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Abstract

Genetic influences play a significant role in risk for psychiatric disorders, prompting numer-
ous endeavors to further understand their underlying genetic architecture. In this paper, we
summarize and review evidence from traditional twin studies and more recent genome-
wide molecular genetic analyses regarding two important issues that have proven particularly
informative for psychiatric genetic research. First, emerging results are beginning to suggest
that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or
extreme manifestations of psychiatric traits in the population share genetic risks with quan-
titative variation in milder traits of the same disorder throughout the general population.
Second, there is now evidence for substantial sharing of genetic risks across different psychi-
atric disorders. This extends to the level of characteristic traits throughout the population,
with which some clinical disorders also share genetic risks. In this review, we summarize
and evaluate the evidence for these two issues, for a range of psychiatric disorders. We
then critically appraise putative interpretations regarding the potential meaning of genetic
correlation across psychiatric phenotypes. We highlight several new methods and studies
which are already using these insights into the genetic architecture of psychiatric disorders
to gain additional understanding regarding the underlying biology of these disorders. We con-
clude by outlining opportunities for future research in this area.

Introduction

Psychiatric disorders are relatively common in terms of lifetime prevalence and are associated
with considerable distress and functional impairment (Whiteford et al. 2013). Understanding
the etiology of these disorders is of critical importance to developing effective treatments and
reducing suffering. There is strong evidence that these disorders are complex and partly gen-
etic in origin, with twin study heritability estimates of 40–80% (Polderman et al. 2015).
Environmental factors also contribute and possibly moderate genetic risk. This review will
consider two important related hypotheses: that psychiatric disorders share genetic risks
with variation in relevant population traits (illustrated in Fig. 1a) and that there are shared
genetic contributions across different psychiatric phenotypes (illustrated in Fig. 1b).

The hypothesis that psychiatric disorders are extreme manifestations of continuously dis-
tributed population traits is not new [e.g. for a theoretical review see (Plomin et al. 2009)].
However, studies specifically testing whether categorical, clinical disorders share genetic
risks with continuous variation in related sub-diagnostic traits in the population have been
sparse until recently. A pressing matter that needs to be evaluated for specific psychiatric phe-
notypes, is the extent to which the current evidence supports this hypothesis. Recent years
have also seen a dramatic increase in studies examining the related issue of shared genetic
risks across different psychiatric disorders. Given the fast-growing body of research on this
subject, the time is ripe to assess the strength of the evidence of shared risks for specific
pairs of psychiatric phenotypes. In this review, we summarize and evaluate the evidence for
the two hypotheses illustrated in Fig. 1, for a range of psychiatric phenotypes that have
been extensively studied using both traditional twin and molecular genetic methods. We
also discuss possible interpretations and implications for genetic research and clinical practice.
Based on a non-exhaustive literature search, studies were included if they formally tested for
shared genetic risks across a psychiatric disorder and traits related to the same disorder or
across different psychiatric phenotypes (either defined as disorder or traits). Twin studies
using DeFries-Fulker analysis were also included, although these studies do not directly test
for genetic correlation; see additional discussion below.

Overview of twin and molecular genetic methods

Most evidence concerning shared genetic risks within and across phenotypic constructs comes
from twin studies and common variant genome-wide analyses. The twin design, which relies
on comparison of identical (monozygotic) and non-identical (dizygotic) individuals, is
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commonly used to estimate the heritability of individual traits. Of
particular relevance is the DeFries-Fulker analytic method, which
estimates group heritability. Group heritability indicates the
degree to which the mean difference between a proband group
and the rest of a given sample is influenced by genetic factors.
Significant group heritability indicates similar etiology for milder
variation in continuous traits and more severe manifestations. An
extension of the twin design, the bivariate twin model, allows one
to estimate the degree of genetic correlation (rg) between two phe-
notypes. Complementarily, molecular genetic methods directly
test for shared genetic risks across phenotypes. One method is
the estimation of genetic correlation [e.g. using LDSC or
GREML-GCTA (Yang et al. 2011; Bulik-Sullivan et al. 2015a)]
from millions of common variants (single nucleotide polymorph-
isms; SNPs), for example using a case-control sample of one psy-
chiatric disorder and another sample assessed for a relevant
continuous trait or a different disorder. Such methods provide
correlation estimates of the degree to which genetic risks are
shared. However, practical limitations include a need for very
large sample sizes and for some methods (e.g. GREML-GCTA),
access to raw genotypes, limiting the application of these tools.
A second approach uses a genome-wide association study
(GWAS) ‘discovery’ sample to calculate polygenic risk scores
(PRS) (Wray et al. 2014) for individuals in an independent ‘target’
sample. PRS for a phenotype of interest can be tested for associ-
ation with another phenotype (e.g. another psychiatric disorder or
trait variation) in the target sample, to establish whether there are
shared genetic risks across phenotypes. Although studies using
PRS methods can show direct evidence for shared genetic risks,
typically modest effect sizes are observed (Wray et al. 2014),
whereas molecular genetic studies that estimate genetic correl-
ation provide a more precise assessment of the degree of shared
genetic risks across phenotypes using different definitions.

It is important to note several differences in the meaning of
results obtained from twin and molecular genetic analyses. For
a more thorough review of different methods for estimation of
univariate heritability and genetic correlation, please see Yang
et al. (2017). In brief, the correlation estimates from twin studies
capture all inherited genetic variants shared by monozygotic
twins. These estimates are likely to be different and higher than
those from SNP-based studies as the latter is only based on addi-
tive common variant effects tagged by genotyping arrays.
However, the source of any shared genetic effects cannot be dis-
cerned from twin studies; effects may be driven by or limited to
specific types of variants (e.g. rare mutations) but not to other
classes of variants (e.g. SNPs). Genetic studies assessing multiple
classes of variants are needed to determine the source of genetic
correlations estimated using twin studies. It is also worth noting
that evidence from common and rare variant studies regarding
shared genetic risks between two phenotypes might not be
consistent.

