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Abstract
Hyperlipidaemia is a major cause of atherosclerosis and related CVD and can be prevented with natural substances. Previously, we reported
that a novel Bacillus-fermented green tea (FGT) exerts anti-obesity and hypolipidaemic effects. This study further investigated the
hypotriglyceridaemic and anti-obesogenic effects of FGT and its underlying mechanisms. FGT effectively inhibited pancreatic lipase activity
in vitro (IC50, 0·48mg/ml) and ameliorated postprandial lipaemia in rats (26% reduction with 500mg/kg FGT). In hypertriglyceridaemic
hamsters, FGT administration significantly reduced plasma TAG levels. In mice, FGT administration (500mg/kg) for 2 weeks augmented
energy expenditure by 22% through the induction of plasma serotonin, a neurotransmitter that modulates energy expenditure and mRNA
expressions of lipid metabolism genes in peripheral tissues. Analysis of the gut microbiota showed that FGT reduced the proportion of the
phylum Firmicutes in hamsters, which could further contribute to its anti-obesity effects. Collectively, these data demonstrate that FGT
decreases plasma TAG levels via multiple mechanisms including inhibition of pancreatic lipase, augmentation of energy expenditure,
induction of serotonin secretion and alteration of gut microbiota. These results suggest that FGT may be a useful natural agent for preventing
hypertriglyceridaemia and obesity.
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Energy homoeostasis is tightly regulated by the interaction of
central and peripheral organs that control total energy intake
and energy expenditure. Positive energy balance leads to
excess storage of energy molecules, primarily in the form of
TAG, in metabolic tissues including adipose, liver, muscle and
pancreatic tissues, causing cellular dysfunction and lipotoxi-
city(1,2), which are the major causes for developing metabolic
disorders such as type 2 diabetes and related CVD(3–7).
Accordingly, treatment and prevention of hyperlipidaemia is
critical for lowering the risk of CVD(8).
Several effective and potent hypolipidaemic drugs are available

including statins, fibrates and metformin(9–12); however, these
drugs may not be tolerated for long-term treatment and may
cause significant side-effects. Thus, natural substances have been
considered alternatives for the prevention of dyslipidaemia in
humans – for example, resveratrol and berberine ameliorate

hyperlipidaemia and related metabolic disorders by activating
AMP-activated protein kinase (AMPK)(13–15).

On the other hand, numerous animal studies have demon-
strated that green tea and its processed products (e.g. oolong
tea and black tea) exhibit lipid-lowering effects(16–25). The
hypotriglyceridaemic effects of green tea and its derivatives
have also been well documented in clinical trials and have
recently been intensively reviewed(26). For instance, consump-
tion of green tea inhibits lipid digestion and absorption after
a meal(27), and long-term supplementation with green tea
improves plasma lipid profiles and increases the levels of
antioxidants(28,29). Black tea also exerts hypotriglyceridaemic
effects in humans(30,31). A meta-analysis of human studies
revealed that black tea reduces serum cholesterol and LDL
concentrations(32). Similar to other hypotriglyceridaemic agents
(e.g. metformin and berberine), green and black teas activate
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AMPK and inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase(33)

– key molecules involved in the control of lipid metabolism.
In addition, in humans, oolong tea enhances lipid excretion in
faeces(34). Collectively, these data suggest that green tea and
processed green teas may be effective agents for improving
hyperlipidaemia and its related metabolic complications.
In a previous study, we proposed that fermented green tea

(FGT) with Bacillus sp. had anti-obesogenic effects in diet-
induced obese mice(35). We observed that FGT reduced plasma
lipid levels as well as plasma glucose levels, implying that, similar
to green tea and related products, FGT exerts hypotriglycer-
idaemic effects. To elucidate the effects and the underlying
mechanism through which FGT influences lipid metabolism, we
designed additional experiments in this study. Specifically, we
examined the hypotriglyceridaemic effects of FGT in acute and
diet-induced chronic hyperlipidaemic animal models. To deter-
mine the molecular mechanisms of FGT-mediated hypotriglycer-
idaemic effects, we evaluated the enzymatic activity of pancreatic
lipase. We also measured energy expenditure and the expressions
of lipid metabolism-related genes in FGT-administered animals.
Finally, we analysed gut microbiota from faecal samples.

