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ABSTRACT. Mathematical construction of the general planetary theory has 
led to the series of two forms for the coordinates of eight major planets 
(excluding Pluto). The series of the first form are Poisson series where 
all orbital elements except the semi-major axes occur in literati shape. 
The series of the second form are polynomial-exponential series with 
respect to the time and serve to calculate the ephemerides. The arbitrary 
constants of the theory are related to the Keplerian elements. The terms 
of the zero and first degree in eccentricities and inclinations have 
been found in the second approximation with, respect to the disturbing 
masses. Among those of particular interest are the resonant terms caused 
by the commensurabilities of the mean notations of triplets of planets. 

1. INTRODUCTION 

This paper summarizes the results of the general planetary theory 
for eight major planets based on the semi-analytical method exposed 
earlier (Brumberg and Chapront, 1973). The actual construction of the 
theory started at the Bureau des Longitudes (Paris) on a computer IBM-
360-65 has been continued at the Institute of Theoretical astronomy 
(Leningrad) on a computer BESM-6. At present our main results are as 
follows: 

1. literal series of the first approximation theory for all eight 
planets; 

2. polynomial solution of the secular system for the slow variables; 
3. numerical series for ephemeris calculation; 
4. linear second approximation theory. 
The exact meaning of these results will be explained below. 
The ephemerides based on this theory are erroneous due to the 

neglect of higher order terms (truncation errors) and the tentative 
estimates of the constants of the theory (estimation errors). There­
fore, for completing our theory both in mathematical and astronomical 
sense it is necessary to add to our series some corrections influenced 
by the higher orders terms and to improve the numerical values of the 
constants by means of comparison of our ephemerides with observations. 
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34 V. A. BRUMBERG ET AL. 

However, the results already obtained seem to be of interest by them­
selves. They may be used for comparison with the results of different 
planetary theories now in progress. Moreover, they enable one to 
estimate a size of the resulting series representing the motion of the 
major planets and to realize the amount of necessary calculations. That 
is why the presentation of our results seems to be useful, even though 
the final completion of our theory may be available in the future. 

2. TWO FORMS OF SERIES OF THE GENERAL PLANETARY THEORY 

The theory has been built in p^, w^-variables related to the 
heliocentric rectangular coordinates x., yi, z^ (i = 1, ..., N; N = 8) 
as follows: 

x . + /^l y . = A. ( 1 - p . ) e x p /-[ A . , z . = A . w . , (1 ) 
l 1 1 c± ^ l i l l 

2 3 2 
A, = n . t + e . , n . A . = k ( m „ + m . ) . (2 ) 

i l l i i 0 i 

Expressions for p., w. may be given in two forms. The first form 
corresponds to the Poisson series (4N, N-l) where 4N polynomial varia­
bles have an order of planetary eccentricities and inclinations and 
N-l angular arguments are differences of the mean longitudes. The 
coefficients of these series are real numbers depending on the adopted 
numerical values of mean notions n. and masses m.. Using numerical 

l l 

values of these constants dictates the semi-analytical form of our 
theory. Nevertheless, taking into account that all remaining parameters 
of the theory enter in literal form these series will be referred to as 
literal series of the general planetary theory. 

With a large computer it would be suitable to construct these 
series by iterations without using the developments in powers of the 
disturbing masses (Brumberg, 1974). We have tested this way to recal­
culate the intermediate solution independent of the planetary eccen­
tricities and inclinations (Brumberg et al., 1975a). But for the itera­
tive solution on the whole the capcaities of BESM-6 are unsufficient 
and we have found the Poisson series using the expansions in powers of 
the disturbing masses. Explicitly these series have the form 

2 
P, = P, + VP. + U P, + •• • , (3) 

o1 1 2 

2 w. = w. + uw. + u w. + ..., (4) 
1 01 I1 21 

y (=0.001) being a basic small parameter. Here p. and w. represent the 
o1 01 

Poisson series (4,0) for the undisturbed motion 
GO 

p. = E 2 p a? a? b r b S , (5) 
^ i p q r s 1 1 1 1 
o m=l 
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w. = 2 I w a? a? b. b , 6 
l , pqrs 1 1 1 1 

0 m=l 

where p , w are absolute numerical constants having the same 
values all planets. Polynomial variables a. and b, are of order of 
eccentricity and inclination of planet i respectively. A bar denotes a 
complex conjugate quantity. Here and everywhere below the inner summa­
tion without explicit limits is performed over all non-negative values 
of power indices, the sum of which is equal to m. Evidently, the value 
of m indicates an analytical order of smallness of the corresponding 
term with respect to the planetary eccentricities and inclinations. 