Shared genetic risks across categorical disorders and
population trait variation

Genetic studies have consistently demonstrated that thousands of
common variants of small effect, as well as rare variants of larger
effect, increase the risk for psychiatric disorders (Sullivan et al.
2012; Cross-Disorder Group of the PGC, 2013a; Davis et al. 2013;
Robinson et al. 2015). This complex polygenic architecture supports
a model where a quantitatively distributed liability (influenced by
numerous genes) is associated with one or more continuous pheno-
types that underlie the diagnostic distinction between cases and con-
trols. According to such a model (Fig. 1a), genetic risks that
contribute to clinical diagnoses will also influence variation in
related quantitative traits in the general population. See Table 1

Fig. 1. Hypothesized models of: (a) shared genetic risks across disorder and population trait variation, where the extreme end of a continuous distribution of a trait
is associated with a continuous underlying genetic liability, and (b) shared genetic risks across different disorders, where squares labeled ‘P’ represent phenotypes,
and squares labeled ‘G’ and ‘E’, represent genetic or environmental contributions, respectively, that can be shared or unique (indicated by the number of arrows
pointing to phenotypes). All G factors are uncorrelated with one another and thus the entire genetic contribution to a phenotype can be modelled as the sum of
the genetic factors contributing to it (e.g. for P1 this would be G1 + G2 + G3 + G5). The same is true for environmental factors (i.e. environmental contribution to P1
is E1 + E2 + E3 + E5). As an illustrative example, if P1 were ADHD, P2 were ASD, and P3 were MDD, then G1 represents any genetic variants that are shared between
ADHD, ASD, and MDD; G2–G4 represents genetic variants shared between only two of these disorders (e.g. G2 would be genetic risk for ADHD and ASD but not
MDD); and G5–G7 represent unique genetic risks (e.g. G5 is genetic risk that is unique to ADHD and not shared with either ASD or MDD). N.B. The shapes are not
indicative of whether a variable is latent or measured.
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for a summary of studies that have addressed this hypothesis for spe-
cific psychiatric disorders.

Disorders with early onset

Twin studies have reported significant group heritability using
several different definitions of ASD (Robinson et al. 2011;
Lundström et al. 2012). One study employed a novel twin
model to estimate the genetic correlation between ASD diagnoses
and traits (rg = 0.70) (Colvert et al. 2015). PRS studies show
mixed results, with association between clinical ASD PRS with
social-communication problems at age 8 but not later ages

(St Pourcain et al. 2017), with self-assessed autistic traits in adults
(Bralten et al. 2017) and null results in a third study (Krapohl
et al. 2016). Modest, genetic correlation (rg = 0.27–0.34) was esti-
mated between clinical ASD and social-communication traits at
age 8, with non-significant estimates at ages 11–17 years
(Robinson et al. 2016; St Pourcain et al. 2017). The rate of rare
de novo mutations was associated with autism-related behaviors
not only in children with ASD but also in unaffected siblings
(Robinson et al. 2016).

Twin studies of attention-deficit hyperactivity disorder
(ADHD) traits have also revealed substantial group heritability
for extreme scores on ADHD traits (Levy et al. 1997; Larsson

Table 1. Summary of studies investigating shared genetic risks across disorders and trait variation

Disorder Evidence from studies

ASD Twin studies: persistently high group heritability across varying cut-offs; Genetic correlation of 0.70 between clinical diagnoses of ASD
and autistic traits (Robinson et al. 2011; Lundström et al. 2012; Colvert et al. 2015)

LDSC: ASD and population social-communication traits: rg = 0.27; replicated in independent clinical sample: rg = 0.30; genetic
correlation is highest at age 8 years (rg = 0.34) and drops and is no longer significant for traits measured at ages 11 (0.16), 14 (0.21),
and 17 (0.01) years (Robinson et al. 2016; St Pourcain et al. 2017)

PRS: PRS derived using a clinical ASD discovery GWAS showed significant association with social-communication problems at age 8
years but not ages 11, 14, and 17 years in the general population (St Pourcain et al. 2017) and self-reported autistic traits in adults
(in particular symptoms related to attention to detail, but also rigidity and childhood behaviors) (Bralten et al. 2017), although 1
smaller study does not find an association with autistic traits in children (Krapohl et al. 2016)

Other: rare de novo loss-of-function and missense mutations associated with Vineland composite scores in ASD probands and
unaffected siblings (Robinson et al. 2016)

ADHD Twin studies: high group heritability from DeFries-Fulker analysis (Levy et al. 1997; Larsson et al. 2011; Greven et al. 2016)
LDSC: ADHD and population traits of ADHD: rg = 0.96 (Middeldorp et al. 2016); replicated in a larger study: rg = 0.94 (Demontis et al.

2017). ADHD and traits of extraversion in the population: rg = 0.30 (Lo et al. 2016)
PRS: multiple analyses of independent target samples find associations between clinically-defined ADHD PRS and population traits of

ADHD and vice versa, although 1 smaller study does not find an association (Groen-Blokhuis et al. 2014; Martin et al. 2014a;
Stergiakouli et al. 2015, 2017; Krapohl et al. 2016; Riglin et al. 2016; Brikell et al. 2017; Jansen et al. 2017)

ID Twin studies: Cognitive abilities in the general population seem to share genetic risks with milder forms of ID (Spinath et al. 2004;
Reichenberg et al. 2016) and extremely high IQ (Shakeshaft et al. 2015). There is some evidence, however, of discontinuity between
cognitive abilities and severe forms of ID (Reichenberg et al. 2016)

Other: Rare, likely pathogenic copy number variants (which are associated with developmental delay) are also associated with lower
cognitive ability in the population (Männik et al. 2015; Kendall et al. 2016)

Anxiety disorders Twin studies: extreme over-anxiety and specific fears, such as of animals, seem to share genetic risks with milder trait anxiety
(Stevenson et al. 1992; Goldsmith & Lemery, 2000). Notably, the evidence is lacking on links between anxiety disorders and anxiety
traits in samples that are closer in age to the typical age of onset for anxiety disorders

OCD Twin studies: although heritable OCD traits are present throughout the general population (van Grootheest et al. 2005), no study has
focused on the extreme presentation of these traits

PRS: OCD PRS were associated with OCD traits in the general population (den Braber et al. 2016)

MDD Twin studies: smaller studies yielded inconsistent findings; one study did not find significant group heritability, although a subsequent
study of children and adolescents did (Rende et al. 1993; Eley, 1997)

PRS: MDD PRS associated with depressive symptoms in elderly (Demirkan et al. 2011) but not with internalizing traits at ages 3–10
years (Jansen et al. 2017)

LDSC: MDD and depressive symptoms in the population: rg = 0.91–1.00; MDD and traits of neuroticism in the population: rg = 0.56–0.70
(Direk et al. 2016; Lo et al. 2016; Major Depressive Disorder Working Group of the PGC et al. 2017)

SCZ & psychosis Twin studies: Significant group heritability for severe and milder manifestations of adolescent psychotic experiences, suggesting
genetic links between mild and severe psychotic experiences; however, the association with psychotic disorders such as SCZ is
unclear from these studies (Ronald et al. 2014b; Zavos et al. 2014)

