (1)). Indeed, the comments
above, together with the argument of Theorem 5 of (3), yield immediately
that F(r; n) is metacyclic of order r" —1 when r=1 modulo n.

2. On a conjecture
In (2), the group H(r, n, s) = G(n; w), where
W=a0a,...0-(aa. ... Gu1)

* I understand from the referee, that M. J. Dunwoody has preceded me with this observation,
which was made at the International Conference of Mathematicians, Vancouver, 1974.
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is defined. According to §1, the group H(r, n, s) is embedded as a normal
subgroup of index n in the group E(n; w)={c,b;b" =1,b’c" = ¢’b’), where
c=ab™".

C. M. Campbell and E. F. Robertson conjecture (in (2)) that H(r, 4,2) is
metacyclic if r is odd. This is so; in fact, it will follow below that H(r, 4, 2)
is metacyclic of order (r— 2)(2¢ —2.2" +2)/2, where ¢=4a, n=2a re-
duced modulo 4(r —2), with a given by 4a =1 modulo r—2.

Consider E(4; w)={(c,b;b* =1,b"c" = c?b?. If r is even then E(4; w)
is infinite, as it has the group (b, c; b?= c¢?>=1) as an epimorph. Thus we
assume in the sequel that r is odd.

In case r=3 modulo 4, place d =bc %, and in case r =1 modulo 4,
place d = ¢"*b”". Then,

E@4;w)= (d’ c; dd’_z = dn (dc—(r-Z))4 = 1>’

where d; is used to denote d° = c”'dc’ for integers i.
Our first observation is that (dc " ?)*=1 can be written in the form
- cAr-2) . .

D = dd, J(dd,_)*”; and therefore, since d, = dd,_,, in the form

C«'_z) = ddz(,__z) (i)

The relatlon dd,_,=d, is the same as d = d,_2 ~1,; hence, using (i), we
have d,_,= d§,_»dy—2=d;'c*"2c™2d, and so

d_,=d;'d. (ii)

From (i), we have c*“ ?=dd;dy, 5= d2d 'd,_,. In particular,
dd'd,_,=dd;'d = d4d2'dd,_2, so that d,=d,d’d,. Thus, on the one
hand, by (ii) we have d, =d;'d,=d;'d? and on the other, d, = dd,_,=
dd;'d. We conclude that d,d = dd,.

Relation (ii) implies dy,_p=d;'d,,=d;'dd;'d=d"', since d,=
d,d™*d,; whence, by (i) we have ¢%"~ ?_ 1. Moreover, since d =d;'d? we
obtain d,,, = d,'d}=d*

Conversely, the relations d,,,= d? d,= d3d? and ¢*®=1 imply the
original two. Firstly, since (4(r ~2), (r +2))=1 we obtain, using c* 2 =1
and d,,,= d?, that d, = d* for some integer u, and hence that d,~d,- = did; for
each integer i and j. Also, d,,,=d? implies d, = d?,, d,_,= d°,; and as
d = d*,d_2, we conclude that d, = dd,_,. Further, the relation d,= d’d;’
implies that d¢ = d3d ™ and dg=d™*; so, as d,_, = d°,, we have that dy,_»=
d*s=d™', and this verifies relation (i). It follows that

E@4;w)=(d,c;d,=d* dy,=d3d% ¢ =1).

Now let a be given by a(r+2)=1 modulo 4r—2) (equivalently by
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4a =1 modulo r—2). Then, if e=c""?, we have c =e”; consequently
d®=d? and so d,= d3d™® becomes d***"*?=1, where ¢ and n are given
by 4a and 2a, respectively, when these are reduced modulo 4(r — 2). Since
d® = d? we conclude that d* = 1. Thus

E@4;w)={(d,e;d*=d* d"*=1,e"2=1).
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