Methods

Reagents and fermented green tea extract preparation

Triton WR-1339 (Triton, a lipoprotein lipase (LPL) inhibitor) and
fenofibrate (FF, PPARα agonist) were purchased from Sigma.
FGT extracts were produced by Mizon Co., as described in the
previous study(35) with the de-caffeination method. In brief,
dried green tea leaves were mixed with 1% sucrose and
Bacillus subtilis (5× 107 colony-forming unit) and fermented at
50°C for 3 d, followed by further incubation at 90°C for 4 d to
remove remaining B. subtilis. After fermentation, the FGT was
dried and extracted with 50% ethanol at 70°C for 2 h. Analysis
of catechin and caffeine composition was performed as
described previously(35). The composition of catechins and
caffeine in the FGT is shown in Table 1.

Acute hypotriglyceridaemic effect of fermented green tea

All animal experiments were approved by the Amorepacific
Institutional Animal Care and Use Committee (PQ13-S007) and

adhere to the Organisation for Economic Cooperation and
Development (OECD) guidelines. Sprague–Dawley (SD) male
rats, 6-week-old, were purchased from the Central Laboratory
Animal Inc. and maintained in a 12 h dark–12 h light cycle
chamber with controlled temperature of 22–25°C and 40–50%
humidity. For adaptation, rats were fed normal chow ad libitum
for 1 week. The average level of plasma TAG was not
significantly different (online Supplementary Table S1). After
adaptation, animals were divided into four groups (Saline,
Triton, Triton + FGT and Triton + FF; n 5/group). Triton was uti-
lised to induce hyperlipidaemia, and FF was used as a positive
control. Rats were orally injected with saline, 500mg/kg of body
weight of FGT or 65mg/kg body weight of FF for 5 d. After 5 d,
animals were fasted overnight, and the final administration of
selected agents (saline, FGT and FF) was carried out 1 h before
Triton treatment. Finally, Triton (200mg/kg body weight) was
delivered to all rats except among those in the saline group
through the tail vein. At 0, 3, 5, 18 and 20 h after Triton injection,
blood samples were collected to measure plasma TAG levels.
Plasma TAG levels were measured using an automated clinical
chemistry analyzer (Cobas111; Roche).

Prevention of diet-induced hyperlipidaemia by fermented
green tea

Golden Syrian male hamsters, 9-week-old male, purchased
from the Central Laboratory Animal Inc., were maintained in a
12 h light–12 h dark cycle chamber with controlled temperature
of 21–25°C and 50–60% humidity. After being fed a commercial
chow diet (Central Laboratory Animal Inc.) for 1 week, hamsters
were fed a 45% high-fat diet (HFD) (Central Laboratory Animal
Inc.) with 10% fructose in drinking water for 2 weeks, followed
by a western diet (Central Laboratory Animal Inc.) with 10%
fructose in drinking water for another 2 weeks. At first, the
hamsters were randomly assigned to four groups: the control
(water as a vehicle and the western diet), FF (positive control;
western diet with 100mg/kg body weight of FF) and two FGT
groups (200 and 400mg/kg body weight of FGT with the
western diet); diets were orally administered for 4 weeks.
During the experiment, plasma samples were collected every
2 weeks, and the concentrations of TAG were analysed by a
Cobas C111 automated clinical chemistry analyzer following the
manufacturer’s protocol. To examine the effect of long-term
treatment with FGT on plasma TAG levels, 9-week-old male
Golden Syrian hamsters were purchased from the Central
Laboratory Animal Inc., adopted and fed a western diet as
described above. Next, the hamsters were randomly assigned to
five groups: control, FF (100mg/kg body weight) and three FGT
groups (200, 400 or 600mg/kg body weight, respectively).
Hamsters were administered water (as a vehicle), FGT or FF via
oral gavage for 12 weeks, respectively. During administration of
the reagent, a western diet with 10% fructose was still supplied
to all hamsters. Plasma samples from hamsters were collected
just before and after 12 weeks of treatment, and TAG concen-
trations were analysed as described above. All experiments
involving mice and hamsters were performed according to a
protocol approved by the Animal Experiment Committee of
Korea University (Protocol No. KUIACUC-2013-139).

