A NOTE ON NORMAL MATRICES

Marvin Marcus and Nisar Khan ${ }^{(1)}$
(received October 7, 1960)
Introduction. In 1954 A. J. Hoffman and O. Taussky [1] showed that if A is an n-square complex matrix with eigenvalues $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and P is a permutation matrix for which $\alpha A+\beta A^{*}$ has eigenvalues $\alpha \lambda+\beta P \bar{\lambda}$ for some $\alpha \beta \neq 0$ then A is normal. Here $\bar{\lambda}$ is the conjugate vector of λ. As a companion result they also proved that if the eigenvalues of $A A^{*}$ are $\lambda_{i}(\overline{P \lambda})_{i}, i=1, \ldots, n$ then A is normal. (See footnote.)

In this note we obtain similar characterizations of normal matrices. Our main results are contained in the

THEOREM. Let α be a complex number, $0 \neq|\alpha| \neq 1$, and let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the eigenvalues of A. If S is a real orthogonal matrix and $\alpha \mathrm{A}+\mathrm{A}$ * has eigenvalues $\mathrm{S}(\alpha \lambda+\bar{\lambda})$ then A is normal. If U is unitary and $A A^{*}$ has eigenvalues $\lambda_{i}(\overline{U \lambda})_{i}, i=1, \ldots, n$ then it also follows that A is normal.

We prove the first part of the theorem in a sequence of lemmas.

The second part is very easy and we indicate this at the end of the paper.

Editor's footnote. A* denotes the conjugate complex transpose of A. A is called normal if it commutes with A^{*}. By a theorem of Schur and Toeplitz, A is normal if and only if there exists a unitary matrix U and a diagonal matrix D such that $U * A U=D$. Cf. Linear Algebra and Matrices, by H. W. E. Schwerdtfeger, (Groningen, 1950), p. 204.
${ }^{(1)}$ The work o this author was completed under a Postdoctorate Fellowship of the National Research Council of Canada.
Canad. Math. Bull. vol. 4, no. 1, January 1961

A lower triangular matrix L satisfies $l_{i j}=0$ for $i \leq j$. An upper triangular matrix is the transpose of a lower triangular matrix. If X is any n -square matrix $\|\mathrm{X}\|$ will denote the Frobenius norm of X :

$$
\left(\Sigma_{i, j=1}^{n}\left|x_{i j}\right|^{2}\right)^{\frac{1}{2}}=(\operatorname{tr}(X X *))^{\frac{1}{2}}
$$

LEMMA 1. If L is lower triangular and α, β are complex numbers then

$$
\operatorname{tr}\left[\left(\alpha L+\beta L^{*}\right)^{2}\right]=2 \alpha \beta\|L\|^{2}
$$

Proof.
$\operatorname{tr}\left[\left(\alpha L+\beta L^{*}\right)^{2}\right]=\alpha^{2} \operatorname{tr}\left(L^{2}\right)+2 \alpha \beta \operatorname{tr}\left(L L^{*}\right)+\beta^{2} \operatorname{tr}\left(L *^{2}\right)$.
Note that the set of lower triangular matrices is closed under multiplication and hence this last expression becomes $2 \alpha \beta\|L\|^{2}$.

LEMMA 2. If $\mathrm{d}=\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}\right)$ satisfies $\alpha \mathrm{d}+\overline{\mathrm{d}}=\mathrm{S}(\alpha \lambda+\bar{\lambda})$ for $|\alpha| \neq 1$ and S is real orthogonal then

$$
\Sigma_{k=1}^{n} d_{k}^{2}=\Sigma_{k=1}^{n} \lambda_{k}^{2}
$$

Proof. Let $\lambda=a+i b, d=x+i y, \alpha=w+i \delta$ where a, b, x, y, w, and δ are real. Then equating real and imaginary parts separately of $\alpha \mathrm{d}+\overline{\mathrm{d}}=S(\alpha \lambda+\bar{\lambda})$ we have

$$
(w+1) x-\delta y=S[(w+1) a-\delta b]
$$

(1)

$$
\delta x+(w-1) y=S[\delta a+(w-1) b]
$$

Denote the $2 n$-square matrix

$$
\left(\begin{array}{cc}
(w+1) I & -\delta I \\
\delta I & (w-1) I
\end{array}\right)
$$