PRS: no association of SCZ PRS and psychotic experiences in adolescents; evidence of association of SCZ PRS and adolescent negative
schizophrenia-like symptoms as well as ‘thought problems’ at age 10 years; increased PRS in unaffected relatives and with
increasing severity in probands (Zammit et al. 2013; Bigdeli et al. 2014; Sieradzka et al. 2014; Jones et al. 2016; Krapohl et al. 2016;
Meier et al. 2016; Jansen et al. 2017)

ASD, autism spectrum disorder; ADHD, attention-deficit hyperactivity disorder; ID, intellectual disability; OCD, obsessive-compulsive disorder; MDD, major depressive disorder; SCZ,
schizophrenia
Group heritability (implemented in DeFries-Fulker analysis) (DeFries & Fulker, 1985) refers to the degree to which genetic factors influence the mean difference between extreme groups and
the rest of a sample; significant group heritability implies a genetic link between milder and more severe manifestations of a trait
Linkage disequilibrium score correlation (LDSC) (Bulik-Sullivan et al. 2015a, b) estimates the contribution of all SNPs from genome-wide data and indexes this as an estimate of
SNP-heritability; which is different to twin heritability (Wray et al. 2014). This method can be applied to examine shared genetic risks between disorders and population traits to give an
estimate of genetic correlation. Genome-wide association studies (GWAS) directly assess the independent association of many millions of common genetic variants (single nucleotide
polymorphisms; SNPs) with a phenotype. Polygenic risk score (PRS) analysis, uses a GWAS ‘discovery’ sample to calculate genetic risk scores for individuals in an independent ‘target’
sample with genetic data; scores are derived by calculating the number of risk alleles weighted by the discovery effect size for each SNP and then summing these values for the set of SNPs,
for each target individual (The International Schizophrenia Consortium, 2009). Regression analyses are used to test whether PRS for the discovery phenotype (e.g. clinical disorder) are
associated with phenotypes of interest in the independent target sample (e.g. symptom variation in the population)
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et al. 2011), albeit extremely low ADHD scores are a potential
exception (Greven et al. 2016). Multiple PRS analyses have
demonstrated that genetic risk for clinically-diagnosed ADHD is
shared with ADHD traits assessed between ages 3 and 17 years
(Groen-Blokhuis et al. 2014; Martin et al. 2014a; Stergiakouli
et al. 2015, 2017; Riglin et al. 2016; Brikell et al. 2017; Jansen
et al. 2017). Estimates of genetic correlation between ADHD diag-
nosis and traits are very high (rg = 0.94–0.96) (Middeldorp et al.
2016; Demontis et al. 2017), with a moderate genetic correlation
(rg = 0.30) between ADHD diagnosis and extraversion traits in the
population (Lo et al. 2016).

Cognitive abilities display a similar pattern of significant group
heritability in studies of mild intellectual disability (ID) (Spinath
et al. 2004), different quantiles of reading assessments (Logan
et al. 2012), and high levels of intelligence (Shakeshaft et al.
2015). However, severe ID appears to be an exception to this pat-
tern (Reichenberg et al. 2016). Molecular genetic studies of ID
have focused on very rare mutations (Girirajan et al. 2011; The
Deciphering Developmental Disorders Study, 2014) and there is
some evidence that rare, likely pathogenic copy number variants
(CNVs) are associated with poor performance on cognitive
tasks in the population (Männik et al. 2015; Kendall et al.
2016). Studies assessing the degree of shared common variants
between ID and cognition in the population are lacking.

Converging evidence from twin and molecular genetic meth-
ods so far shows reasonably strong support for certain child-onset
neurodevelopmental disorders (i.e. ADHD, ASD, and mild ID) as
the extreme ends of continuous distributions of population traits.

Disorders with onset in adolescence and adulthood

There is a lack of studies testing for shared genetic risks across dis-
order and traits for anxiety disorders and obsessive-compulsive
disorder (OCD). Although twin studies have established the her-
itability of anxiety traits, only two studies reported significant
group heritability for anxiety disorders (Stevenson et al. 1992;
Goldsmith & Lemery, 2000). Twin studies of OCD indicate that
traits characteristic of OCD are heritable and present throughout
the population (van Grootheest et al. 2005), although no twin
studies have tested whether extreme OCD traits share genetic
risks with milder traits. One recent study found associations
between OCD PRS and continuously-distributed obsessive-
compulsive traits in the population (den Braber et al. 2016).

Twin studies of group heritability for depressive traits have
found mixed results (Rende et al. 1993; Eley, 1997). Shared genetic
influences across major depressive disorder (MDD) and depressive
traits have been reported in an elderly population using PRS
analysis (Demirkan et al. 2011) but not in a childhood sample asses-
sing internalizing traits at ages 3–10 years (Jansen et al. 2017).
Recent common variant analyses showed very high genetic correl-
ation (rg = 0.91–1.00) between MDD and depressive symptoms
(Direk et al. 2016; Anttila et al. 2017; Major Depressive Disorder
Working Group of the PGC et al. 2017) and moderate correla-
tion between MDD and personality measures, notably neuroticism
(rg = 0.56–0.74), in the general population (Lo et al. 2016; Major
Depressive Disorder Working Group of the PGC et al. 2017).

The genetic evidence for a continuous spectrum of psychosis
in the population is more complex. Psychotic experiences (e.g.
paranoia and hallucinations) show low-to-moderate heritability
(15–59%), with significant group heritability implying a genetic
link between mild and severe psychotic experiences (Zavos et al.
2014). However, it is unclear from twin studies whether psychotic

experiences are related to schizophrenia. Findings from PRS stud-
ies are mixed, with several studies finding no association of
schizophrenia or bipolar disorder (BD) PRS with adolescent
psychotic experiences (Sieradzka et al. 2014; Krapohl et al.
2016), others reporting an association in the opposite direction
to that expected (Zammit et al. 2013) and others finding associa-
tions between schizophrenia PRS and adolescent negative symp-
toms (e.g. apathy or lack of energy) related to schizophrenia
(Jones et al. 2016) and ‘thought problems’ at age 10 (Jansen
et al. 2017). Schizophrenia PRS are higher in unaffected relatives
of schizophrenia probands compared with controls (Bigdeli et al.
2014) and in individuals with more strictly defined schizophrenia,
in terms of chronicity or severity of disorder (Meier et al. 2016).

Evidence for shared genetic risks across disorders and traits is
limited for adolescent- and adult-onset psychiatric disorders.
Preliminary supporting evidence is seen for OCD and MDD.
The picture is quite complex for schizophrenia and there is insuf-
ficient evidence to conclude whether anxiety disorders share gen-
etic risks with related population traits.