The next terms in (3), (4) yield the series of the first approxi­
mation theory 

Pi = l P i j ' Wi = E W i j' (7) 

1 j = l 1 J 1 j = l 1 J 

where perturbations p.,, w.. due to a specific couple of planets i and 

j represent Poisson series (8,1): 

p. . = J Ip , , , , a. a: b, b, a" a: b. b. , (8) 
ii: m=o f M r s P q r s i I i i D : : D 

w. . = E Sw(i j ) , , , , aP iq b r bS ap" aq' br' bS'. (9) 
l1-1 m=i i p q r s p q r s i i i i ] : : 3 

The coefficients of these series are exponential series with respect 
to the argument v-1 (X. - X.) with real coefficients. These coefficients 

contain a multiplier x.. determined by the relation 

yx = m./(m + m.). (10) 
ij : 

Therefore, if one changes the adopted values of planetary masses 
it is sufficient to multiply the obtained coefficients by a related 
correction factor (within the first approximation theory one may 
neglect the variations of coefficients due to the changes of semimajor 
axes related with the planetary masses by the third Kepler law (2)). 

Series (9) is self-conjugate and does not contain pure exponentail 
terms with m = 0 (such terms in (8) yield the quasi-periodic inter­
mediary) . 

Our work results mainly in actual constructing (8) and (9) for all 
couples of the major planets. 

Literal series (5), (6), (8), (9) are important for the investig­
ation of the analytical and numerical structure of the planetary in­
equalities. For ephemeris computation the second form of the series of 
the general planetary theory is more suitable. By this form only the 
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mean longitudes of the planets retain their literal shape whereas all 
other planetary elements have numerical values. These series will be 
called numerical series of the general planetary theory. They are rep­
resented by the exponential series in multiples of /-I X^ (i = 1, ..., 
N ) , the coefficients being polynomials in powers of time. These poly­
nomials result from the slow secular variation of the planetary ele­
ments. Their coefficients are complex numbers. Construction of the 
numerical series is achieved by substitution into literal series 

a. = a. exp /-l X., b. = 3. exp /-l X. (11) 
i i l 1 1 I 

ai» Bi being Lagrange elements satisfying the autonomous secular system 
of differential equations. The polynomial solution of this system is of 
the form (Brumberg et al., 1975b): 

CO 

a± = k = ° ^ tk' Bi = Jo T tk (i2) 

where a, , f3, are numerical complex coefficients, a and 6 may 

be regarded as arbitrary constants determining all subsequent coefficients. 
In fact, solution (12) represents an expansion in powers of the dimen-
sionless quantity ynt, n being a characteristic mean planetary motion 
and this solution may be valid for interval of several centuries. The 
substitution of (11) and (12) into literal series gives numerical series 
described above. Due to the unsufficient memory capacity of BESM-6 we 
had to change here the order of summation and to deal with these series 
as power series, the coefficients being exponential polynomials in mul­
tiples of the mean longitudes with complex coefficients. There results 

(13) v U h k 
P , = 2 P k t , 

0 1 k=0 K 

_ " ( i j ) . k 
P i i " l P k t ' 
I13 k=0 * 

w. 

o1 

w, 
I 1 

= 

•J 

I w t , 
k=0 K 

= £ w, t 
k=0 k 

(14) 
D * liJ k=0 * 

p and w in (13) are one-argument exponential series with 

respect to /-l X^ and the terms of order m in (5) and (6) lead in these 

series to multiples -m, -m+2, ..., m-2, m. p and w in (14) are 

two-argument exponential series with regard to /-l X^ and /-l Xj. The 
terms of the power order m and multiple ±a with respect to /^I (Xi ~^j) 
in (8) and (9) result in (14) to multiples /^i (kXi + IXj) with k and 1 
changing in limits ±a ±m provided that the sum k+1 may take only the 
values -m, -m+2, ..., m-2, m. 