by F. Now $\operatorname{det} F=\left(|\alpha|^{2}-1\right)^{n} \neq 0$ and hence from (1) we conclude

$$
x+y=(S+S)(a+b)=S a+S b
$$

where $\dot{+}$ indicates direct sum. Thus

$$
\begin{aligned}
\sum_{k=1}^{n} d_{k}^{2} & =\sum_{k=1}^{n}\left(x_{k}+i y_{k}\right)^{2} \\
& =(x, x)+2 i(x, y)-(y, y) \\
& =(S a, S a)+2 i(S a, S b)-(S b, S b) \\
& =(a, a)+2 i(a, b)-(b, b) \\
& =\sum_{k=1}^{n}\left(a_{k}+i b_{k}\right)^{2} \\
& =\sum_{k=1}^{n} \lambda_{k}^{2} .
\end{aligned}
$$

Here (,) indicates the usual unitary inner product of two n-tuples.

To proceed to the proof of the first part of the theorem select a unitary matrix R that brings $\alpha A+A^{*}$ to triangular form with zero below the main diagonal. Let $B=R A R^{*}$ and set

$$
B=D+L+V
$$

where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and L and V are lower and upper triangular matrices. Then

$$
\alpha \mathrm{B}+\mathrm{B} *=(\alpha \mathrm{D}+\overline{\mathrm{D}})+(\alpha \mathrm{L}+\mathrm{V} *)+(\alpha \mathrm{V}+\mathrm{L} *) .
$$

Let $d=\left(d_{1}, \ldots, d_{n}\right)$ and let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be the n-tuple of numbers on the main diagonal of $\alpha B+B *$, i.e., the eigenvalues of $\alpha A+A *$. Then

$$
\begin{gathered}
\alpha \mathrm{d}+\overline{\mathrm{d}}=\mathrm{\gamma}=\mathrm{S}(\alpha \lambda+\bar{\lambda}), \\
\alpha \mathrm{L}+\mathrm{V} *=0,
\end{gathered}
$$

and we conclude that

$$
B=D+L-\bar{\alpha} L *
$$

By lemma 2,

$$
\sum_{k=1}^{n} d_{k}^{2}=\Sigma_{k=1}^{n} \lambda_{k}^{2}
$$

and hence

$$
\operatorname{tr}\left(B^{2}\right)=\sum_{k=1}^{n} \lambda_{k}^{2}=\operatorname{tr}\left(D^{2}\right)
$$

But

$$
\begin{aligned}
\operatorname{tr}\left(B^{2}\right) & =\operatorname{tr}\left[\left(D+L-\bar{\alpha} L^{*}\right)^{2}\right] \\
& =\operatorname{tr}\left(D^{2}\right)+2 \operatorname{tr}\left[\left(L-\bar{\alpha} L^{*}\right) D\right]+\operatorname{tr}\left[\left(L-\bar{\alpha} L^{*}\right)^{2}\right] .
\end{aligned}
$$

Note that $\operatorname{tr}[(L-\bar{\alpha} L *) D]=0$ and thus

$$
\operatorname{tr}\left[\left(L-\bar{\alpha} L^{*}\right)^{2}\right]=0
$$

By lemma 1

$$
-2 \bar{\alpha}\|L\|^{2}=0
$$

and hence

$$
L=0 .
$$

Thus $B=R A R *$ is a diagonal matrix and from this it follows that A is normal.

To see the last part of the theorem note that

$$
\begin{aligned}
0 \leq \operatorname{tr}\left(A^{*}\right)=(\lambda, U \lambda) & =|(\lambda, U \lambda)| \leq\|\lambda\|\|U \lambda\| \\
& =\|\lambda\|^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} .
\end{aligned}
$$

Thus if RAR* $=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)+L$, where L is lower triangular and R is unitary then

$$
\operatorname{tr}\left(A A^{*}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+\|L\|^{2} \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}
$$

and $L=0$. This completes the proof.

REFERENCE

1. A.J. Hoffman and O. Taussky, A characterization of normal matrices, J. Research, Nat. Bur. Standards 52 (1954), 17-19.
U.S. National Bureau of Standards Washington, D.C.
and
Muslim University
Aligarh, India
and
University of British Columbia