Table 1. Composition of catechins (C) in green tea and fermented green
tea (FGT)

Components Green tea (% w/w) FGT (% w/w)

C 26·56 8·27
GC 1·52 1·26
EGC 11·7 1·32
C 0·39 0·22
EC 2·16 0·26
EGCG 8·74 2·63
GCG 0·82 2·02
ECG 1·23 0·56
Caffeine 8·13 3·70
Catechin + caffeine 34·69 11·97

GC, gallocatechin; EGC, epigallocatechin; EC, epicatechin; EGCG, epigallocatechin
gallate; GCG, gallocatechin gallate; ECG, epicatechin gallate.
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Pancreatic lipase activity assay

Pancreatic lipase activity was measured as previously descri-
bed(36). In brief, FGT was dissolved in distilled water
(as a negative control) or in 50μl of 4-methylumbelliferyl oleate
(4-MO; as a substrate; Sigma-Aldrich Co. LLC.) solution
dissolved in an assay buffer (13mM TRIS-HCl, 150mM NaCl and
1·3mM CaCl2 with pH 8·0). Subsequently, 25μl of pancreatic
lipase (50U/ml; Sigma-Aldrich Co. LLC.) was added and incu-
bated at 25°C for 30min. To terminate the enzyme reaction,
100μl of sodium citrate (100mmol) was added to the reaction
mixture. The amount of 4-methylumbelliferone released from
4-MO by pancreatic lipase was measured using TECAN M200
PRO fluorometric plate reader (TECAN Trading AG; excitation
355nm and emission 460nm). The IC50 of FGT on pancreatic
lipase was calculated from a regression line of the plots in the
logarithm of FGT concentration v. pancreatic lipase activity graph.

Measurement of energy expenditure and plasma
neurotransmitter levels

C57BL/6 J male mice, 6-week-old, were purchased from the
Central Laboratory Animal Inc. and maintained in a 12 h light–
12 h dark cycle chamber with controlled temperature of
21–25°C and 50–60% humidity. For adaptation, mice were fed
an AIN-76A diet (Central Laboratory Animal Inc.) ad libitum for
1 week. After adaptation, mice were fed an AIN-76A-based HFD
(45%) with orally administered 500mg/kg body weight/d
of FGT. The same volume of distilled water was given to the
control group for 2 weeks. VO2 and carbon dioxide production
(VCO2) were measured using the Oxylet Physiocage
System (Panlab) and the software suite METABOLISM (version
2.2.01; Panlab). The respiratory exchange ratio used for
estimating the RQ was calculated as VCO2:VO2, and energy
expenditure was calculated according to the formula (kJ (kcal)/
(d kg·0·75))=VO2·1·44·(3·815+ (1·232·resting energy requirement)).
For neurotransmitter measurements, 6-week-old male C57/

BL6 mice were purchased from the Central Laboratory Animal
Inc. and adapted for 1 week. After adaptation, mice were fed a
45% HFD. During the administration of a HFD, FGT (500mg/kg
body weight) or water (as a vehicle) was orally administered for
8 weeks. After FGT administration, mice were fasted overnight,
and blood samples were collected and centrifuged (4°C,
3000 rpm, 5min). Supernatants were transferred to new micro-
centrifuge tubes. Plasma levels of dopamine, norepinephrine
and serotonin were measured using a dopamine ELISA kit
(Abnova), norepinephrine ELISA kit (LifeSpan Biosciences) and
serotonin ELISA kit (Abcam), respectively, following each
manufacturer’s instructions. White adipose tissue (WAT) and
liver tissue were separated and stored at −80°C for further use.
All animal experiments were approved by the Amorepacific
Institutional Animal Care and Use Committee (AP11-FR008) and
adhered to the OECD guidelines.

