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Abstract

This paper analyses a model for combustion of a self-heating chemical (such as pool chlo-
rine), stored in drums within a shipping container. The system is described by three coupled
nonlinear differential equations for the concentration of the chemical, its temperature and
the temperature within the shipping container. Self-sustained oscillations are found to oc-
cur, as a result of Hopf bifurcation. Temperature and concentration profiles are presented
and compared with the predictions of a simpler two-variable approximation for the system.
We study the period of oscillation and its variation with respect to the ambient temperature
and the reaction parameter. Nonlinear resonances are found to exist, as the solution jumps
between branches having different periods.

2000 Mathematics subject classification: primary 80A25; secondary 34C15, 70K30,
70K50.
Keywords and phrases: combustion models, limit cycles, nonlinear resonances, relaxation
oscillations.

1. Introduction

This paper studies the problem describing the thermodynamic effects that occur when
isolated sealed drums of a chemical, such as pool chlorine, are stored in a larger
shipping container. Each drum contains material that is capable of self-heating as
it decays (exothermic decay), and this in turn can heat the air within the container
by Newtonian energy transfer. Thus the sealed drums are able to interact with one
another thermally, although they are chemically isolated. In a recent (2001) paper,
Gray [12] considered each drum to be "well-stirred", so that the temperature in the
drum is constant throughout its volume. That is, each drum is the equivalent of a unit
of variable heat, and Gray thus adopted the term "thermon" to describe it.
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In Gray's model, the "pool chemical" approximation was made for both steps in the
reaction [26], as a result of which the consumption of all chemicals was ignored. The
"thermons" were housed within a larger container (or shipping container), in which
the air temperature could vary also. The larger container could undergo Newtonian
cooling to ambient. Each region was approximated as "well-stirred", so that the
temperatures were described by a system of nonlinear ordinary differential equations
(ODEs). Gray [12] found the presence of saddle-node bifurcations, which may give
the possibility of explosion in the physical system. He showed that Hopf bifurcation
[2,19] did not occur in the system, and conjectured that no self-sustained oscillations
would be possible.

Gray [12] analysed his model in detail for the case in which all the drums (thermons)
were identical, since in this case the model reduced to a system of two ODEs. Such
a dynamical-systems approach allowed him to identify parameter regions in which
spontaneous combustion could occur, and to estimate the time to ignition.

There is a large amount of literature on the use of dynamical-systems techniques in
physical chemistry, and much of this is discussed in the book by Scott [26]. One of the
simplest models of temperature-sensitive reactions is the Sal'nikov scheme [24,25],
which involves only two nonlinear ODEs, for the concentration and temperature of
a particular chemical species in a two-step reaction [6,10,13-15,22]. The reaction
may proceed via either one or two exothermic decay steps, and may be considered to
be in a drum heating a surrounding, possibly enclosed area, or a series of such drums
[4,12]. A key feature of such a scheme is that one or more of the chemical reactions
involved has a reaction rate that varies with temperature, according to Arrhenius
kinetics [3,5,11,16,20]. The Sal'nikov scheme is typically found to induce chemical
oscillations [17,21] resulting from Hopf bifurcation. Other systems studied in physical
chemistry include burning models [7,8], the Belousov-Zhabotinskii reaction [27]
and semibatch reactors [22,28], forced systems [9] where an extra forcing term is
included to modulate oscillations, and a wide range of phase and biological reactions
as discussed by Scott [26].

The present paper extends Gray's model, by allowing the effects of chemical
consumption to be included. This adds an extra unknown parameter to the model,
and an extra ODE (rate equation) to the system for each drum present. We retain
the pool chemical approximation for the first stage of the two-step reaction, but allow
for consumption of the intermediate reagent. Only the second step of the reaction
is exothermic in this study. A quasi-stationary approximation to this system yields
a Sal'nikov reaction. The predictions of this model are then compared with the
three-variable system without approximation.

The model is derived in Section 2, and the two-variable approximation is developed
in Section 3. An analysis of the full three-dimensional model is then presented in
Section 4, and the results of numerical calculations given in Section 5. A discussion
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of the results in Section 6 concludes the paper.

2. The governing model

Consider a precursor chemical species (reagent) A, that decays to form an interme-
diate X and then a final inert product B. Each reaction is assumed to follow first-order
kinetics, so that

AXxX B. (2.1)

Species A is assumed to be in vast over-supply, so that its molar concentration [A]
does not vary appreciably over time. This is the "pool-chemical approximation" [26].
The first reaction in the scheme (2.1) is assumed to progress at the constant rate kQ,
but the second reaction in (2.1) is taken to have the temperature-sensitive rate

kl(T) = Ze-E/RT, (2.2)

according to Arrhenius kinetics [3]. The symbol Z is the reference rate, and E
and R denote the activation energy for the reaction and the universal gas constant
respectively.

