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Endomorphism Algebras of Kronecker
Modules Regulated by Quadratic
Function Fields

F. Okoh and F. Zorzitto

Abstract. Purely simple Kronecker modules M, built from an algebraically closed field K, arise from a

triplet (m, h, α) where m is a positive integer, h : K ∪ {∞} → {∞, 0, 1, 2, 3, . . . } is a height function,

and α is a K-linear functional on the space K(X) of rational functions in one variable X. Every pair

(h, α) comes with a polynomial f in K(X)[Y ] called the regulator. When the module M admits non-

trivial endomorphisms, f must be linear or quadratic in Y . In that case M is purely simple if and

only if f is an irreducible quadratic. Then the K-algebra End M embeds in the quadratic function

field K(X)[Y ]/( f ). For some height functions h of infinite support I, the search for a functional α
for which (h, α) has regulator 0 comes down to having functions η : I → K such that no planar curve

intersects the graph of η on a cofinite subset. If K has characterictic not 2, and the triplet (m, h, α) gives

a purely-simple Kronecker module Mhaving non-trivial endomorphisms, then h attains the value ∞
at least once on K ∪ {∞} and h is finite-valued at least twice on K ∪ {∞}. Conversely all these h form

part of such triplets. The proof of this result hinges on the fact that a rational function r is a perfect

square in K(X) if and only if r is a perfect square in the completions of K(X) with respect to all of its

valuations.

1 Introduction

For some time it has been our ambition to tabulate the endomorphism algebras of

Kronecker modules of rank-2. We have been motivated by the intricacy of the ques-

tions that this project has spawned, as well as by the surprising commutative algebras

that have emerged. For instance, we discovered that the endomorphism algebras for

one class of such modules are the coordinate rings of all elliptic curves. A sample

of our work can be found in [13]. A second motivation for our project is that work

already done on Kronecker modules has proven useful in development of the repre-

sentation theory of general classes of associative algebras, e.g., [1, 5, 6, 8, 9, 17]. In

this continuation of our project, we examine the role that pure simplicity plays in

controlling the endomorphism algebra. Take a finite-dimensional algebra A over a

field K, and an A-module M, typically infinite-dimensional. We say that a submod-

ule P is pure in M provided P is a direct summand in any submodule N which is

a finite-dimensional extension of P. Every direct summand of M is pure, but not

conversely. For further discussion of the notion, see [10]. The module M is purely
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simple when (0) and M are its only pure submodules. This is a strong version of inde-

composability. Unlike indecomposables, purely simple modules must have countable

rank.

We work with an algebraically closed underlying field K. Every purely simple

Kronecker module of rank-2 is infinite-dimensional over K, and as shown in [4], they

can be constructed from a triple (m, h, α), where m is a positive integer, h is a height

function, and α is a K-linear functional on the space K(X) of rational functions in a

single variable X. This construction will be presented in detail below, and denoted by

V(m, h, α). The construction, however, includes modules as well that are not purely

simple.

To each pair (h, α) we attach a polynomial f in K(X)[Y ], either monic or zero,

called the regulator of (h, α). The endomorphisms of V(m, h, α) form a K-algebra.

We show that unless f is linear or quadratic in Y , End V(m, h, α) is the trivial alge-

bra K. When the regulator is linear, the module V(m, h, α) has a finite-dimensional

direct summand, and End V(m, h, α) is non-commutative but well understood [14,

p. 1568]. When the regulator is quadratic, the story gets interesting. In this case

End V(m, h, α) must be commutative, and may well be non-trivial. In the quadratic

case we show that V(m, h, α) is purely simple if and only if the regulator f of (h, α)

is irreducible. We also obtain that in the case of irreducible, quadratic regulator the

algebra End V(m, h, α) embeds in the quadratic function field K(X)[Y ]/( f ). Thus

purely simple Kronecker modules with non-trivial endomorphisms make a tangen-

tial connection with hyper-elliptic curves. Using regulators we identify those height

functions which permit a module V(m, h, α) to be purely simple with non-trivial en-

domorphisms. We also construct examples of irreducible quadratic regulators that

yield trivial endomorphism algebras, and more importantly examples that yield non-

trivial algebras End V(m, h, α).

In the remainder of this introduction we carefully formulate the framework for

proving our results.

The Setup

Start with an algebraically closed field K. A module over the algebra
[

K K2

0 K

]

is called

a Kronecker module, but from a practical point of view it can be seen as a pair of linear

transformations between a pair of K-linear spaces: U
a−→
b−→ V. An endomorphism of

U −→−→ V is a pair of K-linear maps U
ψ−→ U , V

ϕ−→ V for which the diagrams

commute:

U
a−−−−→ V





y

ψ





y

ϕ

U
a−−−−→ V

U
b−−−−→ V





y

ψ





y

ϕ

U
b−−−−→ V

.

In order to introduce a working model for the purely simple modules of rank-2, some

technicalities are needed. These have been presented in previous papers [15]. As they

are not generally familiar, we will review them now.
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Let K(X) be the field of rational functions in X. For each θ in K we adopt the

shorthand

Xθ = (X − θ)−1.

Every non-zero t in K(X) has a unique factorization

(1) t = λ
∏

θ∈K

X
jθ
θ ,

where λ ∈ K, jθ ∈ Z, and all but finitely many jθ are 0. For each θ in K, the integer

jθ is denoted by ordθ(t), and the integer −
∑

θ∈K jθ is denoted by ord∞(t). If we

agree that ordθ(0) = −∞ for all θ in K ∪ {∞}, and s, t are rational functions, the

familiar valuation properties hold:

ordθ(st) = ordθ(s) + ordθ(t),

ordθ(s + t) ≤ max{ordθ(s), ordθ(t)},
ordθ(s + t) = ordθ(t) when ordθ(s) < ordθ(t).

If θ ∈ K ∪ {∞} and ordθ(t) > 0, the rational function t has a pole at θ and its order

is ordθ(t). The functions Xn and Xn+1
θ , where θ ∈ K and 0 ≤ n, form the standard

basis of K(X) over K. The expansion of a rational function in terms of the standard

basis is known as its partial fraction expansion. For θ in K, a positive power of Xθ

appears in the partial fraction expansion of t if and only if t has a pole at θ. In that

case the highest power of Xθ appearing is Xordθ(t)
θ . A positive power of X appears in

the partial fraction expansion of t if and only if t has a pole at ∞. Then the highest

power of X that appears is Xord∞(t).

Any function h : K ∪ {∞} → {∞, 0, 1, 2, . . .} is known as a height function. The

attached K-linear space

Rh = {s ∈ K(X) : ordθ(s) ≤ h(θ) for all θ in K ∪ {∞}}

is called a pole space. Pole spaces have an intrinsic definition as well. They are the

non-zero subspaces R of K(X) with the property that whenever t ∈ R, then every

function s, such that ordθ(s) ≤ max{0, ordθ(t)} for all θ in K ∪ {∞}, is also in R.

Every pole space contains K. Given a pole space Rh, put

R−
h = {r ∈ Rh : ord∞(r) < h(∞)}.