Pyrosequencing analysis of gut microbiota

For pyrosequencing analysis, faeces samples were collected for 3
consecutive days before the animals were euthanised with CO2.

The stool samples were stored at −80°C until analysis, and then
genomic DNA was extracted from pooled faecal samples using
the FastDNA™ SPIN kit for Faeces (MP Biomedical) according to
the manufacturer’s protocol. For pyrosequencing, amplification
of genomic DNA was performed using barcoded primers that
target the V1–V3 region of the bacterial 16S rRNA gene. Ampli-
fication, sequencing and basic analysis were performed
according to the methods described by Chun et al. (37) and were
completed by ChunLab Inc. using the 454 GS FLX Titanium
Sequencing Systems (Roche). Sequence reads were identified
using EzTaxon-e database (http://eztaxon-e.ezbiocloud.net)(38)

on the basis of 16S rRNA sequence data. We analysed
the number of sequences, observed the diversity richness
(operational taxonomic units (OTU)) and estimated the OTU
richness (abundance-based coverage estimator and Chao1
indices). Bacterial community abundance and composition were
generated using CLcommunity software (ChunLab Inc.).

RNA isolation, complementary DNA synthesis and
quantitative RT-PCR

RNA from tissues was isolated using the RNeasy® Mini Kit (Qia-
gen) following the manufacturer’s protocol. Each RNA sample
(2μg) was subjected to complementary DNA (cDNA) synthesis
using the RevertAid™ First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific). Relative mRNA levels were determined by
quantitative RT-PCR (qRT-PCR) using the appropriate primers
(Bioneer) as described previously(39). Primer sequences used for
qRT-PCR are provided in the online Supplementary Table S2.

Activity of lipoprotein lipase

HepG2 human hepatoma cells were obtained from the Korean
Cell Line Bank and grown in Dulbeco’s modified Eagle’s medium
(DMEM) supplemented 10% FBS and 1% penicillin and strep-
tomycin (PEST) at 37°C in an atmosphere containing 5% CO2.
HepG2 were cultured in six-well plates at a density of 106 cells/
well for 24h, and then cells were treated with various con-
centrations of FGT (0·03, 0·1, 0·3, 1, 3, 10, 30 and 100μg/ml) in
DMEM without FBS and PEST for another 24h. After incubation,
the supernatants were collected, and human LPL concentrations
were analysed using an ELISA-based Human LPL Assay Kit
(Immuno-Biological Laboratories Co., Ltd), according to the
manufacturer’s instructions.

Statistical analysis

All data are shown as means with their standard errors.
Student’s t test was performed for two-group comparison,
and one-way ANOVA was performed for multiple-group
comparison. P< 0·05 was considered as significant.

Results

Fermented green tea relieves acute hyperlipidaemia in rats

In the previous study, we showed that FGT decreased plasma
lipid levels in proportion to the reduction in body weight in
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diet-induced obese mice(35). To elucidate whether FGT exerts
hypotriglyceridaemic effects, regardless of body weight control,
we administered FGT to SD rats by oral gavage for 5 d. FGT
administration did not significantly alter body weight (online
Supplementary Table S3), implying that acute treatment of FGT
is independent of body weight change with a normal diet. To
provoke hyperlipidaemia acutely, we injected Triton, a LPL
inhibitor, to SD rats. As shown in Fig. 1(a), Triton administration
caused a robust increase in plasma TAG levels, whereas pre-
treatment with FF blunted the hyperlipidaemic effect induced
by Triton. Similarly, FGT reduced hypertriglyceridaemia by 26%
(Fig. 1(b)). Collectively, these results suggest that FGT exhibits
hypotriglyceridaemic effects.