Limitations and interpretation

There are several limitations of existing studies and important issues
that have not been sufficiently addressed. First, many twin studies
use percentile-based cut-offs to identify probands, rather than
using clinical diagnoses. Second, twin studies have largely employed
DeFries-Fulker analysis, which does not directly estimate genetic
correlation between psychiatric disorders and related traits; rather,
significant group heritability suggests a link between extreme values
of a trait and variation in the trait. Direct estimation of the genetic
correlation, as done for ASD (Colvert et al. 2015), would likely be
informative in future twin research.

Although analyses of population traits do not include many
individuals who have psychiatric diagnoses, it is important to
determine whether associations persist when such individuals
are excluded. If not, this might suggest that any association signal
is driven by extreme cases and not continuous variation in the
trait of interest. Another important issue is the strength of any
observed genetic correlations. It is entirely likely that even if
there is some degree of shared genetic risk between a disorder
and related traits, this will be partial and unique genetic effects
will also contribute [e.g. as may be the case with ASD and social-
communication traits, given somewhat modest genetic correla-
tions (Robinson et al. 2016)].

Given that most psychiatric disorders consist of multiple
domains, another challenge is identifying whether relevant popu-
lation traits show different degrees of shared genetic risk with a
given psychiatric disorder, as seems to be the case for schizophre-
nia genetic risk in relation to psychotic experiences and negative
symptoms in the population (Jones et al. 2016). Another difficulty
with analyzing continuously distributed psychiatric traits is cap-
turing the full spectrum of a relevant behavior, as most measure-
ment instruments are optimized for detecting difficulties not
abilities, thereby resulting in highly zero-inflated and skewed dis-
tributions that often violate modeling assumptions. It is unknown
whether normalizing such scores through transformations or by
regressing out covariates and rank-transforming a variable is an
optimal solution and such methods may introduce technical arti-
facts (Pain et al. 2017). Skewed variables need to be analysed using
models that appropriately account for non-normal distributions
of data. Ideally, measures that better capture the full variability
of behavioral phenotypes are also needed.
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We suggest that the assessment of the degree to which a her-
itable disorder can be considered as an extreme manifestation of
population traits should include the following investigations: esti-
mation of the heritability of relevant population traits, estimation
of genetic correlation between the disorder and traits, and sensi-
tivity analyses to determine whether any correlation is explained
entirely by inclusion of individuals scoring at the extreme end
of the trait distribution.

Shared genetic risks across different psychiatric
phenotypes

Whilst the degree to which many specific psychiatric disorders
share genetic risk with related population traits is yet to be deter-
mined, there is much more evidence regarding shared genetic
risks across different disorders. Below we consider the strength of
the evidence examining this hypothesis, as illustrated in Fig. 1b.
See Table 2 for a summary. It is important to note that many studies
have examined shared genetic risk between one psychiatric disorder
and population traits related to another phenotype, thereby provid-
ing additional, albeit indirect, evidence for sharing of genetic risks
across psychiatric disorders and continuous traits.

Disorders with early onset

Twin studies of neuropsychiatric diagnoses and childhood traits
consistently show significant genetic correlations. Associations
have been seen between ADHD inattentive symptoms and diffi-
culties in reading and mathematics (Greven et al. 2011, 2014;
Wadsworth et al. 2015), categorically and continuously defined
ADHD and ASD (Reiersen et al. 2008; Ronald et al. 2008,
2014a; Lichtenstein et al. 2010; Taylor et al. 2012), and ASD
with learning difficulties and tics (which are associated with
Tourette’s syndrome) (Lichtenstein et al. 2010). However, two
other twin studies of ASD and intellectual ability have reported
low genetic correlations, although this might have been related
to measurement differences (Hoekstra et al. 2009, 2010).

Analyses of common genetic variants so far have not confirmed
the genetic correlation between ADHD and ASD observed in twin
studies (Cross-Disorder Group of the PGC, 2013a, b; Bulik-Sullivan
et al. 2015a; Anttila et al. 2017; Jansen et al. 2017). Clinical ADHD
shares some genetic risk with social-communication traits (Martin
et al. 2014a) and other neurodevelopmental and externalizing traits
thatmake up a general factor of childhood psychopathology (Brikell
et al. 2017). Clinical ADHD shares genetic risk with lower cognitive
abilities in children and adults in the general population (Martin
et al. 2014b; Clarke et al. 2016; Stergiakouli et al. 2016; Anttila
et al. 2017; Demontis et al. 2017; Riglin et al. 2017; Sniekers et al.
2017). In ASD, there is a positive genetic correlation with common
variants associated with cognitive ability, suggesting that these var-
iants operate differently to common risk variants for other psychi-
atric phenotypes and to rare variants in the context of ASD (Clarke
et al. 2016; Robinson et al. 2016; Anttila et al. 2017; Sniekers et al.
2017; Weiner et al. 2017). With regard to rare variants, studies of
CNVs have implicated the same genomic regions in multiple disor-
ders, including ASD, ID, and ADHD (Guilmatre et al. 2009; Sebat
et al. 2009; Pinto et al. 2010;Williams et al. 2010, 2012; Cooper et al.
2011; Lionel et al. 2011; Sanders et al. 2011; Pescosolido & Gamsiz,
2013). Recent large exome sequencing studies have identified the
first robust rare de novo protein-truncating mutations (variants
which disrupt protein formation and are likely highly deleterious)
associated with ASD, with many of the same genes found to harbor

de novomutations linked to ID (De Rubeis et al. 2014; Iossifov et al.
2014; Samocha et al. 2014; The Deciphering Developmental
Disorders Study, 2014).

Twin and molecular studies have yielded some consistent find-
ings, but larger genetic studies are needed to further understand
the degree and source of shared genetic risks in these early-onset
disorders. The association between ASD and ID is particularly
complex, with shared risk for these phenotypes seen at the level
of rare risk variants but a positive association seen for common
variants; indeed these mixed genetic results may partly explain
the low genetic correlations between these phenotypes in twin
studies (Hoekstra et al. 2009, 2010).

Disorders with onset in adolescence and adulthood

Twin studies have found substantial evidence of genetic correla-
tions across schizophrenia and BD (Cardno et al. 2002;
Lichtenstein et al. 2009), BD and MDD (Song et al. 2015), anxiety
disorder subtypes (Mosing et al. 2009), specific anxiety disorders
and MDD (Roy et al. 1995; Kendler et al. 2007; Mosing et al.
2009), traits of anxiety and depressive symptoms (Thapar &
McGuffin, 1997), MDD and psychotic experiences in adolescence
(Zavos et al. 2016), depressive symptoms and disordered eating
scores (Slane et al. 2011), OCD and MDD (Bolhuis et al. 2014),
and OCD with anxiety-related behaviors and anorexia nervosa
(AN) (Cederlöf et al. 2015; López-Solà et al. 2016).