We see that XR−
h ⊆ Rh, and R−

h is the biggest subspace of Rh to tolerate such inclu-

sion. The modules

Fh =

(

R−
h

a−→
b−→ Rh, where a : r 7→ r and b : r 7→ Xr

)

are interesting because they tabulate exactly the class of all torsion-free, indecompos-

able, rank-1 modules, see [3]. In addition all Fh are purely simple. The endomor-

phism algebra of Fh is the K-algebra of rational functions t in Rh for which tRh ⊆ Rh.
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This coincides with the algebra of functions having poles only at those θ in K ∪ {∞}
where h(θ) = ∞. We call it the pole algebra of h. When h assumes only the values 0

or ∞, the pole space Rh is already a pole algebra.

For a consideration of rank-2 modules we need to work with K-linear functionals

α : K(X) → K. If α is such a functional and r ∈ K(X), let 〈α, r〉 denote the value

in K that α takes at r. Given a functional α and a rational function r, it is shown in

[7, Proposition 3.4] that there is a unique rational function ∂α(r) so that ∂α(r)(θ) is

defined at all θ in K where r(θ) is defined, and for all such θ

(2) ∂α(r)(θ) =

〈

α,
r − r(θ)

X − θ

〉

= 〈α, (r − r(θ))Xθ〉.

From this it is easy to see that the mapping (α, r) 7→ ∂α(r) is K-linear in both α and r.

The K-linear map ∂α : K(X) → K(X) will be called a deriver. For a functional α and

a rational function r, the functional given by t 7→ 〈α, rt〉 will be denoted by α∗r. The

name deriver is motivated by the following derivation-like property which is easy to

deduce from (2):

(3) ∂α(st) = s∂α(t) + ∂α∗t (s) for any functional α and rational functions s, t.

The explicit calculation of ∂α on the standard basis of K(X) goes like this:

∂α(1) = 0

∂α(Xn) = 〈α,Xn−1〉 + 〈α,Xn−2〉X + · · · + 〈α, 1〉Xn−1

∂α(Xn
θ ) = −〈α,Xn

θ 〉Xθ − 〈α,Xn−1
θ 〉X2

θ − · · · − 〈α,Xθ〉Xn
θ ,

(4)

for all θ in K and all n ≥ 1. The formulas (4) will be used often. In conjunction with

the partial fraction expansion of r, they reveal that

ordθ(∂α(r)) ≤ max{0, ordθ(r)} for all θ in K,

ord∞(∂α(r)) < max{0, ord∞(r)}.

Consequently every pole of ∂α(r) is a pole of r. Furthermore, if Rh is a pole space,

then ∂α(Rh) ⊆ R−
h . In particular, derivers leave pole spaces invariant.

Now we can define the family of rank-2 modules that interest us. Although our

presentation will not make it apparent, these modules will comprise exactly all exten-

sions of finite-dimensional Fk by infinite-dimensional Fh. Thus this paper is about

the family of extensions of finite-dimensional torsion-free, rank-1 Kronecker mod-

ules by arbitrary torsion-free, rank-1 Kronecker modules.

Let R denote the important module Fh that goes with the biggest pole space Rh =

K(X). Our rank-2 modules will be presented as embedded in R2.

We shall be working with K-linear subspaces of the space K(X)2 of pairs of rational

functions. Such pairs will be written in column notation. For a positive integer m, let

Pm be the space of polynomials of degree strictly less than m. This is nothing but the

pole space corresponding to the height function which assumes the value 0 on K and

m − 1 at ∞.
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Definition Given a triplet (m, h, α) where m is a positive integer, h is a height func-

tion and α is a functional, put

V (m, h, α) =

{(

r

s

)

∈ K(X)2 : r ∈ Rh and ∂α(r) + s ∈ Pm

}

,(5)

V−(m, h, α) =

{(

r

s

)

∈ V : r ∈ R−
h and ∂α(r) + s ∈ Pm−1

}

.(6)

The computations of this paper will rely heavily on the definition of V (m, h, α). Ob-

serve that XV−(m, h, α) ⊆ V (m, h, α). Indeed, if ( r
s ) ∈ V−(m, h, α), then r ∈ R−

h

and ∂α(r) + s ∈ Pm−1. Therefore Xr ∈ Rh, and using (3) we get as well that

∂α(Xr) + Xs = X∂α(r) + ∂α∗r(X) + Xs = X(∂α(r) + s) + 〈α, r〉 ∈ Pm.

Definition The Kronecker module V(m, h, α) is

(7) V−(m, h, α)
a−→
b−→ V (m, h, α)

where

a :

(

r

s

)

7→
(

r

s

)

and b :

(

r

s

)

7→ X

(

r

s

)

, for each

(

r

s

)

in V−(m, h, α).

The space Rh is infinite-dimensional over K exactly when h is positive on an in-

finite subset of K ∪ {∞} or h is infinite-valued at some θ of K ∪ {∞}. When Rh

is finite-dimensional, the modules V(m, h, α) are also finite-dimensional and com-

pletely understood [1, p. 302]. So, we make the blanket assumption that in defining

V(m, h, α), the pole space Rh is infinite-dimensional. In [4] it is shown that every

purely simple module of rank-2 is an extension of a finite-dimensional Fk by an

infinite-dimensional Fh. In [12, §2] every such extension is realized as a module

V(m, h, α). Thus V(m, h, α)’s include among them all possible purely simple rank-2

modules.

Our study of the endomorphism algebra End V(m, h, α) is based on [14, The-

orem 2.2] which facilitates the use of linear algebra. It says that the endomor-

phisms of V(m, h, α) are the K(X)-linear operators on K(X)2 which leave the infinite-

dimensional K-linear space V (m, h, α) invariant. Furthermore, such maps leave

V−(m, h, α) invariant. We represent the endomorphisms of V(m, h, α) as 2 × 2 ma-

trices of rational functions

(8) ϕ =

[

s t

u v

]

acting on K(X)2 in the usual way. If I is the identity operator and λ ∈ K, the scalar

operator λI is obviously an endomorphism. If these are the only endomorphisms,

we say that End V(m, h, α) is trivial.
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In [15, Theorem 3.2] we showed that if a height function h admits an indecom-

posable V(m, h, α) with non-trivial endomorphisms, then either h(θ) = ∞ for some

θ in K ∪ {∞} or h(θ) ≥ 2 for infinitely many θ in K ∪ {∞}. In [16, Theorem 1.1]

we showed further that, subject to char K 6= 2, if any height function h admits an

indecomposable V(m, h, α) with non-trivial endomorphisms, then h(θ) < ∞ for

some θ in K ∪ {∞}. One of our objectives is the following theorem which gives

the constraints on a height function h for it to admit purely-simple V(m, h, α) with

non-trivial endomorphisms.

Theorem 1.1 Assuming K has characterictic not 2, a height function h will admit a

purely simple Kronecker module V(m, h, α) having non-trivial endomorphisms if and

only if h attains the value ∞ at least once on K ∪ {∞} and h is finite-valued at least

twice on K ∪ {∞}.

2 A Regulator for (h, α) and Pure Simplicity

Take a height function h with infinite-dimensional pole space Rh, and a functional

α : K(X) → K. The deriver ∂α is a K-linear operator on the space K(X). Every ratio-

nal function t acts on K(X) as the multiplier s 7→ ts. We identify t with its multiplier.