Fermented green tea reduces plasma TAG levels in
diet-induced hyperlipidaemic hamsters

FGT partially improved acute hyperlipidaemia induced by
Triton treatment (Fig. 1). To assess whether FGT inhibited diet-
induced elevations in plasma lipid levels, we administered FGT
(200 or 500mg/kg body weight) to western diet-induced
hyperlipidaemic hamsters for 4 weeks. Although low-dose FGT
(200mg/kg) failed to lower plasma TAG levels, FF (100mg/kg)
and high-dose FGT (500mg/kg) treatment blunted further ele-
vations in plasma TAG (Fig. 2(A)). These data imply that high
doses of FGT are required to acutely lower plasma TAG levels.
To further elucidate long-term and dose-responsive effects of

FGT on Western diet-fed hyperlipidaemic animals, Western
diet-induced hyperlipidaemic hamsters were administered FF
(100mg/kg; as positive control) or FGT (200/400/600mg/kg) for
12 weeks. Interestingly, FGT lowered plasma TAG levels in a
dose-dependent manner (Fig. 2(B)). Thus, low-dose FGT likely
requires a long time to exert its hypotriglyceridaemic effect,
whereas a high-dose of FGT rapidly reduces plasma TAG levels.

Fermented green tea inhibits pancreatic lipase activity

We found that FGT blunted plasma TAG levels in hyperlipi-
daemic animal models (Fig. 1 and 2). However, it is unclear how
FGT reduces plasma lipid levels. In order to identify potential
hypolipidaemic mechanisms, we examined the promoter activity
of PPARα, liver X receptor and forkhead box O, protein levels of
LPL and activity of diacylglyceride acyltransferase; however, none
of them was affected by FGT (online Supplementary Fig. S1).
Dietary lipids are digested by pancreatic lipases and absorbed in
the gut. Therefore, inhibition of pancreatic lipase would be a
mechanism for the treatment of acquired hyperlipidaemia. To
elucidate whether FGT-mediated hypotriglyceridaemic effect
requires modulation of pancreatic lipase activity, we assessed
pancreatic lipase inhibition assay using FGT. As shown in Fig. 3,
FGT effectively and dose-dependently suppressed enzymatic
activity of pancreatic lipase. Calculated from the experimental
data, the IC50 of FGT on pancreatic lipase is 0·49mg/ml.
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Fermented green tea augments energy expenditure,
modulates the expressions of lipid metabolism-related
genes and increases plasma serotonin levels

FGT inhibited pancreatic lipase activity and increased
faecal lipid content (Fig. 3 and online Supplementary Fig. S2).

However, dietary lipids and pancreatic lipase are not the causal
factors in Triton-induced acute hyperlipidaemia. This suggests
that the hypotriglyceridaemic effect of FGT could be mediated
by multiple mechanisms. Interestingly, we observed that
FGT-administered animals were more active, compared with
the vehicle group (data not shown), suggesting that FGT might
affect energy expenditure. To determine FGT-mediated chan-
ges in energy expenditure, C57BL/6 J mice were fed a HFD with
oral administration of FGT (500mg/kg) for 2 weeks in an animal
metabolic monitoring system. VO2 (Fig. 4(a)) and energy
expenditure (Fig. 4(b)) were significantly elevated during the
light and dark cycles in the FGT-fed mice, whereas the RQ was
unchanged between FGT and vehicle groups (Fig. 4(c)).
Thus, FGT appears to encourage energy expenditure without
affecting energy source.

To further elucidate the effect of FGT on energy metabolism,
we measured mRNA expressions of lipid metabolism-related
genes (e.g. sterol regulatory element-binding protein-1c
(SREBP1c), acetyl-CoA carboxylase (ACC), fatty acid synthase
(FAS), stearoyl CoA desaturase-1 (SCD1), acyl-CoA oxidase
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(ACO), carnitine palmitate transferase-1 (CPT1), medium-chain
acyl CoA dehydrogenase (mCAD) and PPARα) in WAT and the
liver. Notably, expressions of lipogenic genes (SREBP1c, ACC,
FAS and SCD1) were down-regulated (Fig. 5(a)), whereas
expressions of fatty acid oxidation-related genes (ACO, CPT,
mCAD and PPARα) remained up-regulated (Fig. 5(b)) in both
tissues. These data imply that FGT might control the
expressions of lipid metabolism-related genes to modulate
circulating lipid levels. Surprisingly, plasma concentrations of
serotonin, a neurotransmitter associated with energy expen-
diture and behaviour(40,41), were significantly increased in
FGT-administered mice (Fig. 6(a)), and the expressions of fatty
acid oxidation genes were up-regulated by FGT as well as
serotonin treatments in cultured adipocytes and myocytes,
respectively (Fig. 6(b) and (c)). These results suggest that FGT
stimulates lipid metabolism to increase energy expenditure by
inducing serotonin.

