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This paper presents a numerical analysis of the instability developing in horizontally
sheared Poiseuille flow, when stratification extends along the vertical direction. Our
study builds on the previous work that originally detected the linear instability of such
a configuration, by means of experiments, theoretical analysis and numerical simulations
(Le Gal et al., J. Fluid Mech., vol. 907, 2021, R1). We extend this investigation beyond
linear theory, investigating nonlinear regimes with direct numerical simulations. We find
that the flow loses its vertical homogeneity through a secondary bifurcation, due to
harmonic resonances, and describe this symmetry-breaking mechanism in the vicinity
of the instability threshold. When departing from this limit, we observe a series of
bursting events that break down the flow into disordered motions driven by localized shear
instabilities. This intermittent dynamics leads to the coexistence of horizontal localized
layers of stratified turbulence surrounded by quiescent regions of meandering waves.

Key words: shear-flow instability, internal waves, stratified turbulence

1. Introduction

Turbulent stratified flows are ubiquitous in nature, most notably in the Earth’s atmosphere
or in oceans, but are highly challenging to study in laboratories. This impediment is due to
the requirement of very large installations to monitor the different characteristic scales of
turbulence. It is then of interest to construct idealized hydrodynamical models to more
easily capture the transition towards disordered motions and explore connections with
the spontaneous formation of density layers in stratified fluids (Oglethorpe, Caulfield
& Woods 2013). Indeed, the challenge of clearly explaining the layering and mixing,
naturally present in geophysical flows, remains open (see e.g. Caulfield (2021) for a recent
review). This question has fundamental ramifications as it relates directly to the transport

† Email address for correspondence: jlabarbe@unice.fr

© The Author(s), 2023. Published by Cambridge University Press 963 A27-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jlabarbe@unice.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.361&domain=pdf
https://doi.org/10.1017/jfm.2023.361


J. Labarbe, P. Le Gal, U. Harlander, S. Le Dizès and B. Favier

of heat, pollutants or bio-mass in the density-stratified fluids present on Earth. Over the
past decades, several contributions to the study of turbulent stratified flows have been
made, seeking a complete description of the mechanisms responsible for layering and
mixing (Taylor et al. 2016; Zhou, Taylor & Caulfield 2017a; Zhou et al. 2017b). Notably,
these works demonstrated that stratified turbulence inherits a strong anisotropy while
developing, and that inhomogeneous diffusive processes, such as mixing, are a direct
consequence of this spatially intermittent phenomenon.

The novelty of our approach lies in the generation of turbulence through instabilities of a
model flow, namely the stratified horizontally sheared Poiseuille flow (Le Gal et al. 2021).
It is worth emphasizing the difference with the more classical two-dimensional case, where
both stratification and shear lie on the same plane (Gage & Reid 1968). In fact, it has been
known since the studies of Basovich & Tsimring (1984) and Bakas & Farrell (2009a,b)
that most environmental flows generate internal gravity waves spontaneously whenever
the stratification is oriented vertically (as is usually the case). In addition, these small-scale
waves propagate (with a Doppler shift) and interact within the density layers, leading to
instabilities (Satomura 1981). Historically, wave resonances in parallel sheared fluids have
been introduced in the seminal paper of Cairns (1979) and extended further to diverse
configurations of stratified flows (see, for instance, the review by Carpenter et al. (2011)
on this topic). Moreover, such instabilities can transit to turbulence due to the collapse
of finite size disturbances, once the system saturates and reaches the nonlinear regime
(Caulfield 1994). One benefit in considering instabilities is therefore the unnecessary need
to trigger turbulence by explicit forcing, since the dynamics is self-sustained by definition.
Hence our study makes use of these instabilities to follow the route towards stratified
turbulence, as done in a plethora of recent investigations on linear instabilities of stratified
flows. Notably, we rely on the observations made for Taylor–Couette flows (Molemaker,
McWilliams & Yavneh 2001; Le Bars & Le Gal 2007; Le Dizès & Riedinger 2010; Park &
Billant 2013), plane Couette flows with spanwise stratification (Facchini et al. 2018; Lucas,
Caulfield & Kerswell 2019), and a selection of rotating flows (Billant & Chomaz 2000; Le
Dizès & Billant 2009; Riedinger, Le Dizès & Meunier 2011). All the latter instabilities are
indeed caused by the resonant interaction of Doppler-shifted internal gravity waves, which
is the case in our context as well (Le Gal et al. 2021).

In this paper, we demonstrate the presence of a symmetry-breaking mechanism, when
the primary linear instability saturates and the flow enters the nonlinear regime, with
the appearance of a spatial modulation of the basic plane Poiseuille flow profile. This
modification in the streamwise mean velocity profile is a direct consequence of the
nonlinear interaction of harmonics, originally generated by counter-propagating internal
gravity waves. The loss of invariance along the vertical additionally results in the formation
of a localized region where the velocity fluctuates, inducing new spanwise shear in the
system. While the vertical gradients are sharpened, the flow eventually becomes subject
to secondary instabilities that further saturate and break down into turbulence, through
a series of bursting events (Lucas, Caulfield & Kerswell 2017). A similar breakdown to
turbulence originating from an initial linear instability followed by Kelvin–Helmholtz-like
overturning events was observed in a numerical simulation of the Kolmogorov model flow
(Lucas et al. 2017), where the authors exhibit connections between a linear instability
and exact nonlinear coherent structures. In the case of linearly unstable stratified Couette
flow, Lucas et al. (2019) also observed streaks that originate from the bursting of a
Kelvin–Helmholtz instability. However, in this case, at late time of their numerical
simulations, the streaky flow is similar to the turbulent state that they simulated in the
linearly stable case when turbulence is triggered subcritically. Therefore, the authors
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concluded that the ultimate sustained turbulent attractor in the stratified Couette flow is
the same whatever the instability process, and moreover that it has the characteristics of
the general self-sustaining process of non-stratified shear flows (Waleffe 1997). It is indeed
known that this interplay between streaks, waves and streamwise rolls is at the origin of
the nonlinear regimes of unstratified shear flows. As shown by Reetz, Kreilos & Schneider
(2019), the final steps of the transition that consists of alternating laminar and turbulent
bands (as observed in experiments and numerical simulations; see Tuckerman, Chantry &
Barkley 2020) is constructed by windowing the initial streaky pattern in a process already
used and fully described by Gibson & Brand (2014).