Numerical series (13) and (14) may be used for the computation of 
the planetary ephemerides. 
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3. ARBITRARY CONSTANTS OF THE THEORY 

Arbitrary constants of our theory are represented by n^, z±, a , 

6 (i = 1, ..., N). Taken along with masses n^ these quantities should 

be determined by comparison of the computed coordinates with the results 
of observations. The mean motions n^ may be supposed to be known from 
observations sufficiently accurately and their numerical values are ... 
fixed in our theory once and for all. For initial evaluation of £,• , a 
(i) 6. they should be related with the analogous quantities of the classicaal 

Keplerian expansions. This problem was treated earlier (Brumberg and 
Chapront, 1973) up to the terms of the seventh degree in eccentricities 
and inclinations by means of the straightforward comparison of (5), (6) 
with the classical expansions. We give below a general algorithm to ob­
tain this relationship up to any degree of accuracy. The actual realiza­
tion of this algorithm on BESM-6 has been performed with the aid of the 
Poisson series processor by Dasenbrock (Dasenbrock, 1973). 

Omitting the subscript i rewrite (5), (6) in the form 

1 3 - - -p = _ _ a + _ a + 6p(a, a, b, bj, (151 

w = b + b + 6w(a, a, b, b) , (16) 

5p, 6w denoting the series in powers of a, a, b, b starting with the 
second degree terms. With the aid of the Keplerian processor (Brunberg 
and Isakovich, 1975) we find the Keplerian power expansions 

— 1 1 "5 — _ _ 

(A exp /-l A) (X + /-l y) = 1 + — K - - K + S(K, K, L, L) , 
(17) 

A~ z = L + L + T(K, K, L, L) , (18) 

where S and T are series in powers of K, K, L, L staring with the 
second degree terms while these variables themselves are 

_1 
K + e exp /^I (A-ir) , L + r-r sin I exp / T (A-fi), (19) 

A = nt + E. (20) 

e, I, IT, U, E represent classical Keplerian elements, i.e. eccen­
tricity, inclination, longitude of the perihelion, longitude of the 
ascending node and mean longitude at the epoch. In order to relate a, 
b, E with K, L, E put 

a = K + F(K, ic, L, L) , (21) 

b = L + G(K, K, L, L), (22) 
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exp /^l (e-E) = 1 + H(K, K, L, L), (23) 

F, G, H being unknown power series with respect to the indicated 
variables. Substitution of (15)-(18), (21)-(23) into (1) results in 
relations 

1 3 -
j F - j F + H = <f, (24) 

G + G = «F, (25) 

enabling one to determine F, G, H by iterations. Here we have 

$ = S + (1 + H)6p + (- i K + j K)H + (- i- F + | F)H, (26) 

T = T - <5w. (27) 

It is easy to show that F and G-series contain only the forms of 
odd degree in K, K, L, L (starintg with the third degree terms) while 
H-series consists of the even degree forms only (starting with the 
fourth degree terms). Moreover, with p, q, r, s denoting the powers of 
K, K, L, E the combination p-q+r-s is always unity for every term of 
F and G and zero for every term of H. Taking all this into account we 
can easily separate the variables in Equation (24) . The most difficult 
operation of this algorithm is to substitute (21), (22) into series for 
6p, Sw. To do this the Dasenbrock's system was supplemented with a 
special subroutine NTAYLR permitting to expand a function of several 
variables, represented by a Poisson series, in powers of variations of 
these variables, which are represented by Poisson series too. In the 
result one obtains the Poisson series expressed in new variables. 

Thus having found F, G, H up to the terms of some degree with 
respect of K, K, L, L we substitute (21), (22) into (26), (27) and 
obtain the expressions for $, "P accurate to one degree more. This leads 
to the more accurate expressions for F, G, H. Let us note that the 
structure of (26) , (72) shows a way of modification of the algorithm 
for finding the series (5), (6) (Brumberg and Chapront, 1973) so as 
to have identically F = G = H = 0. 

We have obtained the series (5), (6) and the developments for F, 
G, H accurate to m = 11 inclusively. From this we deduce immediately 
the expansions of a-k, £-1 in powers of k, k, 1, 1 where a, g are our 
arbitrary constants ag* Bg an<^ ^, ^ represent the Lagrange elements 

k = e exp(-/-l IT) , 1 = /•_•* sin I exp (-7-1 fi) . (28) 

In virtue of the_structure of H the expansion (23) has the same 
form expressed in K, K, L, L as well as in k, k, 1, 1. Inverting these 
developments we find expressions of k-a, 1-g in powers of a, a, B, 3. 
This is achieved by means of a special subroutine INVERS yielding the 
power series inversion 
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X = Y + P(Y) (29) 

in form of 

Y = X + Q(x). (30) 

The algorithm of inversion is based on a iterative relation 

Q(X) = - P(X + Q) (31) 

which again calls for the use of the subroutine NTAYLR. All functions 
occurring in (29)-(31) are vectors of arbitrary dimension. 