The deriver ∂α leaves Rh invariant, but a multiplier t need not. Nevertheless, the

space tRh lies inside the pole space Rk where

k(θ) = h(θ) + max{0, ordθ(t)} for every θ in K ∪ {∞},

and the pole space Rk is a finite-dimensional extension of Rh. Let A denote the K-sub-

algebra of EndK K(X) that is generated by ∂α and by all multipliers. Put

I = {σ ∈ A : σ(Rh) is finite-dimensional over K}.

The operators in I are said to have finite rank on Rh. Since the dimension of Rh is

infinite, I is a proper subspace of A. Clearly I is a left ideal, but one can check that I

is also a right ideal using the fact that, for every σ in A, the image σ(Rh) is inside a

finite-dimensional extension of Rh, see also [12, Lemma 2.1].

While A is typically a non-commutative algebra containing K(X), the quotient al-

gebra A/I is a commuative K(X)-algebra. For the proof see [12, Lemma 2.2]. Briefly

it suffices to check that a multiplier t commutes with ∂α modulo the ideal I. From the

deriver property (3) we have ∂α(tr)t − t∂α(r) = ∂α∗r(t) for all r in Rh. The formula

(4) shows that for all r, the functions ∂α∗r(t) lie in the smallest pole space containing

t , a finite-dimensional space. Thus ∂α ◦ t − t ◦ ∂α ∈ I.

Clearly A/I is generated as a K(X)-algebra by the image ∂α + I of ∂α under the

canonical projection A → A/I. If K(X)[Y ] is the algebra of polynomials in Y over

K(X) we are entitled to the substitution map ǫ : K(X)[Y ] → A/I where Y 7→ ∂α + I.

The unique monic generator f (Y ) of ker ǫ is the polynomial in K(X)[Y ] that we call

the regulator of the pair (h, α). Given a polynomial g(Y ) in K(X)[Y ] we shall let

g(∂α) stand for any preimage in A of g(∂α + I) under the projection A → A/I. No

matter what preimage g(∂α) is taken, we always have

f (Y ) divides g(Y ) ⇔ g(∂α + I) = 0 ⇔ g(∂α) has finite rank on Rh.
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To summarize, the regulator of (h, α) is the polynomial f (Y ) in K(X)[Y ] uniquely

specified by the following properties:

• f (Y ) is monic or zero;
• f (∂α) has finite rank on Rh;
• f (Y ) divides g(Y ) in K(X)[Y ] if and only if g(∂α) has finite rank on Rh.

In order to establish some familiarity with the regulator, let us next compute some

examples.

Example 1 (Zero regulator) Take the height function h that assumes the value ∞
on all of K ∪ {∞}. For this h the pole space is the full pole algebra Rh = K(X). To

specify a functional α it suffices to give its values on the standard basis of K(X). Put

〈α,Xθ〉 = θ for every θ in K

α = 0 on the rest of the standard basis of K(X).

We will show that for this (h, α) the regulator is 0. To get there, for each θ in K,

define the height function hθ : K ∪ {∞} → {∞, 0, 1, 2, . . .} by hθ(θ) = h(θ) = ∞
and h(ν) = 0 when ν ∈ K ∪ {∞}, ν 6= θ. The pole space for hθ is Rhθ = K[Xθ], the

space of polynomials in Xθ, with basis 1,Xθ,X
2
θ ,X

3
θ , . . . .

We will first show that the regulator of (hθ, α) is Y + θ. Using (4) we can see that

∂α(X
j
θ) = −θX

j
θ for any integer j ≥ 1.

Thus the operator ∂α+θmaps the space XθK[Xθ], of polynomials in Xθ with zero con-

stant term, to 0. Consequently the pole space K[Xθ] of hθ goes to a finite-dimensional

space under ∂α + θ. In fact it goes to K. Thus we may conclude that Y + θ regulates

(hθ, α).

Now suppose that f (Y ) regulates (h, α). By the nature of regulators f (∂α) maps

K(X) to a finite-dimensional space. Consequently, f (∂α)(K[Xθ]) is finite-dimen-

sional for every θ in K. Since K[Xθ] is the pole space for the height function hθ, the

polynomial f (Y ) must be divisible by the regulator Y + θ of (hθ, α). It follows that

f (Y ) = 0 because there are infinitely many Y + θ that divide it.

Example 2 (Any irreducible as regulator) Let I be an infinite subset of K. Then

take h to be the height function defined by

h(θ) =

{

1 if θ ∈ I,

0 if θ ∈ K ∪ {∞}\I,

having pole space Rh = K +
∑

θ∈I KXθ . As usual α is a functional. Take any monic

polynomial

f (X,Y ) = Y n + rn−1(X)Y n−1 + · · · + r1(X)Y + r0(X) ∈ K(X)[Y ].

Using the chosen h, let us develop a reasonably concrete condition for the operator

f (X, ∂α) = ∂n
α + rn−1(X) ◦ ∂n−1

α + · · · + r1(X) ◦ ∂α + r0(X)
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to have finite rank on Rh. For each θ in I put ηθ = −〈α,Xθ〉. There are only finitely

many θ in I at which the rational functions r j(X) could possibly have a pole. Let J

be the cofinite set of θ in I for which every r j(θ) is defined. When θ ∈ J we need

to examine what f (X, ∂α) does to Xθ. Using (4) we obtain that ∂α(Xθ) = ηθXθ, and

consequently ∂
j
α(Xθ) = η

j
θXθ for all θ in J and j ≥ 0. Then for θ in J we get

(9) f (X, ∂α)(Xθ) = ηn
θXθ + rn−1(X)ηn−1

θ Xθ + · · · + r1(X)ηθXθ + r0(X)Xθ.

Furthermore, if θ ∈ J, the scalars f (θ, ηθ) = ηn
θ + rn−1(θ)ηn−1

θ + · · ·+ r1(θ)ηθ + r0(θ)

are defined. As j runs down from n − 1 to 0, each of the summands r j(X)η j Xθ in (9)

can be rewritten as r j(X)η j Xθ = r j(θ)η j Xθ + η j(r j(X) − r j(θ))Xθ . After substituting

these expressions into the summation (9) we get for each θ in J that

(10) f (X, ∂α)(Xθ) = f (θ, ηθ)Xθ +

0
∑

j=n−1

η j(r j(X) − r j(θ))Xθ.

Since each rational function r j(X) − r j(θ) vanishes at θ, the rational function

(r j(X)− r j(θ))Xθ has no pole at θ. In fact this function sits in the smallest pole space

containing r j(X), a finite-dimensional space. Consequently the sum

0
∑

j=n−1

η j(r j(X) − r j(θ))Xθ

lies in the smallest pole space containing all r j(X), still a finite-dimensional space.

Call it S.

We now use (10) to show that

f (X, ∂α) has finite rank on Rh if and only if for all but finitely many θ in I the

points (θ, ηθ) lie on the curve f (X,Y ) = 0.