The rate equation and conservation of energy for drum number j in a system of n
drums then leads to the system of ODEs

= kj0[Aj] - kjX(Tj)[Xj], (2.3)
at

PjCjVj^- = QjmJVjiXjKjtiTj) + XjSj(TD - Tj), j = l,...,n. (2.4)

This is supplemented by conservation of energy for the entire container, to give

PDCDVD—^- = ^2 XjSj(Tj - TD) - XDSD(TD - Ta).
; = i

Here kJ0 represents the rate of the constant step for each drum, with kji(Tj) the
exothermic rate, given in Equation (2.2). The specific heat of the material in each
drum is c,, the density p, and the molecular weight mj. The concentration of the
pool chemical, A, is [Aj], with Qj the exothermic heating term and Xj is a Newtonian
cooling coefficient representing energy/degree/area/time. The volume of each drum
is Vj with surface area 5; .

This differs from Gray's (2001) [12] "thermon" model only in the inclusion of the
extra rate equations (2.3) for the consumption of the chemical species in each drum.

Dimensionless variables are now introduced, and will be used throughout the rest
of the paper. These amended variables are merely scales of the variables given above
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with respect to a constant sharing those units. In the process a few variables can be
combined and renamed to simplify the problem. Let all times be scaled with respect
to a reference time,

Temperatures are made dimensionless with respect to the quantity R/E\, and the
concentrations are referenced to the constant [A\\. In addition it will be assumed here
that each drum is identical, so that j = 1 only, in Equations (2.3) and (2.4).

The model may then be seen to depend upon six nondimensional parameters,

PDCDVD O

« = 7j-, PD =

a RT° i * ' 5 ' g ' A
9 k a n d " •

Thus we obtain the governing system of equations in dimensionless form, for the case
in which all drums in the container are assumed to be identical. The system is

(2.6)
at

^ l/T - r,), (2.7)
at

dTD (2.8)

The first parameter in (2.5) effectively represents a volume and specific heat ratio
between the container and any of the drums. The second is a surface area ratio be-
tween the container and the drums. The third represents a nondimensional rate term
dependent on the reaction. The scaled ambient temperature, 0a, is a nondimensional
temperature of the environment outside the container, with A.! the heat transfer coef-
ficient between the drums and the container. Finally, n is the number of drums in the
container, as in Gray [12].

3. Two-variable quasi-stationary approximation

In this section we present a simplified analysis of the system (2.6)-<2.8), based on
a quasi-equilibrium assumption for TD. This was originally suggested by an analysis
of the numerical solutions of the full system (2.6)-<2.8).

In this case, Equation (2.8) becomes 0 % /iA,(7, - TD) - pDk,(TD - 9a). This
leads at once to the approximate relation
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This result is now substituted into Equations (2.6) and (2.7) to give the approximate
phase-plane system

at

(3.1)

(3.2)

This is a Sal'nikov system [24,25], and so its behaviour can be analysed extensively
in the (Xu T{) phase plane.

Equilibrium occurs in the system when both rates of change are equal to zero. This
occurs at the point

To determine the local solution behaviour near this point, it is necessary to linearise
the system about the point using the Hartman-Grobman linearisation theorem [18].
This requires a calculation of the eigenvalues of the (2 x 2) Jacobian matrix of partial
derivatives for the system, evaluated at the equilibrium point (3.3). The eigenvalues £
are found by solving

det\J-H-\ = t-2-Tj$ + Dj = 0,

in which Tj and Dj denote the trace and determinant of the Jacobian matrix, respec-
tively.

The eigenvalues are clearly given by the formula

When Dj > 0 and Tj < 4Dj then the stability of the equilibrium point (3.3) is
determined by the sign of the trace Tj. A stable focus occurs for Tj < 0, and an
unstable focus is formed if Tj > 0.