GWAS of adult psychiatric disorders have confirmed that
common genetic variants associated with one disorder also play
an important role in other disorders. Recent analyses using mul-
tiple genome-wide methods report shared genetic risks across
schizophrenia, BD, MDD, and OCD, across schizophrenia, AN
and OCD, and between MDD with anxiety disorders and AN
(Cross-Disorder Group of the PGC, 2013a, b; Bulik-Sullivan
et al. 2015a; Anttila et al. 2017; Major Depressive Disorder
Working Group of the PGC et al. 2017). Shared genetic risks
are seen across different anxiety disorders (generalized anxiety
disorder, panic disorder and phobias) and with MDD, though
not with BD or schizophrenia (Otowa et al. 2016). General popu-
lation studies of schizophrenia PRS report associations with anx-
iety symptoms, with mixed evidence for association with
depressive symptoms between ages 7 and 15 (Jones et al. 2016;
Jansen et al. 2017; Nivard et al. 2017). MDD PRS were also asso-
ciated with anxiety symptoms in an elderly population sample
(Demirkan et al. 2011). Thus, there is evidence that a considerable
degree of genetic influences are shared across multiple pheno-
types, assessed categorically or continuously.

Shared genetic risks across child- and adult-onset disorders

Childhood-onset disorders and disorders with an onset typically in
adolescence or adulthood also share genetic risks. For example, twin
studies find that early-onset-neurodevelopmental disorders share
genetic risk with anxiety (Hallett et al. 2010; Michelini et al.
2015; Chen et al. 2016), MDD (Cole et al. 2009; Lundström et al.
2011), affective problems (Rydell et al. 2017), and OCD (Pinto
et al. 2016). In a study of specific intellectual domains, problems
with communication shared a modest degree of genetic risk with
adolescent hallucinations and mania (Cederlöf et al. 2014b).
Molecular genetic studies have reported genetic correlations
between both ADHD and ASD with MDD, schizophrenia and
BD (Cross-Disorder Group of the PGC, 2013a, b; Bulik-Sullivan
et al. 2015a; van Hulzen et al. 2016; Anttila et al. 2017;
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Table 2. Summary of studies investigating shared genetic risks across disorders

Disorder ASD ADHD ID SCZ BD MDD AXD AN&ED OCD

ADHD Twin rg: 0.54–0.87
(Reiersen et al.
2008; Ronald
et al. 2008;
Lichtenstein
et al. 2010)

SNP rg: ns
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

PRS: mixed
evidence
(Cross-Disorder
Group of the
PGC, 2013b;
Martin et al.
2014a; Krapohl
et al. 2016;
Brikell et al.
2017; Jansen
et al. 2017)

Other: Overlap of
CNV loci (Lionel
et al. 2011;
Williams et al.
2012)

ID Twin rg: 0.04–0.71
(disorder) &
−0.27 (traits)
(Hoekstra et al.
2009, 2010;
Lichtenstein
et al. 2010)

PRS: positive
association
(Clarke et al.
2016)

SNP rg: 0.21–0.38
between ASD
and general
cognition (Anttila
et al. 2017;
Sniekers et al.
2017)

Other: Overlap of
CNV loci & genes
hit by rare

Twin rg: −0.16 to
−0.41 (Greven
et al. 2011, 2014)

PRS: negative
association with
IQ, positive
association with
learning
difficulties
(Martin et al.
2014b; Clarke
et al. 2016;
Brikell et al.
2017)

SNP rg: −0.27 to
−0.41 between
ADHD and
general
cognition
(Demontis et al.
2017; Sniekers
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loss-of-function
mutations
(Guilmatre et al.
2009;
Pescosolido &
Gamsiz, 2013; De
Rubeis et al.
2014; Iossifov
et al. 2014;
Samocha et al.
2014)

et al. 2017)
Other: Overlap of

CNV loci (Lionel
et al. 2011;
Williams et al.
2012)

SCZ SNP rg: 0.16–0.23
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; The ASD
Working Group
of The PGC,
2017)

PRS: association
with disorder &
ASD traits
(Cross-Disorder
Group of the
PGC, 2013b;
Krapohl et al.
2016; St Pourcain
et al. 2017)

Other: Overlap of
CNV loci
(Guilmatre et al.
2009)

SNP rg: 0.22–0.23
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

PRS: mixed
evidence for
ADHD disorder
(Cross-Disorder
Group of the
PGC, 2013b;
Hamshere et al.
2013); mixed for
population traits
of ADHD
(Krapohl et al.
2016; Jansen
et al. 2017;
Nivard et al.
2017)

Other: Overlap of
CNV loci (Lionel
et al. 2011;
Williams et al.
2012)

Twin rg: 0.15–0.22
between
communication
impairment
and adolescent
psychotic-like
experiences
(Cederlöf et al.
2014a)

SNP rg: −0.38
(performance
IQ); −0.07
(verbal IQ);
−0.20 (general
cognition)
(Hubbard et al.
2016; Anttila
et al. 2017;
Sniekers et al.
2017)

PRS: negative
association
with cognition
(McIntosh et al.
2013; Lencz
et al. 2014;
Hagenaars
et al. 2016;
Hubbard et al.
2016)

Other: Overlap of
CNV loci
(Guilmatre et al.
2009)

BD Twin rg: 0.24 (Song
et al. 2015)

SNP rg: ns
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

Twin rg: 0.33 (Song
et al. 2015)

SNP rg: 0.26–0.71
(Bulik-Sullivan
et al. 2015a; van
Hulzen et al.
2016; Anttila
et al. 2017)

PRS: ns
(Cross-Disorder

Twin rg: 0.30
between
communication
impairment
and juvenile
mania
symptoms
(Cederlöf et al.
2014b)

SNP rg: ns

Twin rg: 0.28–0.60;
49–68% shared
liability (Cardno
et al. 2002;
Lichtenstein
et al. 2009; Song
et al. 2015)

SNP rg: 0.68–0.79
(Cross-Disorder
Group of the
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Table 2. (Continued.)