Suppose that f (X, ∂α) has finite rank on Rh. It follows that f (X, ∂α)(Xθ) lie in a

common finite-dimensional space, say T, for all θ in J. Looking at (10) we deduce

that f (θ, ηθ)Xθ ∈ S + T for all θ in J. Since S + T is finite-dimensional, the pole

set for the functions f (θ, ηθ)Xθ, as θ runs over J, has to be finite. This implies that

f (θ, ηθ) = 0 for all but finitely many θ in J. Since J is cofinite in I we get that (θ, ηθ)
are on the curve f (X,Y ) = 0 for all but finitely many θ in I.

Conversely, suppose that (θ, ηθ) are on the curve f (X,Y ) = 0 for all but finitely

many θ in I. This cofinite set of θ lies in J. Using (10) we deduce that f (X, ∂α)Xθ ∈ S

for all but finitely many θ in J. As θ runs over this cofinite subset of J, the functions Xθ

span a subspace that is of finite codimension in the pole space Rh. Since the operator

f (X, ∂α) maps a space of finite codimension in Rh to a finite-dimensional space, it

does the same to Rh. In other words f (X, ∂α) has finite rank on Rh.

Now, to arrange for any monic, irreducible polynomial f (X,Y ) in K(X)[Y ] to

regulate a pair (h, α) we simply take I and h as above, and take α to be any functional

such that (θ,−〈α,Xθ〉) is on the curve f (X,Y ) = 0 for all but finitely many θ in I. As

we saw f (X, ∂α) has finite rank on Rh. Consequently the regulator of (h, α) divides

f (X,Y ). Since f (X,Y ) is irreducible and monic in Y , it must be the regulator of

(h, α).
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Endomorphisms of V(m, h, α) and Their Tag Polynomial

As noted, an endomorphism of V(m, h, α) is a K(X)-linear operator on K(X)2 that

leaves the space V (m, h, α) invariant. Take such ϕ represented as the matrix in (8).

The polynomial

(11) tY 2 + (v − s)Y − u

associated to ϕ will have a role to play. We shall call it the tag polynomial of ϕ.

Proposition 2.1 If ϕ as in (8) is an endomorphism of V(m, h, α), then the regulator

of (h, α) divides the tag polynomial of ϕ.

Proof By the nature of regulators, one must check that the operator

t ◦ ∂2
α + (v − s) ◦ ∂α − u

has finite rank on Rh. For every r in Rh the vector
( r
−∂α(r)

)

lies in V (m, h, α), by (5).

Hence
[

s t

u v

] (

r

−∂α(r)

)

=

(

sr − t∂α(r)

ur − v∂α(r)

)

∈ V (m, h, α).

Thus ∂α(sr−t∂α(r))+ur−v∂α(r) ∈ Pm. Since Pm is finite-dimensional, the operator

∂α◦s−∂α◦t◦∂α+u−v◦∂α has finite rank on Rh. However, since A/I is commutative,

this operator has the same projection in A/I as the operator−(t◦∂2
α+(v−s)◦∂α−u),

and that projection is 0. By the definition of I, the operator t ◦ ∂2
α + (v − s) ◦ ∂α − u

has finite rank on Rh.

Next observe that the tag polynomial tY 2 + (v − s)Y − u is zero if and only if

the endomorphism ϕ is trivial. Indeed, if the tag polynomial is zero, then ϕ = sI.

Since
(

0
1

)

∈ V (m, h, α), so also
(

0
s

)

= ϕ
(

0
1

)

∈ V (m, h, α). This causes s to be

in Pm. On the other hand the set of all s such that sI is an endomorphism forms a

K-algebra, and the only K-algebra inside Pm is K. After making the simple obser-

vation that polynomials of degree 0 are never regulators, a useful fact emerges from

Proposition 2.1.

Proposition 2.2 If End V(m, h, α) is non-trivial, then the regulator of (h, α) must be

linear or quadratic in Y .

When the Regulator Is Linear

In searching for non-trivial endomorphisms we need only worry about those pairs

(h, α) that have linear or quadratic regulators. We can quickly dispose of the linear

case, whose proof already appears in [15, Proposition 2.5].

Proposition 2.3 If the regulator of (h, α) is linear, then V(m, h, α) has a non-zero,

finite-dimensional summand.
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When V(m, h, α) have a finite-dimensional direct summand, their endomorphism

algebras are non-commutative, but well understood, [14, §3]. Thereby the case of a

linear regulator requires no further attention.

When the Regulator Is Quadratic

If the regulator is quadratic, things get more complicated, but we can quickly squeeze

out some constraints on End V(m, h, α). Supposing that the pair (h, α) is regulated

by the quadratic polynomial

(12) Y 2 + pY + q, where p, q ∈ K(X),

the matrix

(13) D =

[

p −1

q 0

]

will play a significant role. We call D the generic matrix for the quadratic regulator

Y 2 + pY + q.

Proposition 2.4 If (h, α) has quadratic regulator and generic matrix as in (12) and

(13), respectively, then every endomorphism of V(m, h, α) takes the form

(14) tD + (∂α(t) + ℓ)I where t ∈ Rh and ℓ ∈ Pm.

Proof Let ϕ as in (8) be an endomorphism. By Proposition 2.1, Y 2 + pY + q divides

the tag polynomial tY 2 + (v − s)Y − u. Hence,

v − s = t p, − u = tq, and thus s = v − t p, u = −tq.

This means that

ϕ =

[

v − t p t

−tq v

]

= −tD + vI.

Since ϕ is an endomorphism and
(

0
1

)

∈ V (m, h, α), its image
(

t
v

)

under ϕ is also

in V (m, h, α). By the definition (5) we can write v = −∂α(t) + ℓ where t ∈ Rh and

ℓ ∈ Pm. Consequently, every endomorphism takes the formϕ = −tD+(−∂α(t)+ℓ)I,

where t ∈ Rh and ℓ ∈ Pm. After replacing t by −t , the desired parametrization of ϕ
emerges.

An interesting result, already implicit in [12], now follows.

Corollary 2.5 If the regulator of (h, α) is quadratic with generic matrix D, then

End V(m, h, α) ⊆ K(X)[D]. In particular End V(m, h, α) is commutative.
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Proof The algebra K(X)[D] is the algebra of all matrices of the form tD + uI where

t, u ∈ K(X). By Proposition 2.4 all endomorphisms are special matrices of this sort.

The characteristic polynomial of D is Y 2 − pY + q, a close relative of the regulator.

It is plain to see that the regulator Y 2 + pY +q has no roots, a repeated root, or distinct

roots in K(X) if and only if the characteristic poynomial of D has the same respective

properties. The algebra K(X)[D] is isomorphic to K(X)[Y ]/(Y 2 − pY + q), and this

is

• a field extension of K(X) when Y 2 − pY + q has no roots in K(X),
• isomorphic to the simple extension K(X) ⋉ K(X) when Y 2 − pY + q has only one

root in K(X),
• isomorphic to the product algebra K(X) × K(X) when Y 2 − pY + q has two roots

in K(X).

Thus the regulator anticipates what End V will look like, according to the next result

whose proof is immediate from Corollary 2.5.

Proposition 2.6 Let (h, α) have quadratic regulator as in (12) with generic matrix as

in (13).