We describe here our transition scenario of the stratified Poiseuille flow by means of
direct numerical simulations (DNS) in a doubly-periodic geometry with finite extension
in the wall-normal direction. We support our observations with the computation of
local measures of vertical shear from our direct computations to highlight this novel
phenomenology.

The paper is structured as follows. Section 2 introduces the mathematical settings.
Section 3 presents the linear stability analysis of our configuration and how the stability
of discrete harmonics is determined accordingly. Section 4 is dedicated to DNS close to
the instability threshold. We further discuss the symmetry-breaking mechanism and the
mean flow interaction that it induces. Section 5 describes the phenomenology observed
when departing from the onset of instability. We observe here the triggering of stratified
turbulence, initiated from the mechanisms reported previously. Finally, we conclude our
study in § 6 with some discussions and suggestions for future extensions of this work.

2. Mathematical formulation

The present work deals with a model of incompressible linearly stratified shear flow
enclosed between two parallel walls that are a distance D apart (Le Gal et al. 2021).
This stratification is assumed to be directed along the axis orthogonal to that of the shear
plane. The geometry considered here is the Cartesian frame of reference (eX, eY , eZ), with
corresponding coordinates X = (X, Y, Z), describing the streamwise, cross-stream and
vertical directions, respectively. Boundary conditions are no-slip and insulating on both
walls at Y = ±D/2. In addition, we assume periodicity along the X and Z directions.

We express the buoyancy field as

ρ(X , T) = ρL(Z) + ρ′(X , T), (2.1)

where ρ′ represents the fluctuating contribution, and T is the dimensional time. Since
we assume a stable stratification, the linear profile in (2.1) is written as ρL(Z) = ρ0(1 −
ZN2/g), where N is the Brunt–Väisälä frequency N = √−(g/ρ0)(dρL/dZ) (assumed to
be real and constant), and g is the constant acceleration due to gravity.

We render this configuration non-dimensional by means of an advective time scale τ =
D/(2U), with U being the local maximum of the mean velocity, and D/2 the half gap.
Coordinates are scaled accordingly, whereas pressure and density are expressed in the
units of ρ0U2 and 2ρ0N2/(gD), respectively. Hence the non-dimensional velocity field
u = (u, v, w), pressure p and buoyancy b = gρ′/ρ0 (we use the same sign convention as
in Davidson 2013) are governed by the following set of equations:

∂tu + (u · ∇) u = −∇p − Fr−2 bez + Re−1 ∇2u + f ex, (2.2a)

∂tb + (u · ∇) b = w + (Re Sc)−1 ∇2b, (2.2b)

∇ · u = 0, (2.2c)
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where f is a spatially uniform term enforcing the streamwise shear profile. This force
can correspond to either a steady pressure gradient f = 2 Re−1 or an unsteady function
ensuring conservation of the total mass flux Q = ∫ 1

−1

∫ Lx/2
−Lx/2 u dx dy. In both cases, and

in the absence of instabilities, the balance between this external force and viscosity leads
to the same base state velocity profile, the well-known plane Poiseuille solution U0( y) =
1 − y2, that is invariant in the z-coordinate. However, if the base system is unstable, then
we expect the choice of forcing to influence the nonlinear regime. We emphasize that (2.2)
contain the Reynolds, Froude and Schmidt numbers as control parameters, defined by

Re = UD
2ν

, Fr = 2U
DN

, Sc = ν

κ
, (2.3a–c)

where ν and κ are the constant kinematic viscosity and diffusivity, respectively.
We perform DNS of (2.2) by means of the spectral elements solver NEK5000 (Fischer

1997; Fischer et al. 2007). Our numerical domain consists of a rectangular parallelepiped
of fixed size D = [−Lx/2, Lx/2] × [−1, 1] × [−Lz/2, Lz/2], designed such that the most
unstable linear mode can develop. In addition, we assume periodic conditions and
equispaced elements in both x and z directions. We use a non-uniform distribution of
wall-normal elements to refine the mesh closer to the walls. Numerical convergence of
the results was checked by increasing the spectral order Ns and comparing the theoretical
predictions of growth rates from linear theory with the numerical exponential growth in
vertical kinetic energy. Agreement was assumed satisfactory when the absolute difference
between the latter was ∼1 %. We also monitored a few statistical quantities during the
saturation phase, such as the viscous dissipation or the vertical kinetic energy (both
defined below). Once a fixed number of elements and quadrature nodes was considered
sufficient, we still multiplied the total by 1.5 or 2 to reach a high-end accuracy. In summary,
computations were done using 10 elements per unstable streamwise wavelength, 16–24
elements in the cross-stream direction, and 18–24 elements along the vertical, for a total
of ∼13 000–15 000 elements, with spectral order Ns ∈ [8, 12] (number of Gauss–Lobatto
collocation points) and fixed values of Sc = 1 and Fr = 2. Following Le Gal et al. (2021),
the flow is initiated from the parabolic Poiseuille profile plus some random infinitesimal
perturbations on the buoyancy field. Since we did not observe noticeable changes in the
dynamics of the flow by using a constant pressure gradient or a constant flux, we therefore
focused our attention on the latter to better fit with the experimental conditions described
in Le Gal et al. (2021).