Disorder ASD ADHD ID SCZ BD MDD AXD AN&ED OCD

PRS: positive
association with
disorder; mixed
for ASD traits
(Cross-Disorder
Group of the
PGC, 2013b;
Krapohl et al.
2016)

Group of the
PGC, 2013b;
Hamshere et al.
2013; Krapohl
et al. 2016;
Jansen et al.
2017)

(general
cognition)
(Anttila et al.
2017; Sniekers
et al. 2017)

PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

PRS: consistent
positive
association
(disorder) (The
International
Schizophrenia
Consortium,
2009;
Cross-Disorder
Group of the
PGC, 2013b)

MDD Twin rg: 0.17–0.19
(Hallett et al.
2010)

SNP rg: 0.44
between
disorders; ns
between ASD
and depressive
symptoms
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; Major
Depressive
Disorder Working
Group of the PGC
et al. 2017)

PRS: ns
(Cross-Disorder
Group of the
PGC, 2013b;
Krapohl et al.
2016; Jansen
et al. 2017)

Twin rg: 0.34–0.77
(Cole et al. 2009;
Chen et al. 2016;
Rydell et al.
2017)

SNP rg: 0.32–0.52
between
disorders; 0.40–
0.45 between
ADHD and
depressive
symptoms
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; Demontis
et al. 2017; Major
Depressive
Disorder
Working Group
of the PGC et al.
2017)

PRS: ns (Cross-
Disorder Group
of the PGC,
2013b; Krapohl
et al. 2016;
Jansen et al.
2017)

SNP rg:− 0.27
between
depressive
symptoms and
general
cognition; ns
for MDD (Anttila
et al. 2017;
Sniekers et al.
2017)

Twin rg: 0.72–0.78
(traits) (Zavos
et al. 2016)

SNP rg: 0.34–0.51
between
disorders; 0.30
between
depressive
symptoms and
SCZ
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; Major
Depressive
Disorder
Working Group
of the PGC et al.
2017)

PRS: positive
association
(disorder)
(Cross-Disorder
Group of the
PGC, 2013b);
mixed evidence
(depressive or
internalizing
traits) (Jones
et al. 2016;
Nivard et al.
2017)

Twin rg: 0.35 (Song
et al. 2015)

SNP rg: 0.32–0.48
between
disorders; 0.28
between BD and
depressive
symptoms
(Cross-Disorder
Group of the
PGC, 2013a;
Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; Major
Depressive
Disorder
Working Group
of the PGC et al.
2017)

PRS: positive
association
(disorder)
(Cross-Disorder
Group of the
PGC, 2013b); ns
(internalizing
traits) (Jansen
et al. 2017)
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AXD Twin rg: 0.17–0.19
(Hallett et al.
2010)

SNP rg: ns (Anttila
et al. 2017)

PRS: ns (Krapohl
et al. 2016;
Jansen et al.
2017)

Twin rg: 0.45–0.58
(Michelini et al.
2015; Chen et al.
2016)

SNP rg: ns (Anttila
et al. 2017)

PRS: ns (Krapohl
et al. 2016)

SNP rg: ns
(general
cognition)
(Anttila et al.
2017; Sniekers
et al. 2017)

SNP rg: ns (Otowa
et al. 2016;
Anttila et al.
2017)

PRS: ns (across
disorders);
replicated
evidence for
anxiety
symptoms,
though 1 study
found no effect
(Jones et al.
2016; Krapohl
et al. 2016;
Nivard et al.
2017)

Twin rg: 0.23 (Song
et al. 2015)

SNP rg: ns (Otowa
et al. 2016;
Anttila et al.
2017)

PRS: Mixed
(disorder)
(Otowa et al.
2016); ns (traits)
(Krapohl et al.
2016; Jansen
et al. 2017)

Twin rg: 0.70–1.00
(Roy et al. 1995;
Thapar &
McGuffin, 1997;
Kendler et al.
2007; Mosing
et al. 2009;
Demirkan et al.
2011)

SNP rg: 0.68–0.80
between
disorders; 0.82
between AXD
and depressive
symptoms
(Otowa et al.
2016; Anttila
et al. 2017;
Major
Depressive
Disorder
Working Group
of the PGC et al.
2017)

PRS: positive
association
(disorder)
(Otowa et al.
2016); mixed
(traits) (Krapohl
et al. 2016;
Jansen et al.
2017)

AN&ED SNP rg: ns
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

SNP rg: ns
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

SNP rg: ns
(general
cognition)
(Anttila et al.
2017; Sniekers
et al. 2017)

SNP rg: 0.19–0.22
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

SNP rg: ns
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017)

Twin rg: 0.70
(Slane et al.
2011)

SNP rg: 0.13
between
disorders; ns
between AN &
depressive
symptoms
(Bulik-Sullivan
et al. 2015a;
Anttila et al.
2017; Major
Depressive
Disorder
Working Group
of the PGC,
et al. 2017)

SNP rg: ns
(Anttila et al.
2017)
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Table 2. (Continued.)

Disorder ASD ADHD ID SCZ BD MDD AXD AN&ED OCD

OCD SNP rg: ns (Anttila
et al. 2017)

SNP rg: ns (Anttila
et al. 2017)

Other: Heritable
latent factor
underlying
ADHD, OCD, and
tics (Pinto et al.
2016)

SNP rg: ns
(general
cognition)
(Anttila et al.
2017)

SNP rg: 0.33
(Anttila et al.
2017)

SNP rg: 0.31
(Anttila et al.
2017)

Twin rg: 0.71–0.86
(traits) (Bolhuis
et al. 2014)

SNP rg: 0.23
between
disorders; ns
between OCD &
depressive
symptoms
(Anttila et al.
2017)

SNP rg: ns
(Anttila et al.
2017)

Other:
Common
genetic
factor
underlying
OCD and
anxiety
symptoms
(López-Solà
et al. 2016)

Twin rg:
0.52
(Cederlöf
et al.
2015)

SNP rg: 0.52
(Anttila
et al.
2017)

TS Twin rg: 0.60
(Lichtenstein
et al. 2010)

SNP rg: ns (Anttila
et al. 2017)

Twin rg: 1.00
(Lichtenstein
et al. 2010)

SNP rg: ns (Anttila
et al. 2017)

Other: Heritable
latent factor
underlying
ADHD, OCD, and
tics (Pinto et al.
2016)

SNP rg: ns
(general
cognition)
(Anttila et al.
2017)

SNP rg: ns (Anttila
et al. 2017)

SNP rg: ns (Anttila
et al. 2017)

SNP rg: 0.21
between
disorders; ns
between TS &
depressive
symptoms
(Anttila et al.
2017)

SNP rg: ns
(Anttila et al.
2017)

SNP rg: ns
(Anttila
et al.
2017)

SNP rg: 0.41–
0.43 (Davis
et al. 2013;
Anttila
et al. 2017)

Other:
Heritable
latent
factor
underlying
ADHD,
OCD, and
tics (Pinto
et al. 2016)