• If the regulator has no root in K(X), then End V(m, h, α) sits inside the quadratic field

extension K(X)[D].
• If the regulator has one repeated root in K(X), then End V(m, h, α) sits inside the

algebra K(X) ⋉ K(X).
• If the regulator has non-repeated roots in K(X), then End V(m, h, α) sits inside the

algebra K(X) × K(X).

Two small items come out of Proposition 2.6. First, if the quadratic regulator has

no repeated root, then End V(m, h, α) has no nilpotents. Second, if the regulator has

only one or no root, then End V(m, h, α) has no proper idempotents, and V(m, h, α)

is indecomposable.

Quadratic Regulator, Only Trivial Endomorphisms

Proposition 2.6 also lets us show that the converse of Proposition 2.2 fails. As noted

earlier, a linear regulator for (h, α) does imply that V(m, h, α) has non-trivial endo-

morphisms. As well, for certain height functions h a quadratic regulator for (h, α)

implies that End V(m, h, α) is non-trivial [13, 16]. However, in general a quadratic

regulator for (h, α) need not force V(m, h, α) to have non-trivial endomorphisms.

To see this fact, take any irreducible polynomial f (Y ) in K(X)[Y ] of degree 2 in Y .

With this polynomial f (Y ) take the pair (h, α) of Example 2 that is regulated by f (Y ).

Since f (Y ) has no root in K(X), Proposition 2.6 causes End V(m, h, α) to be an inte-

gral domain. The height function h of Example 2 satisfies the singularity condition

of [14, Theorem 3.4]. Namely, h never assumes the value ∞. That result tells us that

End V(m, h, α) is either the product K × K or the trivial extension K ⋉ S for some

K-linear space S. The only domain that is compatible with these two possibilities is

K = K ⋉ (0). Thus we have that End V(m, h, α) is trivial.
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Pure Simplicity and Non-Zero Regulator

Next we show how the regulator of (h, α) impinges on the pure simplicity of a mod-

ule V(m, h, α). A submodule of V(m, h, α) is called pure provided it splits inside any

of its finite-dimensional extensions that are in V(m, h, α). The module V(m, h, α)

is called purely simple provided it has no proper pure submodules. Purely simple

modules are thereby indecomposable in a strong sense. We shall adopt the criterion

for pure simplicity that is in [2, Proposition 2.1]. This says that V(m, h, α) is purely

simple if and only if every non-zero module homomorphism V(m, h, α) → R has

finite-dimensional kernel. In order to avoid undue digression we can view a mod-

ule homomorphism V(m, h, α) → R simply as the restriction to V (m, h, α) of a

K(X)-linear map K(X)2 → K(X). From this point of view it is easy to see from the

definition (5) of V (m, h, α) that the integer m is irrelevant to the pure-simplicity of

V(m, h, α). This is because for any positive integer m the space V (1, h, α) has finite

codimension in V (m, h, α). Only the pair (h, α) matters for pure simplicity.

Proposition 2.7 Suppose that the regulator f (Y ) of (h, α) is non-zero. Then the mod-

ule V(m, h, α) is purely simple if and only if f (Y ) has no root in K(X).

Proof Suppose that u in K(X) is a root of f (Y ) and write f (Y ) = (Y −u)g(Y ) where

g(Y ) ∈ K(X)[Y ], and g(Y ) 6= 0. The operators g(∂α) and ∂α − u lie in the algebra

A used to define the regulator. By the nature of regulators, the operator (∂α − u) ◦
g(∂α) has finite rank on Rh, while the operator g(∂α) has infinite rank on Rh. Thus

the image g(∂α)(Rh) is an infinite-dimensional space that lies in a finite-dimensional

extension of Rh. Consequently, Rh ∩ g(∂α)(Rh) is an infinite-dimensional space. This

intersection goes to a finite-dimensional space under ∂α−u, because (∂α−u)◦g(∂α)

has finite rank on Rh. It follows that ker(∂α − u) ∩ Rh ∩ g(∂α)(Rh) is infinite-dimen-

sional. Thus the kernel of ∂α − u restricted to Rh is infinite-dimensional.

The mapping

τ : V (m, h, α) → K(X) where τ :

(

r

s

)

7→ ur + s,

defines a non-zero module homomorphism V(m, h, α) → R. For each r in Rh, the

element
( r
−∂α(r)

)

∈ V (m, h, α). We have

τ

(

r

−∂α(r)

)

= ur − ∂α(r) = −(∂α − u)(r).

Since ker(∂α − u) is infinite-dimensional, so is ker τ . If τ 6= 0, we have found a

non-zero homomorphism V(m, h, α) → R with infinite-dimensional kernel, so that

using [2, Proposition 2.1], V(m, h, α) is not purely simple. If τ = 0, then ∂α − u

vanishes on Rh. In that case the regulator is linear, namely Y − u. From this it

follows by Proposition 2.3 that V(m, h, α) has a finite-dimensional summand, and

thus V(m, h, α) is still not purely simple.
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Conversely suppose V(m, h, α) is not purely simple. In that case there is a non-

zero homomorphism V(m, h, α) → R with infinite-dimensional kernel. This means

there are rational functions u, t not both zero such that the map

τ : V (m, h, α) → K(X) given by τ :

(

r

s

)

7→ ur + ts

has infinite-dimensional kernel. If t = 0, then u 6= 0 and ker τ is the finite-dimen-

sional space (0) × Pm that, as revealed by (5), sits inside V (m, h, α). Hence t 6= 0,

and multiplying through by t−1 we can suppose t = 1. The space Rh is embedded

with finite codimension inside V according to r 7→
( r
−∂α(r)

)

. Hence the composite

Rh → K(X) of this embedding followed by τ , namely the map r 7→ (u − ∂α)(r), has

infinite-dimensional kernel. Divide f (Y ) by Y − u to get

f (Y ) = g(Y )(Y − u) + r where g(Y ) ∈ K(X)[Y ], r ∈ K(X).

Since f (Y ) is the regulator, the K-linear operator g(∂α) ◦ (∂α − u) + r has finite rank

on Rh. Because ∂α − u has infinite-dimensional kernel inside Rh, the same holds for

g(∂α) ◦ (∂α − u). Consequently the multiplier r, being the difference of a finite rank

operator and an operator with an infinite-dimensional kernel, must have non-zero

kernel. This forces r = 0. Hence u is root of f (Y ).

Corollary 2.8 If the module V(m, h, α) is purely simple and has non-trivial endomor-

phisms, then the regulator of (h, α) is a quadratic irreducible over K(X). Furthermore,

End V(m, h, α) embeds in a quadratic field extension of K(X).

Proof From Proposition 2.2 the regulator is linear or quadratic. By Proposition 2.7

it has no root in K(X). In that case it has to be quadratic and irreducible. In addition

Proposition 2.6 ensures that End V(m, h, α) sits inside a quadratic field extension of

K(X).

Pure Simplicity and Zero Regulator

When the regulator of (h, α) is 0, pure simplicity of V(m, h, α) can go either way.