3. Linear stability analysis

3.1. Global stability analysis
We perform a linear stability analysis of (2.2) by means of a pseudo-spectral collocation
method. Perturbations of the basic state are expressed in terms of normal modes, taking
advantage of the periodicity of the flow. Therefore, we introduce real spatial wavenumbers
kx, kz, as well as the complex frequency ω, to expand perturbations q′ = (u′, p′, b′) as

q′(x, t) = q̂( y) exp
[
i(kxx + kzz − ωt)

] + c.c., (3.1)

where c.c. stands for ‘complex conjugate’.
Substituting (3.1) within (2.2), while taking the divergence of (2.2a), we recover a

differential expression for the pressure eigenfunction. The latter allows us to express
the stratified Orr–Sommerfeld equation for the cross-stream velocity perturbation v̂.
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Subsequently, we recover the Squire equation, governing the perturbation of axial vorticity
η̂, by applying the curl operator on the wall-normal projection of (2.2a). The resulting
linear system yields[

kx

(
U0 ∇̂2 − d2U0/dy2

)
+ i Re−1 ∇̂4

]
v̂ − Fr−2 kz db̂/dy = ω ∇̂2v̂, (3.2a)

kz (dU0/dy) v̂ +
(

kxU0 + i Re−1 ∇̂2
)

η̂ − Fr−2 kxb̂ = ωη̂, (3.2b)

−k−2 (
kz dv̂/dy + kxη̂

) +
[
kxU0 + i (Re Sc)−1 ∇̂2

]
b̂ = ωb̂, (3.2c)

where k2 = k2
x + k2

z is the wavevector squared norm, and ∇̂2 = d2/dy2 − k2 is the
Laplacian operator in Fourier space. System (3.2) describes a boundary eigenvalue
problem of the form Aξ̂ = ωBξ̂ , for the eigenfrequency ω and eigenfunction ξ̂ = [v̂, η̂, b̂]T

(where the superscript T denotes transposition). The latter set of equations is supplemented
with no-slip and insulating boundary conditions, reading v̂ = dv̂/dy = η̂ = db̂/dy = 0 at
y = ±1.

We use a Galerkin approach to discretize the differential operators, based on the
expansion of the eigenfunctions in terms of Chebyshev polynomials. Simultaneously, we
apply a collocation method at the Gauss–Lobatto quadrature nodes

yj = cos
(

jπ
M + 1

)
, j = 1, . . . , M, (3.3)

for a fixed truncation order M. We verified the convergence of this method, based on the
relative error of the eigenvalues of (3.2), as M was increased. In general, a value M ∼ 40
was large enough to reach a reasonable tolerance.

3.2. Results
The classical unstratified (Fr → +∞) plane Poiseuille flow is subject to a linear
instability, due to the growth of a Tollmien–Schlichting (TS) wave (Tollmien 1929;
Schlichting 1933). This well-known instability occurs at a critical Reynolds number
Rec ∼ 5770 (Orszag 1971) and has been the subject of extensive studies on the transition
from laminar flows to turbulence. As shown in Le Gal et al. (2021), the consideration
of a stable profile of density stratification perpendicular to the shear plane greatly lowers
the instability threshold. The principal argument suggested by the authors is that such
a flow allows for resonances of internal gravity waves (among themselves or eventually
with viscous TS waves), leading to the onset of a new instability. A similar conclusion
was drawn in the context of plane Couette flow, where a growth of perturbations due to
the resonance of Doppler-shifted gravity waves was observed (Facchini et al. 2018). We
recall, though, that Couette flow is unconditionally stable to infinitesimal disturbances in
the unstratified limit and maintained by viscosity, which is not the case here.

Our interest for the present paper is to go beyond the results obtained in Le Gal et
al. (2021), by conducting a thorough analysis of the nonlinear saturation of this recently
discovered instability. Therefore, we use the linear stability results to extract the optimal
wavenumbers kopt

x , kopt
z , associated with modes of largest growth rates for a given set

of control parameters. We display in figure 1 the stability results at different Reynolds
numbers, close to the instability threshold (for this set of parameters, we have a critical
Reynolds number Rec ∼ 480). We recall that Fr = 2 and Sc = 1 (thus differing from
experimental values). For computational reasons, the red crosses in this figure represent

963 A27-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.361


J. Labarbe, P. Le Gal, U. Harlander, S. Le Dizès and B. Favier

0.5 1.0 1.5 2.0
2

3

0.5 1.0 1.5 2.0

4

5

2

3

0.5 1.0 1.5 2.0

4

5

2

3

4

5

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

kz

kx kx kx

(×10–3) (×10–3) (×10–3)
(a) (b) (c)

Figure 1. Growth rate contours in the (kx, kz) space from the linear stability analysis of (3.2) at Fr = 2, Sc = 1
and over different Reynolds numbers: (a) Re = 550, (b) Re = 580, (c) Re = 700. Red crosses correspond to
the discretized modes present in our DNS domain (cf. § 4). White regions correspond to negative growth rates,
i.e. stability.