Hopf bifurcation may occur in system (3.1)—(3.2) when Tj = 0 and Dj > 0, as
this is the point at which stability changes. The conditions required for a saddle-node
bifurcation are found never to occur for physical values of the parameters in this
system where we include chemical consumption. The above analysis leads to the
Hopf condition

This equation describing the condition for Hopf bifurcation is transcendental, but can
be solved numerically.
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FIGURE 1. Hopf curves for the two systems. The dashed line represents the Hopf curve of the 2D system
with the solid line representing the 3D system. Both use the parameters X| = 0.9, a = 27, fiD = 9 and

The dashed curve in Figure 1 is a Hopf curve obtained from (3.4), for the case
X| = 0.9, f}D — 9 and n — 2. This curve is typical of other values of X.t and fiD,
which change the curve little within a reasonable range of each variable. However
as n increases, the curve becomes thinner and thinner (the top limb moves downward,
the lower limb is near-stationary) until as n —*• oo the curve disappears altogether.
The equilibrium point (3.3) is stable to the right of this dashed line, but is unstable
(Tj > 0) to the left. Limit cycle oscillations are born on the Hopf curve, and stable
finite-amplitude oscillatory behaviour is encountered for parameter values to the left
of this curve.

Figure 2 (b), seen in Section 5, shows a limit cycle computed by the numerical
solution of Equations (3.1) and (3.2), for the same parameter values as in Figure 1,
and for Qa = 0.11, fi\ = 0.08. This represents a point well to the left of the dashed
Hopf curve. Figure 2 (c) shows the variation of the concentration of the intermediate
chemical X with respect to time, /, with a dashed line. Note the variation shows
relaxation oscillation behaviour. Figure 2 (d) shows the variation of the temperature
of any given drum in the container (7,) with respect to time (f). In this case the
periodicity of the variation is clear, and the departure from sinusoidal behaviour
indicates pronounced effects of nonlinearity.

In this case it is possible to prove the nonexistence of limit cycles for some parameter
values outside the Hopf curve (to the right of the dashed line in Figure 1), using the
Dulac theorem [23]. This involves a similar process to that outlined by Forbes et al.
[10] for a Sal'nikov scheme exothermic in both steps, and again indicates that there
exist no limit cycles for 6a > 1/4.

https://doi.org/10.1017/S1446181100010117 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100010117


[7] A comparison of two- and three-variable models for combustion in sealed containers 533

4. Analysis of the three-variable system

In this section we give an analysis of the three-dimensional system derived in
Section 1, that is, Equations (2.6M2.8). This is not a Sal'nikov system, but can be
approximated to one as in Section 2.

This system has only one equilibrium point, occurring when

(Xie, Tie, TDe)

(= r e x p

Again, the system is linearised about this point by the Hartman-Grobman theorem,
using the Jacobian matrix, which is now a 3 x 3 matrix of partial derivatives. The
eigenvalues £ of the Jacobian matrix satisfy a cubic equation [1] of the form

The constants a0, at and a2 are known functions of the six dimensionless parameters
in Equation (2.5). The equilibrium point (4.1) will be stable if all eigenvalues £ have
negative real parts, and unstable otherwise.

Hopf bifurcation occurs when any pair of eigenvalues crosses the imaginary axis,
at points £ = ±iy. This will occur if

£3 + aA1 + fl,| + a,, = ($ - £„)(£ + ,»(£ - iy) = 0

for £0 and y real. The Hopf condition for the creation of limit cycles in this three-
variable system is thus

a0 = #1^2. cii > 0. (4.2)

Numerical solution of the system for these conditions results in a curve of Hopf
bifurcations in the (fit, 6a) plane similar to that for the simplified system, and is now
shown in Figure 1 by a solid line. Here the same parameter values were used as
for the quasi-stationary case, and with a = 27. As in the quasi-stationary case, the
equilibrium point (4.1) is stable to the right of this solid line and unstable to the left.
Again, limit cycles are born on the Hopf curve, and exist as finite-amplitude orbits in
phase space to the left of the line.

5. Presentation of results

Detailed solutions have been computed using MATLAB®, and it is found that the
Hopf bifurcation produces stable limit cycles. An example of this is given in Fig-
ure 2 (a), for the reaction parameter fit = 0.08 and ambient temperature 6a = 0.11, a
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(c) (d)

(e)

FIGURE 2. Throughout this plot, the quasi-stationary (2D) case is represented by a dashed line, with
the full three-dimensional system being drawn with a solid line, (a) A sample limit cycle in the 3D
case, with it{ — 0.08 and 9a = 0.11. (b) A limit cycle in the quasi-stationary approximation (2D
case), with the same coordinates as in the 3D case. The sharp corner at the right-hand side of this plot
suggests the extreme changes present in relaxation oscillations, (c) Plot of concentration versus time
for the limit cycles, showing a gradual build-up of Xt over time followed by a very fast dissipation.
During X| build up, both temperatures remain constant, then with the sudden relaxation in concentration
we see instantaneous spikes, multiplying one hundred-fold in 7", and ten-fold in TD, as seen in parts (d)
and (e) respectively, (d) Equivalent plot of drum temperature versus time for the limit cycles, showing
emphasised, sudden peaks in both cases, which implies that the 2D system gives a good approximation
to the full 3D system, (e) Plot of the container temperature, TD, over time. This mirrors the behaviour of
the drum temperature. Only the 3D plot is shown as the 2D plot effectively assumes an infinitely large
container, thus TD =6a = constant.
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FIGURE 3. Dependence of oscillation period on 0a, the ambient temperature. The star marks the period
predicted by the eigenvalues at the Hopf point. Note that the vertical scale is logarithmic due to the very
large increases in period with small decreases in ambient temperature.