If (h, α) is taken as in Example 1, the regulator is 0. We check now that for such

(h, α) the modules V(m, h, α) are not purely simple. Take the mapping

τ : V (m, h, α) → K(X)

defined by τ : ( r
s ) 7→ s for every ( r

s ) in V (m, h, α). As noted prior to Proposi-

tion 2.7 such a map determines a module homomorphism V(m, h, α) → R. Since
(

0
1

)

∈ V (m, h, α), we see that τ is non-zero. The elements
( r
−∂α(r)

)

where r ∈ K(X)

belong to V (m, h, α). When r ∈ K[X] we see from (4) and the definition of α that

∂α(r) = 0. Thus ( r
0 ) ∈ V (m, h, α) for every polynomial r. Since these elements are

in the kernel of τ , we have produced a non-zero homomorphism V(m, h, α) → R

with infinite-dimensional kernel. According to [2, Proposition 2.1], the module

V(m, h, α) is not purely simple.
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On the other hand, here is a scheme for building a pair (h, α) with regulator 0

such that V(m, h, α) is purely simple. Let I be an infinite subset of K and let h be the

height function of Example 2 with pole space Rh = K +
∑

θ∈I KXθ . Suppose that

a function η : I → K denoted by θ → ηθ can be chosen so that for any polynomial

f (X,Y ) in K(X)[Y ], monic in Y , the set

{θ ∈ I : f (θ, ηθ) is defined and f (θ, ηθ) 6= 0}

is infinite. Let α be any functional that satisfies 〈α,Xθ〉 = −ηθ for all θ in I. Accord-

ing to the criterion of Example 2, no monic polynomial f (X,Y ) can cause the opera-

tor f (X, ∂α) to have finite-rank on Rh. Consequently the regulator of such (h, α) will

have to be 0. Suppose in addition that the function η : I → K can be chosen so that

for any rational function r in K(X), the set of agreement

{θ ∈ I : r(θ) is defined and r(θ) = ηθ}

is finite. In that case [7, Theorem D] shows that the module V(m, h, α) will be purely

simple.

In light of the above remarks, a pair (h, α) having 0 regulator and such that

V(m, h, α) is purely simple will be found provided there is an infinite subset I of

K and a function η : I → K such that

• the graph of η misses every curve f (X,Y ) = 0 for infinitely many θ in I;
• no rational function r agrees with η on an infinite subset of I.

The procurement of an explicit formula for such a function for every field K and

every infinite subset I remains a small mystery. Nevertheless, if K is the complex

numbers C and I is the set of positive integers, the exponential function ηθ = eθ

for every positive integer θ, does even more. In fact, given a monic polynomial

f (X,Y ) = Y n + rn−1(X)Y n−1 + · · · + r1(X)Y + r0(X) in C(X)[Y ],

the equation f (θ, eθ) = 0 can only have finitely many solutions in positive integers θ.

This is because as θ tends to ∞ through positive integers, the term enθ grows faster

than the lower terms r j(θ)e jθ. Thus any curve f (X,Y ) = 0 meets the graph of η
on only a finite set, which certainly fulfills the first requirement above. In addition

taking f (X,Y ) of degree n = 1, we see that the second requirement is met as well.

Thus we have at least one pair (h, α) regulated by 0 and such that V(m, h, α) is purely

simple.

3 Analyzing and Building Endomorphisms

We represent a K(X)-linear operator ϕ on K(X)2 as usual by (8), and look for com-

putational devices for deciding when ϕ is an endomorphism of V(m, h, α).

The Maximal Subspace J of End V(m, h, α)

Let J denote the space of those ψ that are endomorphisms of V(m, h, α) and for

which v = −∂α(t). In other words J is the space of endomorphisms that take the
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form

(15)

[

s t

u −∂α(t)

]

where s, t, u ∈ K(X).

The set of scalar endomorphisms is denoted naturally as KI.

Proposition 3.1 End V(m, h, α) = KI ⊕ J.

Proof Let ϕ as in (8) be an endomorphism of V(m, h, α). If p ∈ Pm, the element
(

0
p

)

∈ V (m, h, α). Hence its ϕ-image
( t p

vp

)

is in V (m, h, α), so that by (5)

∂α(t p) + vp ∈ Pm for all p in Pm.

By (3) applied to ∂α(t p) the above becomes

(∂α(t) + v)p + ∂α∗t (p) ∈ Pm for all p in Pm.

Put p = 1 and use (4) to obtain ∂α(t) + v ∈ Pm. Again by (4), ∂α∗t (p) is a polynomial

of degree at most m−2. A consideration of degrees above implies that ∂α(t) + v ∈ K.

Putting λ = ∂α(t) + v we have

ϕ = λI +

[

s − λ t

u −∂α(t)

]

.

We have shown that End V (m, h, α) = KI + J. To see that the sum is direct, just

observe that the only scalar matrix of the type (15) is the zero matrix.

Testing Membership in J

In light of Proposition 3.1, V(m, h, α) will possess a non-trivial endomorphism if

and only if J has a non-zero endomorphism. In the next result we interpret in more

detail what it means for a matrix of the form (15) to be in J. The proof comes from

a straightforward application of (5) and of (3).

Proposition 3.2 A matrix ϕ as in (15) belongs to J if and only if

tPm ⊆ Rh,(16)

(s − t ◦ ∂α)Rh ⊆ Rh,(17)

(∂α(s) + u + ∂α∗s − ∂α∗t ◦ ∂α) Rh ⊆ Pm.(18)

Proof The elements of V (m, h, α) are sums of elements
(

0
p

)

and
( r
−∂α(r)

)

where

p ∈ Pm and r ∈ Rh. Our ϕ is an endomorphism if and only if ϕ maps all such

elements into V (m, h, α).
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For p in Pm we have ϕ
(

0
p

)

=

( t p
−∂α(t)p

)

. This element is in V (m, h, α) if and only

if t p ∈ Rh and ∂α(t p) − ∂α(t)p ∈ Pm. Using (3) for ∂α(t p) we see that

∂α(t p) − ∂α(t)p = ∂α∗t (p),

which from (4) certainly lies in Pm. Thus we see thatϕmaps each
(

0
p

)

into V (m, h, α)

if and only if (16) holds.

If r ∈ Rh the ϕ-image of
( r
−∂α(r)

)

is
(

sr−t∂α(r)
ur+∂α(t)∂α(r)

)

. This element lies in V (m, h, α)

if and only if sr−t∂α(r) ∈ Rh and ∂α(sr−t∂α(r))+ur +∂α(t)∂α(r) ∈ Pm. The first of

these conditions is just (17). By applying (3) to ∂α(sr) and to ∂α(t∂α(r)) the second

condition simplifies down to ∂α(s)r + ur + ∂α∗s(r) − ∂α∗t (∂α(r)) ∈ Pm which is what

(18) says.

Since 1 ∈ Pm, condition (16) implies t ∈ Rh. Also since 1 ∈ Rh and since derivers

kill scalars as per (4), condition (17) implies s ∈ Rh.

Controlling the Height Function

If the module V(m, h, α) has h(∞) <∞, then an argument based on equivalence of

height functions (see e.g., [3, §3] or [17, §6]) shows that V(m, h, α) is isomorphic to

a module V(m, k, β) in which k(∞) = m. This observation makes it acceptable to

operate under the assumption that V(m, h, α) is a module in which h(∞) ≥ m.