the locations in the wavenumber space of the discretized modes present in our DNS
domain; see § 4. We then determine whether unstable harmonics of the fundamental mode
are present within the unstable region or not. It becomes clear that the case Re = 550
contains only stable harmonics, whereas the other two cases allow unstable harmonics
within the domain of instability. Note that when comparing the shape of the unstable
domain for the Poiseuille flow (see figure 1a) and the shape of the domain for the Couette
flow (see figures 2 and 3 of Facchini et al. 2018), it is obvious that the cases where two or
more wavevectors become unstable together is much more difficult (if not impossible) in
the Couette configuration. This might explain why Lucas et al. (2019) never observed our
scenario for the stratified Couette flow.

4. Weakly nonlinear saturation near the onset

This section is devoted to the stability analysis of the nonlinear dynamical regime,
in the vicinity of the bifurcation. As mentioned, the numerical domain chosen is an
elongated rectangular parallelepiped of size D = [−λx/2, λx/2] × [−1, 1] × [−2λz, 2λz],
with fundamental wavelengths λx = 2π/kopt

x and λz = 2π/kopt
z that depend on the control

parameters. Our main focus being the possible emergence of modulations along the
z-coordinate, this is why we consider boxes encompassing multiple unstable wavelengths
along the vertical. However, we do not explore eventual horizontal modulations since we
restrict the streamwise extension to only one unstable wavelength. We monitor the growth
of the instability by computing the quantity

Kz = 1
2

〈w2〉D = 1
2D

∫
D

w2 dV, (4.1)

where 〈·〉D denotes averaging over the volume D. We therefore expect, from the definition
of (4.1) and linear theory, to first observe an exponential increase in energy, following a
slope of twice the growth rate.

We start by presenting in figure 2 a set of vertical kinetic energies, computed over time,
for Reynolds numbers close to the instability threshold (in the present case, Rec ∼ 480).
In addition, we add snapshots of the streamwise velocity and perturbed buoyancy profile
at the latest instant of computation (last point of the energy curves). Not surprisingly, we
notice the exponential growth of disturbances in the first part of each curve. The slope in
logarithmic scale is further confirmed from linear stability analysis, as shown by the red
dashed lines. Then, once the perturbations reach an order of magnitude similar to that of
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Figure 2. Vertical kinetic energy curves (in logarithmic scale) over time (left-hand plots), with snapshots of
the streamwise velocity fluctuation u − U0 (middle) and the buoyancy perturbation b (right), computed at the
latest time of each simulation. Reynolds numbers are (a) Re = 550, (b) Re = 580, and (c) Re = 700. Red
dashed lines in the left-hand plots represent twice the growth rates of the dominant unstable mode, as predicted
from linear theory. Close-up views are displayed as insets for each configuration, highlighting the nonlinear
behaviour.

the base flow, nonlinearities are no longer negligible and the system departs from linear
theory.

The first case of interest, Re = 550, is fairly simple to understand as the instability
saturates in the form of a quasi-stationary solution (we still nevertheless observe a small
decay over a viscous time in the nonlinear regime, as shown by the inset in figure 2a).
The saturated amplitude represented here corresponds physically to a meandering in the
streamwise velocity, according to the velocity snapshot displayed in the same figure.
Similar profiles have already been observed in the experiment of Le Gal et al. (2021)
(cf. their figure 3(a) for particle image velocimetry and DNS visualizations). Besides
this steady and vertically homogeneous configuration, we notice interesting features in
figures 2(b,c), corresponding to the computations at Re = 580 and Re = 700. There is
indeed a finite time at which this homogeneous state departs from the primary branch via a
secondary bifurcation, as displayed in the insets of figure 2. Once the bifurcated solutions
reach a stationary state, at the end of each simulation, the corresponding velocity and
buoyancy profiles are no longer homogeneous. As a consequence, a localized structure
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of velocity emerges along the vertical, and the buoyancy perturbations also become
inhomogeneous and localized. Clearly, we observe a spontaneous pattern formation due
to a symmetry-breaking mechanism, our system being initially invariant along z.

As we notice in most of the cases a loss of symmetry along the vertical, we
introduce an averaging operator for quantifying horizontal measures, defined as 〈·〉H :
= (2λx)

−1 ∫∫ ·dx dy. One way to capture and identify the peculiar transition described
earlier is to compute Hovmöller diagrams of the horizontally averaged streamwise velocity
fluctuation 〈u − U0〉H . This is represented in figure 3 for the three configurations in
which we are interested. As we noticed earlier, the case corresponding to Re = 550
displays harmonic modulations of the horizontally averaged streamwise velocity that is
slowly drifting in time. Note that this is effectively a correction to the initially z-invariant
Poiseuille profile, although it remains small in amplitude at this Reynolds number. For
this simulation, we expect the weak temporal drift to vanish as we reach a large enough
viscous time (scaling thus with Re), until the symmetric solution would ultimately be
restored. This neutral drift observed here depends essentially on the initial random seed
used for the computation. Indeed, we observed various shifts of the solution depending
on the initial perturbations that we used (not shown). Pursuing our investigation, the most
striking observation from figure 3(b) is the sudden coarsening of the mean flow modulation
at the finite time corresponding to the secondary bifurcation in figure 2(b). Indeed, for
t ∼ 4 × 103, the system undergoes a symmetry-breaking mechanism, allowing for the
formation of a box-scale modulation of the mean Poiseuille profile that is not harmonic: the
region of reduced streamwise velocity is sharp and localized, while the accelerated region
is broader (see figure 4 below). We recall that the streamwise mass flux is conserved in
all of our simulations. This phenomenon fills the whole numerical domain and saturates
in the form of a steady nonlinear solution. More surprisingly, the case Re = 700 displayed
in figure 3(c) also depicts the same symmetry-breaking mechanism (although at a shorter
time), with a localized structure in the velocity profile, but converges instead to a drifting
mode. This uniform shift seems unrelated to the drift observed at Re = 550, since we
observe it irrespective of the initial conditions. Determining its origin would require a
dedicated nonlinear analysis, which is beyond the scope of this paper. We recall here
that a very similar phenomenology is observed when using the more classical imposed
pressure gradient forcing to sustain the mean Poiseuille flow. It is naturally emerging from
the nonlinear interaction of unstable waves with the mean flow, regardless of the force
sustaining it.