point well inside the Hopf curve. Figure 2 (c) shows the variation of concentration of
chemical X in a drum with respect to time for this same case, and exhibits saw-tooth
behaviour typical of relaxation oscillations. Figures 2 (d) and (e) show the variation
of the drum temperature T\ and shipping container temperature TD respectively over
time. Figures 2 (c)-(e) show clear evidence of relaxation oscillation behaviour, in
which the concentration of X\ exhibits slow rises alternating with abrupt, almost dis-
continuous, falls. The two temperature profiles possess dramatic spikes at the times
when the concentration drops suddenly. These sudden temperature excursions may
in practice give rise to spontaneous explosion. We can see comparing the solid (3D)
and dashed (2D) lines in the plots that the quasi-stationary approximation to the full
system is a fairly good approximation, but it slightly underestimates the period and
overestimates the magnitude of the temperature spikes.

We wish to judge the period of this relaxation oscillation in the three-dimensional
case (as this is the more accurate case), and thus its severity (as the greater the period,
the more extreme the relaxation oscillation and the greater the temperature spike).
Thus the shooting method employed by Forbes is used [6,7,9,10], and a plot made
of the period of the oscillation with respect to the ambient temperature of the system,
shown in Figure 3, and also of the period with respect to the reaction-dependent
parameter /J,I, shown in Figure 4. It can be seen, as one would expect, that as the
period of the limit cycle increases with varying 6a, the spike in the drum and container
temperatures also increases, however the ratio of the three quantities remains the same.
When the parameter ixt is varied, the temperature spikes remain virtually constant,
increasing slowly toward the top limb of the Hopf curve.
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FIGURE 4. Dependence of period on the reaction coefficient, /xj. Note the resonance structure occurring
as fit increases toward the upper limb of the Hopf curve. Here X\ = 0.3 and 6a = 0.11. Stars mark the
period of the oscillation as predicted by the eigenvalues at the Hopf points. The discontinuity arises from
the onset of small secondary loops contained within the large limit cycle. The period of the large limit
cycle continues to grow rapidly below the point of the lower Hopf curve, suggesting a subcritical Hopf
bifurcation at that point and a subsequent fold bifurcation.

At the points of Hopf bifurcation, the period P of oscillation can be predicted from
the eigenvalues of the Jacobi matrix, using the formula

P =
In

(5.1)

The eigenvalues are numerically calculated and their imaginary component substituted
into (5.1) to find the Hopf-point periods, and this theoretical value is marked using
stars in Figures 3 and 4.

Figure 3 shows the dependence of the period of the limit cycle (for the full three-
dimensional system, still assuming all barrels are identical), upon the ambient tem-
perature 6a of the system, for the value /x, = 0.2 (that is, a horizontal cut through
Figure 1, with X{ = 0.9, ftD = 9, a = 27 and n = 2). This period is predicted at
the point of Hopf bifurcation by Equation (5.1), and this predicted period is shown
with a star at the far right-hand side of the figure. The plot exhibits a rapid increase in
period P as the ambient temperature of the system, 0a decreases. The rate of increase
of period P is emphasised by noting that the scale of the vertical axis of this graph is
actually logarithmic rather than linear. As the period of the limit cycle increases, the
relaxation component of the oscillation becomes more pronounced; that is, the size of
the spikes in Figures 2 (c) and (d) increases with decreasing ambient temperature 6a

in Figure 3. Such extended spikes reflect in larger and more sudden explosions in the
system as the spikes become more pronounced.
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Figure 4 shows the dependence of the period of the oscillation upon the reaction
parameter fxu for A., = 0.3 and 9a = 0.11. In this case, the Hopf curve has the same
shape as in Figure 1, but intersects the vertical axis at a lower value of Mi- Figure 4
effectively represents a vertical cut through that Hopf curve, and again, for each Hopf
point (as there are two Hopf points vertically), the period is predicted from (5.1) and
shown by a star. This plot is interesting in form, but was only found to occur thus for
low values of k\.