Proposition 3.3 If V(m, h, α) is such that h(∞) ≥ m and
[

s t
u −∂α(t)

]

as in (15) be-

longs to J, then ∂α(s) + u = 0.

Proof Since 1 ∈ Rh and derivers kill scalars, we get ∂α(s) + u ∈ Pm from condition

(18). The assumption on h gives Xm ∈ Rh. From (18) again we get

(∂α(s) + u)Xm + (∂α∗s − ∂α∗t ◦ ∂α)(Xm) ∈ Pm.

Since derivers reduce degree as in (4), we see that (∂α∗s − ∂α∗t ◦ ∂α)(Xm) ∈ Pm.

Consequently (∂α(s) + u)Xm ∈ Pm. This forces ∂α(s) + u = 0.

In light of Proposition 3.3 we see that when h(∞) ≥ m, condition (18) simplifies

to the statement

(19) (∂α∗s − ∂α∗t ◦ ∂α)Rh ⊆ Pm.

Let us gather the bits we have obtained so far in this section.

Proposition 3.4 If V(m, h, α) is such that h(∞) ≥ m, then a matrix ϕ as in (8)

belongs to J if and only if ϕ takes the form

(20) ϕ =

[

s t

−∂α(s) −∂α(t)

]

where s, t ∈ Rh,

and (16), (17), and (19) hold.
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Of the conditions (16), (17), and (19), the most important is the last one. If θ ∈ K,

let K[Xθ] be the pole space of polynomials in Xθ. The statement K[Xθ] ⊆ Rh is

equivalent to having h(θ) = ∞. Also the statement K[X] ⊆ Rh is equivalent to

having h(∞) = ∞.

Proposition 3.5 Suppose s, t in K(X) satisfy (19) for a given height function h and

a positive integer m. If θ ∈ K and h(θ) = ∞, then ∂α∗s = ∂α∗t ◦ ∂α on K[Xθ].

Furthermore, if h(∞) = ∞, then ∂α∗s = ∂α∗t ◦ ∂α on K[X].

Proof Since K[Xθ] ⊆ Rh, (19) gives (∂α∗s − ∂α∗t ◦ ∂α)K[Xθ] ⊆ Pm. The operator

∂α∗s − ∂α∗t ◦ ∂α is a deriver because [16, Proposition 2.3] shows that the set of de-

rivers is an algebra. Due to (4) this deriver kills scalars and leaves the space XθK[Xθ]

invariant. Since the intersection Pm ∩ XθK[Xθ] = (0) it follows that ∂α∗s − ∂α∗t ◦ ∂α
vanishes on K[Xθ].

If h(∞) = ∞, then K[X] ⊆ Rh and (19) gives (∂α∗s−∂α∗t ◦∂α)K[X] ⊆ Pm.Hence

the deriver ∂α∗s−∂α∗t ◦∂α has finite rank on K[X]. An examination of (4) shows that

only the zero deriver on K[X] can have finite rank on K[X]. Thus ∂α∗s − ∂α∗t ◦ ∂α
vanishes on K[X].

From Propositions 3.4 and 3.5 we extract the following.

Corollary 3.6 If V(m, h, α) is such that h(∞) ≥ m and ϕ as in (8) belongs to J, then

ϕ takes the form (20) and for any θ in K where h(θ) = ∞, ∂α∗s = ∂α∗t ◦ ∂α on K[Xθ].

Furthermore, if h(∞) = ∞, then ∂α∗s = ∂α∗t ◦ ∂α on K[X].

Laurent Coefficients of Functions and Functionals

For each θ in K, the field K((X − θ)) of Laurent series in X − θ is the completion of

K(X) with respect to the valuation ordθ. There is a unique field embedding K(X) →
K((X−θ)) that fixes the common subalgebra K[X−θ,Xθ] of Laurent polynomials in

X − θ. The field K((X−1)) of Laurent series in X−1 is the completion of K(X) using

the valuation ord∞. Again there is a unique field embedding K(X) → K((X−1))

that fixes the common subalgebra K[X−1,X] of Laurent polynomials in X−1. Such

matters are discussed in [11, Ch. 2]. If r is a non-zero rational function and θ ∈ K,

we shall denote the image of r in K((X−θ)) simply as r again, and write its expansion

in K((X − θ)) as follows:

(21) r =

∞
∑

n=m

rθn(X − θ)n where m = − ordθ(r), rθn ∈ K and rθm 6= 0.

Likewise the image of r in K((X−1)) will be denoted simply as r again, and as an

expansion in K((X−1)) we write

(22) r =

∞
∑

n=m

r∞n X−n where m = − ord∞(r), r∞n ∈ K and r∞m 6= 0.
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The valuations ordθ and ord∞ extend to valuations on K((X − θ)) and K((X−1)),

respectively. The extended valuations give the negative of the least power of X − θ or

of X−1 that appears in a given expansion. These completions were exploited in [16]

to study the endomorphism algebras of the modules V(m, h, α) in the important case

where Rh = K(X), but we need them here as well.

Each functional α can be assigned an expansion in the subalgebra K[[X − θ]] of

K((X − θ)) by putting

(23) αθ =

∞
∑

n=0

〈α,Xn+1
θ 〉(X − θ)n.

Also we can put

(24) α∞
=

∞
∑

n=0

〈α,Xn〉X−n,

in the subalgebra K[[X−1]] of K((X−1)). Through its coefficients the expansion αθ

determines the action of α on the space XθK[Xθ], and likewise the expansion α∞

determines the action of α on the space of polynomials K[X]. Taken together these

expansions determine the functional on K(X).

With the notation (21), (22), (23), and (24) adopted above, products such as rαθ

and rα∞ taken in K((X − θ)) and K((X−1)), respectively, are clearly defined. In [16,

Proposition 2.6] it is shown that for a functional α and a rational function r, the

coefficients of the functional α ∗ r are given by

(α ∗ r)θ = rαθ + ∂α(r) for every θ in K,(25)

(α ∗ r)∞ = rα∞ − X∂α(r).(26)

Given functionals α and β, it follows from [16, Proposition 2.3] that the composite

∂α ◦ ∂β is again a deriver. If θ ∈ K and γ is another functional, the proposition also

says that

(27) ∂γ = ∂α ◦ ∂β on the pole space K[Xθ] ⇔ γθ = −αθβθ.

Furthermore, it says that

(28) ∂γ = ∂α ◦ ∂β on the pole space K[X] ⇔ γ∞ = X−1α∞β∞.

For each θ in K the field K(X) sits inside its θ-completion K((X − θ)). Thus any

polynomial g(Y ) in K(X)[Y ] is also a polynomial in K((X − θ))[Y ]. Likewise g(Y )

is also in K((X−1))[Y ]. Now we are enabled to make the following interpretation of

the identities in Proposition 3.5.

Proposition 3.7 Let α be a functional, let s, t ∈ K(X) and θ ∈ K. Then

(29) ∂α∗s = ∂α∗t ◦ ∂α on K[Xθ]
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if and only if

(30) αθ is a root in K((X − θ)) of tY 2 + (s + ∂α(t))Y + ∂α(s).

Furthermore,

(31) ∂α∗s = ∂α∗t ◦ ∂α on K[X]

if and only if

(32) α∞ is a root in K((X−1)) of tY 2 − X(s + ∂α(t))Y + X2∂α(s).