Let us now investigate the wave–mean flow interaction that is depicted here, using
arguments from linear theory. Using the averaging operator over the horizontal plane
introduced earlier, we define the Reynolds-averaged decomposition of the field q =
(u, p, b) as

q = 〈q〉H(z, t) + q′(x, y, z, t), (4.2)

thus separating the horizontal mean flow from the fluctuations. Substituting (4.2) in the
streamwise projection of (2.2a), along with boundary conditions, we recover the mean
field equation

∂

∂t
〈u〉H + ∂

∂z
〈u′w′〉H = Re−1

(
∂2

∂z2 〈u〉H +
〈
∂2u
∂y2

〉
H

)
+ 〈f 〉H. (4.3)

Equation (4.3) expresses the evolution of the mean flow and the transfer of momentum, by
means of the divergence of Reynolds stresses (the second term on the left-hand side). If we
consider the fluctuations to be written as a superposition of both upward and downward
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Figure 3. Hovmöller diagrams of the horizontally averaged streamwise velocity fluctuation 〈u − U0〉H ,
computed in the (t, z)-plane. Positive (negative) values are displayed in red (blue). The area of constant colour
on the left of each plot represents the exponential growth of disturbances. Reynolds numbers are (a) Re = 550,
(b) Re = 580, and (c) Re = 700.

modes with distinct but nearby wavenumbers (k(1)
z , k(2)

z ) and frequencies (ω(1), ω(2)), then
we obtain

u′ = û11 exp(i(kxx + k(1)
z z − ω(1)t)) + c.c. + û12 exp(i(kxx − k(1)

z z − ω(1)t)) + c.c.

+ û21 exp(i(kxx + k(2)
z z − ω(2)t)) + c.c. + û22 exp(i(kxx − k(2)

z z − ω(2)t)) + c.c.,
(4.4)
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Figure 4. Each curve is computed at the latest time of simulation in figure 3, once the solution has converged.
(a) Horizontally averaged streamwise velocity fluctuations as a function of the vertical coordinate. (b) Spectral
energy in Fourier space of the averaged velocity profiles from (a). The principal amplitude peaks are displayed
with vertical lines and labelled with their associated representation defined in (4.5).

with the same decomposition holding for w′. We emphasize that wavenumbers k(1)
z and

k(2)
z are an illustration of the red crosses computed in figure 1. Subsequently, we expand

the Reynolds stress term in (4.3), using the modal decomposition (4.4), and we find

〈u′w′〉H = 〈û11ŵ∗
11 + û12ŵ∗

12 + û21ŵ∗
21 + û22ŵ∗

22〉H + c.c.

+ 〈û11ŵ∗
12 + û∗

12ŵ11〉H exp(2ik(1)
z z) + c.c.

+ 〈û21ŵ∗
22 + û∗

22ŵ21〉H exp(2ik(2)
z z) + c.c.

+ 〈û11ŵ∗
22 + û∗

22ŵ11〉H exp(i[(k(1)
z + k(2)

z )z − Δω t]) + c.c.

+ 〈û11ŵ∗
21 + û∗

21ŵ11〉H exp(i(Δkz z − Δω t)) + c.c., (4.5)

where ∗ denotes complex transposition, and Δkz = k(1)
z − k(2)

z and Δω = ω(1) − ω(2) (a
similar description with only one pair of modes can be found in Yang et al. 2022). We
distinguish in (4.5) the contributions from self- and cross-interactions between a fixed
set of discretized modes. As one can notice, computing the vertical divergence of the
whole expression removes the contribution of self-interacting modes (the first term on
the right-hand side) from the mean flow equation. However, cross-interaction of modes
with the same vertical structure (second and third terms of the expression) yields a wave
pattern with twice the original wavenumber. Expression (4.5) allows us to demonstrate, in
a discrete framework, the resonance mechanism and the modulation in the mean flow due
to the Reynolds stresses.