Near each of the two Hopf points, it was possible to compute numerical solutions
that continue the period of the cycle on a connected branch. These are shown in
Figure 4. However it is clear on the right-hand side of the figure that there are
numerous disconnected nonlinear solution branches, in the approximate interval

0.07485 < Mi < 0.0825.

These are nonlinear resonances in the limit cycle itself, where the period of oscillation
jumps discontinuously. We have computed approximately ten of these disconnected
solution branches, each of which is characterised by a longer period than the last, as
is evident in Figure 4. The limit cycles on successive branches (increasing /ii) exist
for narrower and narrower intervals in the reaction parameter /xi, and develop very
long periods. For this reason, they become increasingly difficult to isolate. It is even
possible that chaos may exist in a narrow parameter window around /zi = 0.0828,
in which the period would become infinite. For larger values of the heat transfer
coefficient, such as kt = 0.9 as used earlier in this paper, we do not see these extreme
resonance structures. We are able to find the first resonance branch, but nothing
beyond this. Thus we hypothesise that this resonance behaviour is typical of the
system but only detectable for extreme values of A.,.

We now consider the second Hopf point, indicated by a star on the left of Figure 4.
In this case it has been found that limit cycles could be computed in a narrow window of
Mi values below the Hopf value. This strongly suggests that the limit cycle branch may
undergo a fold bifurcation at a value of Mi below the Hopf value, before reconnecting
to the Hopf point. Such a structure would involve the existence of unstable limit
cycles, and possibly even a subcritical Hopf bifurcation at the lower Hopf point. The
rapid growth of the period of the limit cycle in the parameter region to the right of
the lower Hopf point suggests that a second band of chaos may also be present in this
region, as indicated by computing the Floquet multipliers for the system.

Whilst it would appear that multiple limit cycles may exist for some values of AM,
the authors were unable to find any instance of any such behaviour, despite exhaustive
searching.

Figure 5 shows the qualitative change in the limit cycle, across the first resonance
jump on the right-hand side of Figure 4. The limit cycle in three-dimensional phase
space is shown for MI = 0.05 in Figure 5 (a), and for Mi = 0.075 in Figure 5 (b).
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(a) (b)

FIGURE 5. A comparison between limit cycles in the first and second resonance branches, showing the
small secondary loop which, at the point of Hopf bifurcation, exists alone without the larger cycle. Here
we use fi\ values of (a) jt| = 0.05 for the limit cycle of the first resonance, and (b) //.| = 0.075 for the
limit cycle of the second resonance.

It is clear that the second resonance branch in Figure 5 (b) is characterised by the
emergence of a smaller secondary loop in the orbit. Higher resonance branches on
the right-hand side of Figure 4 appear to involve a limit cycle of similar overall shape
to the orbit shown in Figure 5 (b), but possessing extra numbers of excursions around
the small loop. The final low-period branch on the far right of Figure 4 appears to
consist solely of this loop.

6. Conclusion

In this paper we have extended Gray's 2001 model [12], to include consumption
of the initial chemical. In the original Gray "thermon" model, the possibility of limit
cycle behaviour produced by Hopf bifurcation did not exist, and there a saddle-node
bifurcation was encountered. We have derived a system describing a two-step chemical
reaction in which the first step is constant and the second exothermic, for a chemical
stored in drums within a shipping container. Each drum has a constant temperature
throughout, and is considered to be a "thermon" in the notation of Gray [12]. The
container also has a constant temperature throughout. The shipping container is
surrounded by an ambient atmosphere of unchanging temperature. In contrast to
Gray's model, when consumption of the intermediate reagent is included in the model,
we find no saddle-node bifurcations exist, but Hopf bifurcations lead to the limit cycle
oscillations found in this paper.

In Section 2 we make a quasi-stationary approximation which reduces the system
to a Sal'nikov scheme, which is well understood and well studied. We present a
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brief analysis, showing a limit cycle in Figure 2 indicative of a supercritical Hopf
bifurcation.

In Section 3 we analyse the system in which all drums in the shipping container
start with the same temperature and behave identically. In this case we again find Hopf
bifurcations. We find that the period of the limit cycle is critically dependent on the
ambient temperature, with the period increasing rapidly as the ambient temperature
decreases (Figure 3).

Significantly, in a chemical system which can easily be approximated by a Sal'nikov
scheme, we find resonance structures occurring within the limit cycles themselves,
and are able to track these for some significant range of ju-i values. At the edge of
these resonance structures there appears to exist a fine band of chaos. Near the Hopf
points (points of intersection with the Hopf curve), the period is nevertheless seen to
match that predicted by the eigenvalues of the linearised analysis at the Hopf point.
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