In this manner all these expansions give a complete solution for 
the problem of relationship between our constants and classical 
Keplerian elements. This opens a way for improvement of our constants 
with the aid of usual methods based on Keplerian elements, i.e. to 
improve at first these elements and then to return to our constants. 

4. CONSTRUCTION OF THE LITERAL SERIES 

To begin with, we describe some technical characteristics of the 
computer system employed by us. 

Calculations have been performed on BESM-6 with a software 
provided by monitoring system DUBNA. The unit of the memory capacity 
on BESM-6 is a page, consisting of 1024 machine words with 48 bits in 
each. In employing this computer system a program together with the 
induced system subroutines and tables of data may occupy no more than 
32 pages of the operating storage. Therefore to store intermediate 
results we had to use magnetic drums with the mean access time of 
about 0.02 sec. The final results have been written on magnetic tapes, 
each tape containing no more than 512 pages (zones). 40 bits of the 
machine word are designed for a mantissa of a number and thus the 
single precision is adequate for our calculations. Our programs were 
written in FORTRAN and only several subroutines for the magnetic 
storage exchange were formulated in an assembler. 

Computation of the series (5), (6) common to all planets is a 
subject of a separate program. Along with this the program gives some 
auxiliary developments common to all planets as well. All these expan­
sions have been obtained with the aid of a set of subroutines for 
manipulation with four-argument power series. The series were calculated 
up to the eighth degree terms inclusively. The coefficients of these 
series ordered in a tabular manner were stored on a magnetic tape. The 
series (5) is the longest one and up to the terms of the eight degree 
inclusively it contains 254 terms. All these series occupy 30 zones on 
a tape. Limiting up to the seventh degree terms this information 
demands only 15 zones. 

The second program is designed to compute the series (8), (9) 
representing the disturbing action of one planet on the other. All 56 
possible combinations of couples of planets (excluding Pluto) have 
been considered. The accuracy of calculations is given first of all by 
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the maximal degree of terms to be retained in power expansions. 
Depending on the magnitude of the mutual perturbations this maximal 
degree specific for each couple of planets has been chosen from 5 to 7. 
Only for the Jupiter-Saturn case we have computed some terms of the 
eighth degree. The maximal degree of the retained terms for each couple 
of planets is presented in Table I where i, j are referred to disturbed 
and disturbing planets respectively and the tabular value for i = j 
corresponds to the undisturbed motion. 

Table I 
Maximal degree of terms in Series (81, (9) 

i j 

1 
2 
3 
4 
5 
6 
7 
8 

1 

8 
6 
5 
5 
5 
5 
5 
5 

2 

7 
8 
6 
7 
5 
5 
5 
5 

3 

7 
6 
8 
7 
5 
5 
5 
5 

4 

5 
5 
6 
8 
5 
5 
5 
5 

5 

7 
6 
6 
7 
8 
7 
7 
6 

6 

5 
5 
5 
6 
8 
8 
7 
6 

7 

5 
5 
5 
5 
7 
7 
7 
7 

8 

5 
5 
5 
5 
6 
6 
7 
8 

As mentioned above, the coefficients of (8), (91 are exponential 
series in multiples of the difference between mean longitudes of 
disturbed and disturbing planets: 

P i i i i = £ P, e xP y/~l~ k (A • -A .) / ^pqrsp'q'r's' ^ ^ ^k l : 

(ji) 

l1 k=-°° 

W, exp /Tk(X. -A.J. 
k l j 

The number of terms retained in these series is the second accura­
cy characteristics of the presentation of perturbations in our theory. 
For all couples of planets in calculating the perturbations of zero, 
first and second degrees with respect to the polynomial variables we 
have taken into account the exponential terms with index k varying from 
-23 to +23. For degrees between 3 and 7 the range of k was from -11 to 
+11. For the eighth degree only the terms with k ranging from -5 to +5 
were retained. Such a fixed stepping changing of the exponential terms 
number was chosen instead of a more logical smooth ranging due to some 
technical peculiarities of our tape storage system. 

As a function of the degree m we give in Table II a number NP of 
m-degree power terms in the series for p-coordinate and a number NT 
of numerical coefficients P^ in the same series. The corresponding 
numbers for w-coordinate are equal or less than those for p-series. 

In the described program we have dealt with a set of subroutines to 
manipulate with Poisson series having eight polynomial variables and one 
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exponential argument. 