In figure 4, we present snapshots of the averaged velocity fluctuations 〈u − U0〉H (we
recall that U0 = 1 − y2 is the plane Poiseuille profile), at the latest time of computations
for each plot in figure 3. Clearly, we notice the loss of homogeneity, originally present
in the solution at Re = 550, when observing the other two curves. For instance, the
transient solution Re = 580 still displays the wave pattern at twice the initial wavenumber
from the later case, but also tends to form a modulation that fills the entire numerical
box. Additionally, we explore the spectral energy of the solution at first Re = 550 in
figure 4(b) and notice, as expected, the peak at 2kopt

z and its harmonic at 4kopt
z (with

the correspondence kopt
z = k(1)

z from (4.5)). We can easily notice this pattern emerging
in the nonlinear regime of the first simulation at Re = 550, as displayed in figures 3(a)
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and 4(a), with a total wavenumber 8kopt
z (since the domain originally contains four unstable

wavelengths). This same spatial structure is also present in the early stages of figures 3(b)
and 3(c), until the time where the other modes start to contribute to the dynamics and break
the symmetry. The intermediate case, Re = 580, shows a transient solution, with a leading
mode of wavenumber Δkz = kopt

z /4 present in the spectrum of figure 4(b). Moreover,
there exists lower peaks corresponding to k(1)

z + k(2)
z = 9kopt

z /4 and 2k(2)
z = 5kopt

z /2, with
their harmonics, but they are all dominated by the mode at the size of the whole domain.
Finally, the spectrum of the latest configuration at Re = 700 is completely dominated by
the mode of wavenumber Δkz and enclosed by two sharp fronts of velocity. This profile
is represented in figure 4(a) and highlights the generation and amplification of vertical
shear, due to the increasing velocity gradient in that direction (with order of magnitude
∼1–10 %). We conclude that this spontaneous large-scale modulation is thus mainly due
to an interaction of closely spaced unstable harmonics, generating interesting space–time
wave patterns. Not surprisingly, these symmetry-breaking secondary bifurcations happen
at a shorter time as the control parameter (Re) increases, allowing indeed more harmonics
within the instability map. A demonstration of this feature was represented using linear
theory in figure 1(a), with red crosses depicting the different harmonics.

This modulation that leads to a localized flow pattern could be compared to the exact
invariant solutions of the Navier–Stokes equations as discovered in shear flows without
stratification (Gibson & Brand 2014). However, today it is not known if the solutions
that we discover in our numerical simulations have any connection with these localized
nonlinear solution of the unstratified Poiseuille flow. To answer this open question,
a continuation approach should be used in order to follow the bifurcated nonlinear
branches when changing the Froude and Reynolds numbers. This task, which shares some
interesting connections with the case of the rotating plane Couette flow (Nagata 1990), is
of course beyond the scope of the present study.

We now try exploring configurations away from the instability threshold, to investigate
whether we still observe a similar phenomenology and how it transits to turbulence.

5. Localized stratified turbulence far from the onset

Moving away from the instability threshold, we expect the flow to behave in a more chaotic
way, and notably, we seek for the trigger of stratified turbulence. As already noticed in a
previous study on the Kolmogorov flow with spanwise stratification (Lucas et al. 2017), the
onset of turbulence occurs when Re � Rec in regions with the largest vertical gradients of
velocity (we recall that Rec is a critical Reynolds number computed from linear theory).
It appears that the mechanism responsible for these events is induced by a secondary
Kelvin–Helmholtz type overturning instability (Howard 1961; Miles 1961; Lucas et al.
2017). We therefore pay great attention in our computations to the local quantities
determining the tendency of the flow to be subject to secondary shear instabilities. In
particular, we establish local expressions for the Froude and gradient Richardson numbers
(Lucas et al. 2017), as follows:

Frz = Fr√
1 − Fr2 〈∂zb〉H

, Riz = 1
Fr2

z 〈∂zu〉2
H

. (5.1a,b)

It is worth emphasizing that our system is initially homogeneous in the vertical direction,
such that Frz|t=0 = Fr and Riz|t=0 = ∞. In addition to these quantities, we also compute
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the viscous dissipation:

E = Re−1
〈
|∇ × u|2

〉
D

, (5.2)

where the quantity within brackets is the total enstrophy of the flow. As the Reynolds
number increases and disordered motions occur, we ensure that η > kmax

z , where
η = (E Re3)−1/4 is the Kolmogorov length scale, and kmax

z = 2π/lmin
z is the largest

wavenumber computed with lmin
z , the finest mesh along the vertical (de Bruyn Kops &

Riley 1998; Brethouwer et al. 2007).
We present the local Richardson number in figure 5, along with the vertical kinetic

energy and the Hovmöller diagram for the case Re = 1500, highlighting the saturation
of the linear Poiseuille instability and the appearance of non-trivial dynamics. First, we
still observe the large-scale vertical modulation of the mean Poiseuille profile discussed
in the previous section. This phenomenon is therefore robust and persists well beyond the
weakly nonlinear regime. Second, we observe in all the plots a series of bursting episodes,
consisting in cycles of energy growth and decay. Soon after the symmetry-breaking
transition at t ∼ 300, the local Richardson number in figure 5(c) falls drastically until
reaching a small interval of time where it becomes negative. This peculiarity emphasizes
the presence of unstable stratification locally, and supports the onset of a secondary
shear instability. We study further the quasi-periodic patterns displayed over time in
figures 5(b) and 5(c), and explain this series of events as a consequence of the loss of
vertical homogeneity, leading to the growth of vertical shear. Indeed, once the Richardson
number becomes low enough to cross the theoretical threshold Riz = 1/4 (Howard 1961;
Miles 1961), the flow strengthens due to this secondary instability, until saturation, and
then collapses into unsteady motion. We use the classical linear threshold as an indication
only since we consider an unsteady nonlinear regime. Note, however, that the Richardson
number drops over several order of magnitude in a very short time. Afterwards, energy
diminishes due to turbulent dissipation (displayed in green) and presumably because the
secondary instability has disappeared due to a mixing event, or the reduction in vertical
shear. Indeed, the correlation between the fall in Richardson number and the growth of
viscous dissipation soon after indicates that a secondary vertical-shear-induced instability
triggers first and is then followed by a turbulent collapse and increased dissipation. The
mean flow is then partially restored (still modulated along the vertical) to a state dominated
by the interaction of internal gravity waves. In practice, the global picture might be more
complex than this interpretation, due to the superposition of the two instabilities and the
three-dimensional character of the flow, but all the previous arguments tend to support
our overall description of this mechanism. From a dynamical point of view, we can view
the system as trapped in a quasi-periodic attractor. Similar observations were made in the
context of forced stratified turbulence, in relation to the formation of density layers (Lucas
et al. 2017).