Fermented green tea changes the composition of gut
microbiota in the hyperlipidaemic hamster model

It has been reported that metabolic disorders such as obesity
and type 2 diabetes are closely related to alterations of the
composition of gut microbiota, especially the Firmicutes
phylum(42–44). We found that FGT reversed the changes in the
composition of gut microbiota in diet-induced obese mice(35).
To determine whether FGT also altered the composition of gut
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HFD, †† P< 0·01 v. HFD, ††† P< 0·001 v. HFD.
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Fig. 6. Fermented green tea (FGT) increases plasma serotonin levels and fatty
acid oxidation-related genes. (a)Plasma levels of neurotransmitters (dopamine
(DOP), norepinephrine (NEP) and serotonin (SER)). , Normal diet group; ,
high-fat diet (HFD) group; , HFD with FGT. * P< 0·05 v. control, *** P< 0·001
v. control, †† P< 0·01 v. HFD. Expressions of fatty acid oxidation genes in (b)
3T3-L1 adipocytes and (c) C2C12 myocytes. FGT (500 μg/ml) or serotonin
(SER; 4 ng/ml) treatment was performed for 24 h. mRNA was isolated using
Trizol™ Reagent (Life Technologies). Each RNA sample (2μg) was subjected
to complementary DNA (cDNA) synthesis using the RevertAid™ First Strand
cDNA Synthesis Kit, and relative mRNA levels were determined by quantitative
RT-PCR using the appropriate primers (n 4/group). ACO, acyl-CoA oxidase;
CPT1, carnitine palmitate transferase-1; , not treated (negative control); ,
FGT; , SER. * P<0·05 v. negative control, ** P<0·01 v. negative control,
*** P<0·001 v. negative control.
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microbiota in Western diet-induced hyperlipidaemic hamsters,
gut microbiota was analysed by pyrosequecing. Similar to
previous results(35), FGT slightly reduced the abundance of the
Firmicutes phylum and enhanced the Bacteroidetes phylum,
when compared with the vehicle group (Fig. 7(a)). The ratio of
Firmicutes:Bacteroidetes was also reduced by FGT treatment
(Fig. 7(b)). Collectively, it appears that FGT modulates gut
microbiota by suppressing the prevalence of the Firmicutes
phylum and facilitating the growth of Bacteroidetes, supporting
a role for FGT in the development of metabolic disorders such
as obesity and type 2 diabetes.

Discussion

In the present study, we show that FGT effectively rescued
postprandial hypertriglyceridaemia and Western diet-induced
hyperlipidaemia. We conducted in vivo experiments in different
rodent models to confirm the effects of FGT in vivo. First, acute

hypolipidaemic effects were examined in rats induced with post-
prandial lipaemia. Hamsters but not mice readily develop hyper-
triglyceridaemia on diets; thus, the long-term hypotriglyceridaemic
effects of FGT were studied in hamsters. In addition, the metabolic
rate and energy expenditure were measured in mice. Each animal
model used in this study has been widely used for these experi-
ments. The use of different animal models also shows that the
hypolipidaemic effects of FGT are repeatedly found in
different animal models, which confirms the validity of the
hypolipidaemic effects of FGT.