Table II 
Number of terms in Series (8), (9) and amount of storage 
pages necessary for computing the perturbations of a given 
degree 

m 

NP 
NT 
M 

1 

4 
188 
17 

2 

20 
940 
19 

3 

60 
2820 
23 

4 

170 
7990 
32 

5 

396 
18612 

58 

6 

868 
40796 
107 

7 

1716 
80652 
128 

8 

3235 
152045 

143 

The terms of series (8), (9) have been calculated subsequently in 
increased order with respect to the power variables. In the same order 
they were transposed on the magnetic storage. In calculating the m-degree 
terms one needs to use just as all terms of lower degrees (from zero to 
m-1) so also the four-argument power expansions related to the undis­
turbed motion. Besides this, it is necessary to provide storage for the 
series of right-hand members and for the series of the m-degree pertur­
bations themselves. All this information for each couple of planets 
been handled at the given moment is stored on magnetic drums in form of 
the tables of coefficients. In the operative storage we have only the 
series being in immediate processing at the given moment. In Table II 
we indicate a number M of the storage pages on magnetic drums necessary 
for computation of perturbations of different degrees m. A relatively 
slight increase of the necessary storage when passing from m=6 to m=7 
is explained by the fact that the seventh degree terms are transposed 
only on tape without using drums since usually they are not employed in 
the subsequent calculations. In the case of the eight degree terms cal­
culations the coefficients of the necessary series (from m=0 to m=7) 
are transposed from tape on drum but only for the exponential index 
ranging from -5 to +5. 

We give below separately the amounts of processor and commercial 
time needed for the calculation of m-degree perturbations (for one 
couple of disturbed and disturbing planets): 

degree 1 2 3 4 5 6 7 8 
processor time - - - - - - 2h 4h 40m 
commercial time 12s 26s lm 5m 25m Ih35m6h 14h 

Significant distinction between the values of the second and third 
lines for m=7 and m=8 is due to the extensive information exchange with 
the magnetic drum. But this did not adversely affect the computer charge 
in virtue of the multiprogram regime of our computer system. 

The actual calculations for all planets have been performed by 
subsequent steps with provision for starting solution with the results 
of the uncompleted previous step. Along with the coefficients P^, W^ of 
the resulting series we have stored on tape the coefficients of the 
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right-hand members of the secular system (11). Depending on the maxi­
mal degree of power terms (five or seven) the number of these coeffi­
cients for each couple of planets is 240 or 940 respectively. These 
coefficients were used further in a separate program to compute secular 
perturbations in form of (12). 

5. CONSTRUCTION OF THE NUMERICAL SERIES 

The obtained series (5), (6), (8), (9) have been used in the third 
program. This program may carry out the following operations: 

1. For any given couple of planets to read the coefficients of the 
series stored on tape. 

2. Instead of power variables a^, b^ to.-substitute into the literal 
series the expressions (11), (12) resulted from the solution of the 
secular system. By this substitution the series (5), (6), (8), (9) 
transform to (13) or (14) relatively. 

3. To convert the polynomial-exponential series (13), (14) to the 
polynomial-trigonometric series for the rectangular coordinates of the 
planets. The series of such form are well suited for comparison with 
the results of other theories presented in classical shape with trigo­
nometric and power terms. 

4. Based on (13), (14) to calculate for given moments of time the 
tabular values of p, w and of the rectangular coordinates of any planet 
in the arbitrary fixed heliocentric coordinate system. 

Depending on given initial values this program permits to take into 
account the total perturbations of the given planet from all others or 
alternatively the perturbations from each planet separately. In addition 
one may change the maximal power degree of the terms retained in (13) 
and (14). It is possible to estimate a contribution due to the terms of 
any fixed degree. 

We have controlled our results just as in performing the calcul­
ations themselves so also by comparison of our final series for rectan­
gular coordinates with those obtained by G.A. Krasinsky in elaborating 
a general planetary theory using the method of von Zeipel. (Krasinsky, 
1973). In performing our calculations an ideal control is the absence 
in the series (5), (6), (8), (9) of critical terms with associated zero 
divisors. This type of control was of much use particularly in testing 
our programs. 

As to comparison of our series with the results of G.A. Krasinsky 
we have stated their coincidence under the same accuracy limitations. 
In the cases when our accuracy is lower than that of G.A. Krasinsky's 
theory we have observed discrepancies mainly in the eighth and ninth 
decimals. Only in the Mercury case where our restriction by the terms 
of the seventh and eight degrees is clearly unadequate the discrepancy 
has attained the magnitude of the sixth decimal. 