An interesting feature of figure 5(a) that we did not discuss yet is the robustness in the
local modification of the velocity profile. The region where fluctuations decelerate the
mean flow is localized in the vertical direction. As the energy increases, this thin layer
shrinks further and hence the velocity gradients strengthen. To have a clearer view, we
present snapshots of velocity and buoyancy profiles in figure 6 at both extrema of a bursting
episode (denoted by the stars in figure 5b). It is evident from the representation of density
fluctuations in figure 6(a) that domains of quiescent flow, surrounding the area of lowest
horizontal velocity, slightly enhance the stratification profile. The two layers encompassing
this region are both subject to the strongest vertical shear and therefore correspond to
the lowest values of Riz in figure 6(b). At the peak of energy, the stratification becomes
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Figure 5. DNS at Re = 1500. (a) Hovmöller map of streamwise mean velocity fluctuations, with the same
colour code as in figure 3. (b) Vertical kinetic energy in the spirit of figure 2. The two red markers indicate
the extrema of a bursting episode, to be computed in detail in figure 6. (c) Vertical minimum of the gradient
Richardson number over time, computed in logarithmic scale (left y-axis, yellow) and viscous dissipation E
(right y-axis, dark green). The yellow curve is discontinuous whenever Riz is negative (when the flow becomes
locally unstable to convection). The thin dash-dotted line delimits the Kelvin–Helmholtz instability threshold
of Riz = 1/4 (Howard 1961; Miles 1961).

unstable (with overturning) at these coordinates, and the flow breaks down into a localized
layer of chaotic motions. Strikingly, these disordered motions remain confined within a
fixed interval (delimited by the thin dotted lines), before returning to the original layered
configuration displayed in figure 6(a). This cyclical dynamics is well depicted through the
Hovmöller diagram in figure 5(a).

Increasing the Reynolds number further, up to Re = 5000, we present in figure 7 the
same set of data as in figure 5. One instantaneous observation that one can make about
figure 7(a) is the complexity of the Hovmöller diagram in the large Re configuration.
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Figure 6. Local measures of Froude and Richardson numbers (in logarithmic units) over the vertical
coordinate, for the case Re = 1500. Data and snapshots are computed at (a) t = 2837, and (b) t = 3151
(see figure 5). The middle and right-hand plots represent the streamwise velocity fluctuation u − U0 and the
perturbation of buoyancy b, respectively, both displayed at an arbitrary position along x. The thin dotted lines
passing through each set of plots delimit the interfaces where the secondary instabilities trigger and the flow
collapses into stratified turbulence.

The interfaces are indeed no longer formed in an organized way, as previously, but
they follow instead a coarse-graining dynamics of intermittent patterns. Regions of
positive/negative velocity fluctuations emerge spontaneously due to bursting overturns
that can produce localized layers of turbulence. In the meantime, we still observe through
the simulation a dominant mode emerging slowly, at the size of the domain. This leads
us to think that the resonance of harmonics with the fundamental mode dominates the
other interactions. Once again, the vertical kinetic energy displays a series of cyclic
episodes, while the local Richardson numbers are now almost always below the threshold
of instability, or even negative. It is thus not surprising to notice additional regions
of intermittency in the data, such as in figure 6(b), as turbulent states now influence
largely the global dynamics. As we did for the case Re = 1500, we present in figure 8
two snapshots of horizontal velocity, taken at the times of lowest and largest energy
peaks in a bursting episode. We notice one large region subject to shear instabilities,
further collapsing into highly chaotic motions. Although the bursting events are now
more forceful than previously, the turbulence still dies out before starting over a new
cycle. This dynamics seems to persist over the simulations, and we expect the system to
behave similarly as the vertical extension is modified, as soon as resonances are permitted
within the numerical domain. To demonstrate this behaviour, we compute in figures 8(a,b)
a visualization of the velocity field at t = 2940 first, where the flow is assumed to be
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mostly laminar, and then at t = 3600, where a localized turbulent band is observed. This
band is, of course, reminiscent of the turbulent bands observed during the transition of
unstratified shear flows. Today, it is not known if the horizontal turbulent layers that we
observe in our numerical simulations of the stratified Poiseuille flow have any connection
with the streaks and/or the localized bands of the unstratified Poiseuille flow. One first
difference is the value of the selected wavelength: in our case, the modulation affects the
entire flow domain as it emerges from the interaction of close neighbour modes, contrary
to the unstratified case where the pattern possesses its own periodicity. Another obvious
difference between the flow patterns is the inclination angle of the turbulent regions, which
is zero in the case with stratification and seems to be above 16◦ without (Tuckerman et al.
2020). Note that for wall-normal density stratification, this comparison was documented by
Liu, Caulfield & Gayme (2022), where it is shown that (at least for the Couette flow) in the
low Reynolds and low Richardson number regime, the spatial intermittency is associated
with oblique turbulent bands that are qualitatively similar to those seen in unstratified plane
Couette flow. On the contrary, in the high Reynolds and high Richardson number regime,
quasi-horizontal flow structures resembling the turbulent–laminar layers take place as
observed commonly in stratified flows.