Plasma TAG concentrations may be reduced by several
biological mechanisms. Common therapeutics for hyper-
triglyceridaemia include the use fibrates or niacin(45). Fibrates are
ligand activators for the nuclear receptor PPARα. Activation of
PPARα re-programmes gene expression in lipid metabolism,
especially in the liver, thereby increasing fatty acid uptake and
oxidation while suppressing VLDL secretion to lower plasma and
hepatic TAG levels. Niacin binds and activates GPR109A,
a niacin receptor, and suppresses the protein kinase A signalling
pathway to lower adipocyte lipolysis, mobilisation of fatty acids
to the liver and secretion of VLDL(46). These effects result in the
reduction of plasma TAG concentrations as well. In addition,
activation of liver X receptor(47) and inhibition of forkhead box O
transcription factor(48), LPL(49) and diacylglycerol acyltransfer-
ase(50) are associated with the reduction in plasma TAG levels;
however, none of those processes was affected by FGT in our
activity screening experiments (online Supplementary Fig. S1).

Acute hypertriglyceridaemia in the postprandial state was
ameliorated by inhibition of pancreatic lipase activity. Pancreatic
lipase suppresses digestion and absorption of dietary lipids from
meals; thus, inhibition of pancreatic lipase ameliorates post-
prandial lipaemia by FGT. Pancreatic lipase, a key-step enzyme
in lipid digestion, catalyses the hydrolysis of dietary TAG into
monoglyceride and fatty acids, so that dietary lipids are readily
absorbed in the digestive tract(51). Therefore, inhibition of pan-
creatic lipase activity serves as a primary target in the treatment of
hyperlipidaemia. Indeed, orlistat, a pancreatic lipase inhibitor, is
used to treat obesity by reducing excess energy intake.
Interestingly, orlistat also has other biological effects including the
reduction of blood pressure and reduction of the incidence of
diabetes in human clinical trials with obese patients(52). Whether
these additional effects of orlistat are mediated through the
suppression of lipid metabolism needs further evaluation. As
orlistat, a pancreatic lipase inhibitor, controls hyperlipidaemia,
it is feasible that FGT can potentially control hyperlipidaemia
and related complications such as hypertension, type 2 diabetes
and related CVD, as well as obesity.

In long-term feeding studies, plasma TAG levels were
reduced in hamsters. FGT may reduce plasma TAG levels by
increasing energy expenditure and serotonin secretion. We
suggest that serotonin stimulates the consumption of stored
lipid to lower plasma TAG levels, which could be due to
induction of fatty acid oxidation gene expressions. Serotonin is
a well-known neurotransmitter that is considered to be a ‘happy
hormone’ because it is associated with feeding behaviour
and mood(53). Mood control has been identified as an important
factor in reducing the progression of CHD and its associated
mortality(8). The FGT-associated increase in serotonin levels
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Fig. 7. Fermented green tea (FGT) alters the composition of gut microbiota in
hamsters. Composition of gut microbiota (phylum level) (a) and ratio of
Firmicutes:Bacteroidetes phylum (b) of the control and FGT (500mg/kg body
weight)-administered hamsters. Stool samples from three hamsters were
combined to analyse gut microbiota. For a colour figure, see the online version
of the paper.
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may be beneficial in alleviating this risk factor for CVD, which
are often accompanied by hyperlipidaemia. Recently, serotonin
has been associated with energy expenditure(40,41).
In this study, we demonstrated that FGT augments plasma
serotonin levels (Fig. 6). Interestingly, we did not observe
marked changes in the expression of tryptophan hydroxylase 1
(tph1) (online Supplementary Fig. S3), an enzyme that is
involved in serotonin biosynthesis in the gut of FGT-treated
mice. This observation suggests that the effects of FGT on
serotonin metabolism involve a different pathway of regulation
of serotonin metabolism by FGT, which requires further studies.
It is possible that FGT boosts whole-body energy expenditure
to reduce circulating lipid levels by regulating serotonin, at least
in part. By augmenting serotonin metabolism, FGT is also
expected to modulate happiness and reduce the development
of CVD, both of which are thought to be influenced by lipid
metabolism and mood. Enhanced energy expenditure reflects a
huge consumption of energy, which accompanies a robust
increase in lipid catabolism to supply ATP demand. We
observed that FGT administration suppressed lipogenic gene
expression while enhancing catalytic gene expression in
peripheral tissues (Fig. 5), implying that the pattern of mRNA
expression of lipid metabolism-related genes shifted favourably
from lipogenic to lipolytic following FGT treatment. By com-
bining two mechanisms, inhibition of pancreatic lipase and
induction of serotonin secretion, FGT may effectively reduce
plasma TAG levels.
In addition, it is possible that FGT compounds may modulate