To appreciate a size of the resulting numerical series of the type 
(13), (14) we give in Table III the numbers of terms in the series for 
p-coordinate with coefficients to less than 10~8 radians by absolute 
value. Here i and j correspond to the disturbed and disturbing planets 
respectively and k denotes the degree of t in (13), (14). Just as in 
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Table I the value i=j is associated to the undisturbed motion. The 
indicated numbers are related to calculations with the maximal degree 
defined by Table I. The time t in (13), (14) is reckoned in millenia. 

6. THE LINEAR THEORY OF THE SECOND ORDER 

So far we have considered only the first two terms in series (3) 
and (4). However the main parts of p. and w. have been found too. These 
terms may be expressed as follows: 2 2 

N... N... N,. 
p = E p + - Z E p . (32) 
2 j=l 21J Z j=l k=l 2 1 D K 

N... . N... N,. 
w. = I U ) w. . + i 2 ( 1 ) Z( l'3 ) w..v. (33) 
21 j = l 2 ^ 2 j = l k=l 2 1 D k 

p.. and w.. are represented by the Poisson series of the type 
2 2 

(8,1) in the same manner as (8), (9). Being symmetric in j and k p., 
2 L D 

and w.., are the Poisson articles (12, 2) where the variables a, —, b, 
2111 a' 

b for planets i, j, k enter as polynomial variables and the differences 
Ai - Aj and A^ - A^ are the trigonometric arguments. We have obtained 
the initial terms of the Poisson series (32) , (33) with value m=0 (the 
quasi-periodic intermediate solution) and m=l (the inequalities of the 
first degree in eccentricities and inclinations). The terms of p.. and 

2 i : 

w.. are not of much interest since they are analogous to the terms of 
2 l : 

p.. and w,. but make a significantly lesser contribution to the general 
wl : l13 

solution (3), (4). Contributions of p.., and w.., are more essential due 
tjiuk i]k 

to the appearance of the resonance terms caused by the close commen-
surabilities between mean motions of the triplets of planets. These terms 
are analytically of the second order with respect to the planetary masses 
but numerically they are comparable with the first order terms. In the 
paper (Brumberg et al., 1975a) a detailed analysis of these terms in 
the quasi-periodic intermediate solution (m=0) is presented and it is 
established that many of such terms are omitted in the classical plane­
tary theories*. Similar analysis may be carried out for the terms of 
the first degree in eccentricities and inclinations (m=l). It is con­
venient to write these terms in the following manner: 

p = c(i,j,k,0)a + d(i,j,k,0)a + c(i,j,k,l)a + 
^±JK- i i J 

*In the paper cited there are some discrepancies with our basic results 
obtained by the series expansion method. The reason lies in the unsuffi-
cient accurate computation of the right-hand members by the iteration 
method. We are indebted to M. Luc Duriez for this remark. 
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d(i,j,k,l)a + c(i,k,j,l)ak + d(l,k,j,1)afc, (34) 

w = f(i,j,k,0)b, + f(i,j,k,0)b. + f(i,j,k,l)b. + 
2 J 3 

f(i,j,k,l)b + f(i,k,j,l)bk + f(i,k,j,Dbk. (35) 

Here c(i,j,k,A), d(i,j,k,A), f(i,j,k,A) (A=0, A=l) are exponential 
series in two arguments: /-l (Aj_ - A-;) and /-l (Â  - A^) . These series 
have been constructed in the range from -7 to +7 in each argument. This 
construction has revealed many resonance terms caused by the close 
commensurabilities between mean motions of some triplets of planets. 
The terms are regarded to be resonant if the ratio (sn)/n^ approaches 
to zero or ±1 (s is the N-vector of indices of the mean longitudes A^, 
..., An, n is the N-vector of planetary mean motions). 

It is of interest to compare our results with the classical theo­
ries of Newcomb and Hill. The paper (Newcomb, 1895) is devoted to the 
investigation of the long period inequalities of the second order in 
the mean longitudes of the four inner planets. Among them we are inter­
ested in the terms with the arguments 

sA = s1A1 + ... + sNAN 

for which 

s. + ... + s = 0, ±1, ±2. 
1 N 

There are six such arguments: 

A1 - 5A2 + 4A3, 3A2 - 7A3 + 4A4, A3 - 2A4 + Ag, 

4A0 - 8A,, + 3AC, 3A_, - 6A, + 2 A r , 5A0 - 10A,, + 4AC. 
3 4 5 3 4 5 3 4 5 

According to Newcomb the perturbations in the motion of Mercury, 
Venus and the Earth associated with the first argument are negligible 
small while those due to the terms with the third argument are percep­
tible only in the orbit of Mars. Perturbations caused by the terms 
with the fourth argument are taken into account in the orbits of the 
Earth and Mars. The inequality of Le Verrier related to the second 
argument is present in the orbits of Venus, the Earth and Mars. The 
perturbations themselves are determined by a complicated artificial 
method. As possible arguments Newcomb indicates the fifth and sixth 
arguments but he does not examine the related perturbations. In the 
theory of the motion of Mars Newcomb (Newcomb, 1898a) takes into acco­
unt the fifth argument and the argument A2 - 2A4 + 2Ag. 