6. Discussion

In this paper, we have presented a series of results on the plane Poiseuille flow with stable
vertical stratification. One of the main reasons why we studied this configuration is, as
was done originally in the unstratified limit, to study the transition from a laminar flow,
subject to a linear instability, towards the onset and development of turbulence. First, we
found that this system loses its vertical homogeneity as a consequence of an interaction of
modes, whenever the numerical domain is elongated enough to allow unstable harmonics
of the fundamental mode to exist. The result of this symmetry-breaking mechanism is
the spontaneous formation of vertical gradients of velocity in the initially homogeneous
Poiseuille profile. This additional shear induces secondary instabilities that we believe to
be of Kelvin–Helmholtz type, as well as overturning events, confined in regions where
the gradient Richardson number crosses the well-known critical threshold (Howard 1961;
Miles 1961). Once this instability saturates and collapses into stratified turbulence, energy
declines and the system returns to its former state, before the onset of instability. This
quasi-periodic dynamics of bursting episodes, enclosed within finite layers, is a remarkable
finding that, to the best of our knowledge, has never been observed in the literature on
stratified fluids. However, it is not clear at this stage how the mean flow modulation will
manifest itself in the limit of extremely elongated domain in the vertical direction, where
a large number of unstable modes can coexist even close to the threshold. It also remains
to verify whether such modulation can also occur in the streamwise direction if multiple
horizontal wavelengths can fit into the numerical domain.

An important feature of this flow is, as mentioned, the spontaneous layering and
the onset of turbulence, due to subsidiary shear instabilities. Moreover, these turbulent
motions are encompassed between thin layers of finite size, delimited by interfaces
where the Richardson number is the lowest. It is further observed that such regions are
surrounded by a flow displaying the same meandering patterns as noticed originally by Le
Gal et al. (2021). As the Reynolds number is increased, intermittency takes place and we
are no longer able to distinguish an organized formation of turbulent layers. In this context,
configurations with several sets of layers (all undergoing a series of bursting events) are
allowed to exist. These observations tend to highlight the presence of a similar homoclinic
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Figure 7. DNS at Re = 5000. Same plots as in figure 5. The red markers in the representation of vertical
kinetic energy indicate the time coordinates used in the snapshots of figure 8.

snaking mechanism that some dynamical systems are subject to Burke & Knobloch
(2007). In recent papers, close connections between the field of pattern formation and the
development of coherent structures, related to the layering of the flow, have been studied
extensively (Lucas et al. 2017), notably in the context of unstratified plane Couette flow
(Schneider, Gibson & Burke 2010; Gibson & Schneider 2016). These works demonstrated
the existence of invariant solutions, restricted to one spatial dimension, using Newton-like
algorithms to perform a parameter continuation. Eventually, we could consider a similar
treatment in our framework, although computation of vertically localized solutions for
such a configuration is expensive numerically and requires therefore a better understanding
of the weakly nonlinear dynamics.
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Figure 8. Snapshots of the numerical computation at Re = 5000, computed at (a) t = 2940, and (b) t = 3600.
The left-hand plots display the streamwise velocity fluctuation u − U0, whereas the right-hand plots represent
the associated iso-contours of wall-normal velocity. Positive (negative) iso-contours are represented in light
purple (light blue) regardless of their magnitude.

To explain the symmetry loss in the nonlinear regime, we decomposed the disturbances
as a superposition of linear modes, while setting ourselves in the vicinity of the instability
threshold. This allowed us to extract an explicit form for the Reynolds stress, assuming
that the domain contains a finite number of harmonics. Although this approach is useful to
understand the mechanism responsible for the onset of a secondary bifurcation and for the
emergence of space–time modulations, it still adopts arguments from linear theory, which
are no longer strictly valid in this regime. To avoid such impediment, a next step would be
to investigate the weakly nonlinear analysis of the system, with finite amplitudes, shortly
after the deviation from linear instability. With such a study, we would be able to isolate
the term responsible for the correction of the mean flow and derive a set of nonlinear
equations to describe its dynamics (in the form of a modified Stuart–Landau equation).
Building upon the seminal works on the nonlinear Poiseuille configuration (Stuart 1960;
Stewartson & Stuart 1971), by means of a multiple scaling approach, we are confident that
explicit results can be retrieved in our context.
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Thus we claim here that our observations of the transition of the stratified Poiseuille
flow via the generation of localized layers of turbulence (at least for the particular values
of the Froude and Reynolds numbers that we explored) differ from the observations of
Lucas et al. (2019) in the case of the stratified Couette flow, and also from the classical
transition scenario of the unstratified plane Poiseuille flow. One of the possible reasons
for the discrepancy between the Lucas et al. (2019) study and the present one may come
from the (quasi-)impossibility for the stratified Couette flow to generate spontaneously a
spatial modulation of the basic plane flow profile, which is the cornerstone of our present
scenario of transition. Let us be precise here that the reason for this restriction comes from
the different shapes in the parameter spaces of the linearly unstable domains of these shear
flows. As a consequence, it is not possible, at the stage of our study, to explore the eventual
connection (if any) between the observed linear flow pattern to already known nonlinear
solutions of wall-bounded shear flow, as was done by Lucas et al. (2019).
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