ADHD, attention-deficit hyperactivity disorder; AN&ED, anorexia nervosa and other eating disorders; ASD, autism spectrum disorder; AXD, anxiety disorders; BD, bipolar disorder; ID, intellectual disability; MDD, major depressive disorder; OCD,
obsessive-compulsive disorder; SCZ, schizophrenia; TS, Tourette’s syndrome and other tic disorders; SNP, single nucleotide polymorphism; CNV, copy number variant; PRS, polygenic risk score analysis; ns, non-significant estimates based on published
studies.
Twin rg is the correlation between the additive genetic variance components from twin studies. Note that the ‘twin rg’ in Lichtenstein et al. (2009) & Song et al. (2015) are estimated from family studies but with a similar approach as in twin studies. SNP
rg: is the estimated genetic correlation from genome-wide association studies using LDSC (linkage disequilibrium score correlation) or GCTA (genome-wide complex trait analysis). Only results estimated to be nominally significantly different from zero
( p < 0.05) are presented. For a more detailed explanation of the methods, please refer to the caption of Table 1. The GREML-GCTA method (genetic relatedness estimation through maximum likelihood using the GCTA software) (Yang et al. 2011; Lee
et al. 2012) is conceptually similar to LDSC; it is used to estimate the contribution of all SNPs from genome-wide data (SNP-heritability) and can be applied to examine shared genetic risks between disorders and population traits to give an estimate of
genetic correlation.
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Demontis et al. 2017; Major Depressive Disorder Working Group
of the PGC et al. 2017; The ASD Working Group of The PGC,
2017). Tourette’s syndrome shares genetic risks with OCD and
MDD (Davis et al. 2013; Anttila et al. 2017). Genetic risk for
schizophrenia is associated with numerous traits assessed across
ages 3–15 years, including ADHD, aggression, irritability, lan-
guage, and social abilities (Jansen et al. 2017; Nivard et al.
2017; Riglin et al. 2017). BD and MDD PRS were not found to
be associated with early life (age 3–10 years) internalizing and
externalizing problems (Jansen et al. 2017).

CNV loci implicated in children with ADHD, ASD, and ID have
also been associated with schizophrenia (The International
Schizophrenia Consortium, 2008; Guilmatre et al. 2009; Sebat
et al. 2009; Williams et al. 2010, 2012; Lionel et al. 2011;
Pescosolido & Gamsiz, 2013). Schizophrenia shares genetic risks
with cognitive measures throughout the lifespan (McIntosh et al.
2013; Lencz et al. 2014; Hagenaars et al. 2016; Hubbard et al.
2016; Krapohl et al. 2016). General cognitive ability shows negative
genetic correlations with schizophrenia and depressive symptoms,
though not with BD, anxiety disorder, MDD, OCD or AN
(Anttila et al. 2017; Sniekers et al. 2017). Genetic correlations across
several psychiatric disorders and personality measures have also
been reported (Lo et al. 2016; Anttila et al. 2017). Psychiatric phe-
notypes also more broadly share genetic contributions with other
human complex traits, for example genetic risk for ADHD is shared
with behavioral traits (e.g. smoking), brain- (e.g. migraine) and
non-brain-based diseases (e.g. type-2-diabetes) and traits (e.g.
body mass index) (Anttila et al. 2017; Demontis et al. 2017). A
wider review is beyond the scope of this paper.

In summary, studies indicate that a considerable degree of gen-
etic influences on particular disorders are shared with at least one
other disorder, regardless of whether one focuses on childhood-
or adulthood-onset conditions. It has been hypothesized that a
single ‘general genetic factor’ underlies multiple psychiatric phe-
notypes (Lahey et al. 2012; Caspi et al. 2014). Two twin studies
supported this model, with a latent genetic factor accounting
for 31% of variance in neurodevelopmental symptoms in a
population-based sample (Pettersson et al. 2013) and 10–36%
of disorder liability across multiple clinical psychiatric diagnoses
(Pettersson et al. 2015). A recent study further confirmed that
common genetic risk variants contribute to this general factor,
with an estimated SNP-heritability of approximately 0.38
(Neumann et al. 2016). As illustrated in Fig. 1b, the situation is
likely to be even more complex, with not only a general genetic
factor predisposing to multiple phenotypes but also disorder-
specific genetic factors as well as genetic factors relevant only to
specific pairs of disorders. Similarly, environmental factors
could also be shared or unique and more complex effects, such
as gene-environment interactions, could also exist.

Although several of the pairs of psychiatric disorders assessed
using GWAS data do not show significant genetic correlations,
some of the studies were relatively small and are likely to be
underpowered. Notably, genetic correlations are present regard-
less of whether psychiatric phenotypes are conceptualized con-
tinuously or dichotomously, thus providing additional, albeit
indirect, support for shared genetic risk across these disorders
and related traits.

Interpreting the meaning of genetic correlations

The interpretation of what genetic correlations mean is complex,
with a number of possibilities, some of which are not mutually

exclusive. One possibility (Fig. 2a) is that of true biological plei-
otropy, where the same risk variants (or variants within the
same gene) are directly, causally impacting on multiple pheno-
types, albeit possibly through separate biological pathways.
Alternatively, the same genetic risk variants could be causally
affecting a third, unmeasured phenotype which lies on the path-
way between risk variants and measured phenotypes (Fig. 2b).
A third possibility (Fig. 2c) is that observed genetic correlations
are actually capturing different risk variants that are highly corre-
lated but are acting through different mechanisms. For example,
even though the same CNV loci have been implicated in multiple
disorders (Guilmatre et al. 2009; Lionel et al. 2011; Williams et al.
2012; Pescosolido & Gamsiz, 2013), different variants within these
large loci might be associated with different phenotypes. Given
that such large, rare variants are also shared by monozygotic
twins, this could also influence estimates of genetic correlations
based on twin studies. A fourth possibility (Fig. 2d) is that one
phenotype mediates the association between genetic risk and a
second phenotype and there is no direct causal relationship
between the risk variant and this second phenotype. For example,
it has been proposed that the genetic correlation between MDD
and depressive symptoms in the population could be accounted
for by shared genetic risk with low levels of subjective well-being
(Direk et al. 2016).