The tables of perturbations of Jupiter elaborated by Hill (Hill, 
1898a) present only one argument with three planetary mean motions; 
3A5 - 6A6 + 3A7. For the perturbations of Saturn Hill (Hill, 1898b) 
gives the terms related to four arguments of the type considered: 
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-2X5 + 5X6 - 3A7, -X5 + 2X6 " ^1 > *5 ~ 3X6 + 2 * 7 , *5 - 5X6 + 4X7. In 
the Newcomb's theory for the motion of Uranus (Newcomb, 1898b) the 
following arguments occur: -2X5 + 6X6 ~ 4X7, X5 - 4Xg + 3X7, 
2X5 - 7X5 + 5X7, X5 - 3X6 + 2X7, -X5 + 2X6 - X7, -X5 - X6 + 2X7. At 
last, there are no such terms in the Newcomb's theory for the motion 
of Neptune (Newcomb, 1898c). 

In our theory all terms entering into the classical theories are 
presented but along with them we Have revealed a set of terms having 
numerically the same or even greater magnitude. In Table IV we give for 
illustration a list of arguments of the series for )i c(i/j/k,A) with a 
restricting condition that the absolute magnitudes of the corresponding 
coefficients are no less than 10"' radians. An asterisk indicates the 
presence of the related term in the corresponding classical theory of 
Newcomb or Hill. It is to be noted that there is a full agreement in 
arguments for the motion of Mars between our results and the theory of 
Clemence (Clemence, 1961). 

Table IV 
Main triple arguments of the linear theory 

planets 

i j k 

2 3 4 

2 3 5 

2 5 6 
3 2 4 

3 2 5 

3 4 5 
3 5 6 

4 2 3 
4 3 5 

4 3 6 
4 5 6 

indices 

s. 
1 

3 
-4 
-4 
3 
-2 
5 
-7 
9 
4 
-4 
-2 
-2 
-1 
-2 
4 
7 
5 
3 
9 
-3 
-2 
-1 
-2 
-3 
-2 
-2 
-1 
-2 

s . 
3 

-7 
6 
5 
-5 
4 
-3 
3 
-6 
-3 
6 
4 
3 
-1 
-1 
3 
-4 
-3 
-2 
-5 
1 
4 
-1 
3 
5 
-1 
5 
3 
1 

Sk 

4 
-2 
-1 
2 
-2 
-2 
4 
-3 
-1 
-2 
-2 
-1 
2 
3 
-7 
-3 
-2 
-1 
-4 
2 
-2 
2 
-1 
-2 
3 
-3 
-2 
1 

sn/n. 
1 

0.002 * 
-0.963 
-0.976 
0.028 
-1.834 
-0.940 
0.003 * 
-1.006 
-0.961 
-0.978 * 
-1.731 
-1.781 
-1.016 
-1.984 
0.006 * 
-0.999 
-0.959 * 
-0.920 
-1.038 
-0.991 
-1.493 
-1.031 
-1.588 
-2.335 
-1.967 
-1.399 
-0.652 
-1.778 

planets 

i 

4 
4 
5 

5 

5 

6 

j 

5 
5 
6 

6 

7 

5 

k 

6 
7 
7 

8 

8 

7 

indices 

s. 
1 

-3 
-2 
-3 
-2 
-3 
-4 
-1 
-4 
-3 
-3 
-3 
-4 
-1 
-2 
5 
4 
-4 
-5 
-8 
2 
3 
-3 
5 
8 
7 
6 
-6 
6 

s. 
3 

4 
7 
6 
3 
5 
6 
3 
5 
4 
2 
5 
5 
-1 
4 
-2 
-2 
1 
1 
2 
-1 
-2 
1 

-3 
-3 
-3 
-2 
1 
-3 

Sk 

-1 
-5 
-3 
-1 
-2 
-2 
-2 
-1 
-1 
1 

-2 
-1 
2 
-2 
-3 
-2 
3 
4 
6 
-1 
-1 
2 
-2 
-5 
-4 
-4 
5 
-3 

sn/n. 