key metabolic regulators including AMPK, silent mating type
information regulation 2 homolog 1 (Sirt1) and PGC1α(54–56). In
a previous study, the amount of gallic acid robustly increased
during green tea fermentation(57). Recently, gallic acid has been
reported to exhibit anti-obesity and anti-diabetic properties
through the activation of AMPK, Sirt1 and PGC1α(58). EGCG,
a major component of green tea, also modulates energy meta-
bolism through AMPK activation(59–61). Although the content of
EGCG in FGT is much lower than that of green tea, the cate-
chins and increased gallates (possibly due to metabolism of
catechin gallates) are able to mediate the hypotriglyceridaemic
effects of FGT. Furthermore, there are more active compounds
that are effective in modulating lipid metabolism in processed
green teas. For instance, theaflavins from black tea reduce
cholesterol incorporation into micelles(62), thereby reducing
cholesterol uptake. Although we have not yet identified active
compounds for key metabolic regulators, we are presently
attempting to identify the major polyphenolic compounds in
FGT by utilising various biochemical analytical methods.
Further research is required to identify the active components
and to evaluate the detailed mechanism underlying
FGT-mediated hypotriglyceridaemic effects.
Changes in the gut microbiota is closely correlated with the

development and treatment of lipid metabolism-related
disorders including obesity and type 2 diabetes(63,64). In the
analysis of microbiota changes, the ratio of Firmicutes:
Bacteroidetes has been suggested as an informative biomarker
for metabolic disorders, as this ratio is closely associated with
the development of obesity(65) and type 2 diabetes(63).
We previously reported that FGT reduced the Firmicutes:

Bacteroidetes ratio in mouse gut microbiota, and the present
study confirms the previous findings in hamster microbiota(35).
In the present study, changes in microbiota were associated
with complex metabolic alterations including reduced TAG
levels and body weight; thus, it is not possible to characterise
microbiota changes specific to hypotriglycaeridaemic effects.
However the Firmicutes:Bacteroidetes ratio in hamsters was
significantly reduced, which confirmed our previous findings. It
has been suggested that the phylum Firmicutes predominates
the gut microbiota of obese mice(42); thus, the host likely
receives more energy content with increasing Firmicutes levels
in the gut. Therefore, FGT-induced alteration of the composi-
tion of the gut microbiota (reduced Firmicutes) contributed to
the reduction in energy intake in the absence of a change in
food intake, thereby reducing body weight gain and fat mass
increase, at least in part.

In the analysis of gut microbiota, the most abundant genera
was Allobaculum, which was increased in the FGT group (45·7
and 53·6% in control and FGT, respectively). Allobaculum was
shown to be enriched after exercise in rats(66), augmented when
supplemented with grain sorghum lipid extract in hamsters(67)

and increased with improved metabolic parameters in obese
and insulin-resistant rats after berberine feeding(68). In addition,
Ruminococcus was reduced in hamsters fed FGT (8·3 and 5·7%
in control and FGT, respectively). Ruminococcus has been
found to be more abundant in obese subjects than in non-obese
subjects(69). These changes may be associated with the hypo-
triglyceridaemic effects of FGT, and further studies will be
performed on this issue in the future.

In conclusion, FGT inhibits pancreatic lipase activity and
induces serotonin secretion to modulate lipid metabolism and
reduces hyperlipidaemia in animal models. We propose that
FGT may be a novel hypotriglyceridaemic agent for the treat-
ment of lipid dysregulation and related complications.
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