Several nosological issues (Fig. 2e) may also explain genetic
correlations to an extent. Comorbidity across disorders (e.g. anx-
iety and MDD) is frequently observed and certain symptom

Fig. 2. Potential interpretations of genetic correlation across phenotypes: (a) true
biological pleiotropy, where the same genetic risk variant is causally associated
with two phenotypes; (b) unmeasured phenotype, where a third phenotype is on
the causal pathway between genetic risk and the outcome phenotypes of interest;
(c) correlated genetic risk, where different genetic risk variants that are highly corre-
lated are causally associated with each phenotype; (d) mediation, where a genetic
risk variant only acts on one of the phenotypes, which in turn influences a second
phenotype; (e) Nosological issues, which blur the distinction between phenotypes,
for example comorbidity, ascertainment bias, heterogeneity or diagnostic misclassi-
fication; ( f) assortative mating, where individuals with the two phenotypes of inter-
est are more likely to mate than expected at random, thereby leading to clustering of
genetic risk for both phenotypes in the offspring. N.B. The shapes are not indicative
of whether a variable is latent or measured.
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domains show similarities [e.g. manic (BD) or hyperactive
(ADHD) symptoms]. Specific symptoms also overlap directly
across disorders (e.g. concentration problems in ADHD, MDD
or anxiety) and such overlap may largely account for comorbidity
[e.g. anxiety and MDD (Cramer et al. 2010)]. Such phenotypic
overlap could inflate genetic correlation estimates. Within-
disorder heterogeneity could also induce an overall correlation
across two phenotypes, when only a sub-group of individuals
with one disorder (who may have a specific clinical profile)
show genetic correlation with individuals with another pheno-
type. Another possibility is that of diagnostic misclassification
or changes in meeting diagnostic criteria over time (e.g. indivi-
duals who are diagnosed with MDD but later develop manic fea-
tures, leading to a diagnosis of BD). Given the similar diagnostic
features across different disorders, accurate diagnosis is difficult.
Fortunately, diagnostic changes over time can be taken into con-
sideration using epidemiological family study designs (Song et al.
2015). Simulations show that a 10% rate in misclassification can
inflate estimates of genetic correlation (Wray et al. 2012).
However, very high degrees of such misclassification would be
required to fully account for the observed genetic correlations
across psychiatric phenotypes (Anttila et al. 2017). Such issues
related to phenotype definition remain to be resolved as the
underlying biology of psychiatric disorders is better understood.
For now, careful ascertainment and better measurement of fre-
quently co-occurring disorder-level and sub-threshold pheno-
types is required.

Another possibility for interpreting observed genetic correla-
tions between psychiatric disorders is that they arise through
assortative mating (Fig. 2f). There are substantial effects of
assortative mating both within and across multiple psychiatric
disorders (Nordsletten et al. 2016). Such assortative mating across
disorders would likely increase genetic correlation estimates
(Coop & Pickrell, 2016). Finally, there are technical and methodo-
logical artifacts (e.g. overlapping or related individuals) that may
induce spurious genetic correlations in molecular genetic studies,
which need to be ruled out.

More research is needed to determine the extent to which
comorbidity, ascertainment bias, heterogeneity, diagnostic mis-
classification, and assortative mating inflate genetic correlations
across psychiatric disorders and how much of these estimates
are due to true pleiotropy. Even so, the possible biological inter-
pretations of genetic correlations described above are hard to dis-
tinguish using the methods described in this review, as genetic
correlations do not pinpoint the source of shared genetic risks.
Some clues might be gained by partitioning heritability based
on SNP functional category, position or frequency (Finucane
et al. 2015), to try to better identify the source of the genetic cor-
relations. Large-scale GWAS meta-analyses and sequencing stud-
ies are needed to find robust risk variants associated with multiple
disorders.

After identifying specific genetic risk variants that correlate
across disorders and considering the above possibilities, well-
phenotyped samples and new methods will be needed to interpret
the meaning of genetic correlations. Several newly developed
methods have the potential to help with interpretation. The
method ‘pairwise-GWAS’ aims to determine whether the effect
sizes of variants associated with one trait are correlated with effect
sizes of those variants for another trait and vice versa (Pickrell
et al. 2016). Another method, BUHMBOX, aims to statistically
differentiate between situations where there is sub-group hetero-
geneity (i.e. phenotype misclassification, different biological

subtypes of a disorder, ascertainment bias or mediation) or
whether there is true pleiotropy (Han et al. 2016).

Implications for research and clinical practice

Despite moderate to high degrees of genetic correlation between
some pairs of phenotypes, unique genetic factors are also likely
to be important, as illustrated in Fig. 1b. This unique genetic
risk is associated with important clinical distinctions that exist
between disorders and also between disorders and continuous
traits. For example, certain medications are effective for one dis-
order (e.g. stimulants for ADHD), but do not impact the symp-
toms of other disorders (Thapar et al. 2017). Also, in the
absence of severe impairment resulting from symptoms, the cost-
benefit ratio of treatment needs to be considered. Since most gen-
etic correlations are below 1, more insights into the meaning of
these correlations are required before clinical practice can be
advanced.

The assumption that there is some true sharing of genetic risks
has already led to insights into the genetic architecture and biol-
ogy of psychiatric disorders through combining phenotypes in
joint analyses to boost statistical power. For example, a joint
GWAS analysis of five psychiatric disorders led to a more power-
ful approach for identifying genetic variants associated with psy-
chiatric disorders (Cross-Disorder Group of the PGC, 2013b).
Similarly, using the results of a GWAS of multiple psychiatric dis-
orders can substantially increase the accuracy of PRS analyses
(Maier et al. 2015). Also, a literature review of genetic sequencing
studies of several childhood-onset neurodevelopmental disorders
has shown the power of pooling information on multiple pheno-
types to identify more robust genes implicated in neurodevelop-
mental disorders (Gonzalez-Mantilla et al. 2016). Gene
discovery studies meta-analyzing GWAS of a clinical disorder
with GWAS of population traits can benefit from substantially
increased power to detect common variants, as can be seen for
example for MDD and ADHD (Direk et al. 2016; Demontis
et al. 2017). Understanding the nature and degree of shared gen-
etic risks across psychiatric phenotypes will be essential to most
effectively using this observation for future research into the gen-
etic architecture of these disorders.

One important limitation of existing molecular genetic studies
is that for many psychiatric disorders, sample sizes are still rela-
tively small and analyses are limited in statistical power. PRS stud-
ies, in particular, tend to find low effect sizes. As larger and more
reliable genetic samples become available in the future, it will be
possible to better determine the degree and source of shared gen-
etic risks across psychiatric phenotypes.

Conclusion

Emerging evidence from twin and molecular genetic studies sug-
gests that some genetic risk is shared between diagnosed disorders
and variation in psychiatric traits in the population for certain
disorders (e.g. ADHD) and across different psychiatric diagnoses
(e.g. schizophrenia and BD). More research is needed to investi-
gate the degree of genetic correlation across disorders and traits
for other psychiatric phenotypes (e.g. anxiety or BD) and across
pairs of different disorders (e.g. anorexia and OCD). Future
research should then aim to identify specific genetic loci that
are driving any genetic correlations and determine the nature of
such correlations. However, recent insights into the genetic archi-
tectures of psychiatric disorders are already pointing towards new
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avenues for further research into the biology of these complex
disorders.
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