-2.430 

-1.002 
-1.007 * 
-0.933 
-1.269 
-1.866 
-0.074 
-2.128 
-1.530 
-2.053 
-1.130 
-2.058 
-0.997 
-1.579 
-1.018 * 
-1.668 
-0.465 
-1.114 * 
-0.930 
-0.834 * 
-2.317 
0.184 * 

-3.151 
-1.203 
-1.852 
-0.369 
-1.763 
-2.502 
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Table IV (Continued) 

planets indices 

i j k s. s s, sn/s. 
i -j k i 

planets indices 

i j k s. s . s, 
i j k 

sn/n. 
l 

6 
6 

6 

7 

7 

5 
5 

7 

5 

5 

7 
8 

8 

6 

8 

10 
-4 
10 
4 
6 
3 
-3 
2 
7 
-2 
-1 
-3 
-4 
-2 
-1 
-3 
-5 
-2 
-3 
-4 
3 
-4 
5 
4 
2 

-1 
4 
3 

-4 
1 

-4 
-2 
-3 
-2 
1 

-1 
-3 
4 
-1 
5 
6 
3 
3 
1 
7 
1 
4 
7 
1 

-2 
2 
1 
1 

-1 
-2 
-1 

-6 
3 

-6 
-2 
-3 
-1 
2 

-1 
-4 
-2 
2 

-2 
-2 
-1 
-2 
2 

-2 
1 

-1 
-3 
-4 
6 
-7 
-5 
-3 
2 

-2 
-2 

-2.037 
-0.980 
-1.006 
-1.324 
-1.986 
-2.145 
-0.159 
-0.662 
-1.165 
-0.955 
-0.993 
-1.604 
-2.254 
-1.127 
-0.306 
-2.292 
-2.903 
-1.471 
-1.776 
-2.082 
-1.326 
-1.053 
-0.799 
-3.178 
0.526 

-7.063 
-11.185 
-5.102 

7 6 8 

8 5 6 

7 6 

3 
4 
-1 
-5 
-7 
1 
5 
5 
2 
7 
4 
6 
2 
8 
6 
3 
-6 
3 
7 
4 

-8 
2 
4 

-1 
5 
6 
4 
3 

-1 
-2 
-1 
1 
1 

-3 
-3 

-2 
-4 
-2 
-1 
-2 
-1 
-2 
-4 
-5 
1 

-2 
-5 
-6 
1 
1 
2 

-1 
1 
1 
1 

-2 

-2 
-2 
2 
4 
6 
2 
-2 
-3 
2 

-5 
-3 
-4 
-1 
-6 
-2 
2 
5 

-1 
-2 
2 
7 
-3 
-6 
3 
-6 
-7 
-5 
-1 

-0.872 
-2.724 
-2.832 
-0.109 
-1.089 
-6.536 
-4.576 
-2.234 
-8.388 
-1.253 
-0.382 
-1.743 
-1.362 
-0.763 
-6.428 
-10.241 
-0.599 
-3.214 
-8.280 

-12.093 
-1.579 
-0.890 
-1.781 
0.890 
-1.174 
-2.136 
-0.213 
-10.150 

7. CONCLUSION 

The results exposed here summarize our work in mathematical con­
structing the general planetary theory. 

Taking into account a rather small operative storage capacity of 
BESM-6 computer accessible for us it is not suitable to compute by the 
same method inequalities of higher degree in eccentricities and inclina­
tions and of higher order with respect to the planetary masses. But 
independent of an employed computer it is more advantageous to improve 
a semi-analytical theory by numerical iterative methods. Our work will 
proceed on this line. 

For investigation of the long-term evolution of planetary motions 
the polynomial solution of the secular system used here is invalid and 
should be replaced by a pure trigonometric solution. This solution will 
be obtained in the nearest future. 
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As far as comparison with observations and determination of con­
stants are concerned, the following solution seems to be reasonable. 
Considering the coincidence of our results with those of Krasinsky's 
theory it is of no use to determine from observations the constants for 
both theories separately. It is more simple to do this for one theory 
and then to use the algorithm of the relationship between constants 
exposed in Section 3. 

Finally, we should like to express our sincere gratitude to 
Dr J. Chapront and his colleagues at the Bureau des Longitudes who 
collaborated with us and did so much in the initial stage of this work. 
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