Proof Let γ be the functional that gives the deriver ∂α∗t ◦ ∂α.

Using (4), the condition (29) is equivalent to having α∗s agree with γ on XθK[Xθ].

In turn, using (23), this is the same as having (α ∗ s)θ = γθ. From (27) and (25), this

becomes sαθ + ∂α(s) = −(α ∗ t)θαθ = −(tαθ + ∂α(t))αθ . After expanding out and

rearranging, this becomes (30).

Again from (4), condition (31) is the same as having α∗s agree with γ on K[X]. In

turn using (24) this is the same as (α ∗ s)∞ = γ∞. From (28) and (26) this becomes

sα∞ − X∂α(s) = X−1(α ∗ t)∞α∞
= X−1(tα∞ − X∂α(t))α∞.

By expanding and rearranging, this comes down to

X−1t(α∞)2 − (s + ∂α(t))α∞ + X∂α(s) = 0,

which is the same as (32) after multiplication byX.

Purely Simple Modules with Non-Trivial Endomorphisms

Regrettably, it seems necessary to avoid characteristic 2 in the following result.

Theorem 3.8 Suppose char K 6= 2. If V(m, h, α) is purely simple with non-trivial

endomorphisms, then h must assume the value ∞ somewhere on K ∪ {∞} and be finite

valued at least twice on K ∪ {∞}.

Proof As explained prior to Proposition 3.3 we can assume that h(∞) ≥ m. This

enables us to apply Corollary 3.6.

Since V(m, h, α) has non-trivial endomorphisms, there must be a non-zero endo-

morphism ϕ in J. Corollary 3.6 applies for this non-zero ϕ, which takes the form of

(20). By Proposition 3.7 it follows that (30) holds for all θ where h(θ) = ∞. For such

θ the discriminant w = (s + ∂α(t))2 − 4t∂α(s) of the polynomial in (30) must be a

perfect square in K((X − θ)). Consequently the integers ordθ(w) are even for all θ in

K where h(θ) = ∞. In case h(∞) = ∞, Corollary 3.6 followed by Proposition 3.7

yield (32). Now the discriminant X2((s +∂α(t))2 −4t∂α(s)) of the polynomial in (32)

is a perfect square in K((X−1)). This is the same as saying that when h(∞) = ∞, the
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function w above is a perfect square in K((X−1)). In turn this causes ord∞(w) to be

an even integer. Hence ordθ(w) is even for all θ in K ∪ {∞} at which h(θ) = ∞.

By Corollary 2.8 the regulator of (h, α) is irreducible in K(X)[Y ] and quadratic.

Since ϕ is given as in (20), its tag polynomial in accordance with (11) is

tY 2 − (s + ∂α(t))Y + ∂α(s).

By Proposition 2.1 the regulator of (h, α) divides the tag polynomial of ϕ. Since

ϕ 6= 0, the tag polynomial of ϕ is non-zero, and thereby is an irreducible quadratic

in Y . The discriminant of the tag polynomial is the very same function w encountered

above.

Because char K 6= 2, irreducibility of the tag polynomial implies that w is not a

perfect square in K(X). From the unique factorization as in (1) of w, ordθ(w) must

be odd for some θ in K. The well-known identity

ord∞(w) +
∑

θ∈K

ordθ(w) = 0

shows that the number of θ in K ∪ {∞} for which ordθ(w) is odd must be even. In

particular ordθ(w) is odd at least twice on K ∪ {∞}. We saw at the beginning of the

proof that ordθ(w) is even whenever h(θ) = ∞. Consequently h(θ) < ∞ at least

twice on K ∪ {∞}.

To get that h(θ) = ∞ at least once on K ∪ {∞}, we note from Corollary 2.8 that

End V(m, h, α) has no zero divisors. Consequently, if h never assumed the value ∞,

we could invoke [14, Theorem 3.4] to contradict the assumption that End V(m, h, α)

is non-trivial.

Example 3 (A general construction using h(∞) = ∞) We turn to the construction

of a broad family of purely simple V(m, h, α) that possess non-trivial endomor-

phisms. Asssuming char K 6= 2, this construction is both a simplification and a

generalization of [13, Lemma 4.8].

Start with any quadratic polynomial

(33) f (Y ) = Y 2 + pY + q

where p, q ∈ K[X], p 6= 0, q 6= 0 and deg q < deg p. A simple check confirms that

f (Y ) is irreducible over K(X). Let w = p2 − 4q be the discriminant of f (Y ). Since

deg p > deg q, we see that deg w = 2 deg p ≥ 2, and w has at least one root in K. If

w had only one root in K, then w, being of even degree, would be a perfect square.

Hence f (Y ) would have roots in K(X) contrary to its irreducibility. Thus w has at

least two roots. Let k be the height function defined by the formula:

(34) k(θ) =











0 when θ is a root of the discriminant w,

∞ when θ ∈ K but not a root of w,

∞ when θ = ∞.
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We will now build a functional α such that (k, α) is regulated by the chosen poly-

nomial f (Y ). By Proposition 2.7 this will ensure that the module V(m, k, α) is purely

simple. In addition, we will see that the generic matrix D as in (13) of f (Y ) is an

endomorphism of V(m, k, α). The choice of m will not matter.

A good way to specify a functional is to select a series σθ in K[[X − θ]] for each θ
in K and series σ∞ in K[[X−1]], and then to take α to be the unique functional for

which αθ as in (23) and α∞ as in (24) equals σθ and σ∞, respectively. Thus we speak

of selecting the αθ and α∞ that determine α.

For θ that is a root of w, it will not matter howαθ is selected, but just to fix it let αθ

be zero. To select αθ when θ is a non-root of w, notice that ordθ(w) = 0. Since this is

an even number, w is a perfect square in K((X −θ)), and also ordθ(
√

w) = 0. Conse-

quently the polynomial Y 2 − pY + q, having discriminant w, has roots (p ±√
w)/2

in K((X − θ)) These roots are in the subalgebra K[[X − θ]] since p and
√

w are in

K[[X − θ]]. Now select αθ to be any one of the two roots of Y 2 − pY + q that lie in

K[[X − θ]].

To select α∞, notice that the polynomial Y 2 + XpY + X2q has roots in the field

K((X−1)) because its discriminant X2w is such that ord∞(X2w) = 2 + 2 deg p, an

even number. That makes the discriminant a perfect square in K((X−1)) and assures

the desired roots in K((X−1)). One of those two roots must lie in the subalgebra

K[[X−1]]. To see this let σ, τ be the roots in K((X−1)) of Y 2 + XpY + X2q. Then

σ + τ = −Xp and στ = X2q. Taking the valuation ord∞ and noting that deg p >
deg q we get

max{ord∞(σ), ord∞(τ )} ≥ ord∞(σ + τ ) = 1 + deg p ≥ 2 + deg q

= ord∞(στ ) = ord∞(σ) + ord∞(τ ).

When the sum of two integers is no more than their maximum, one of the integers

is at most 0. Thus either ord∞(σ) ≤ 0 or ord∞(τ ) ≤ 0. This says exactly that one

of σ or τ is in K[[X−1]]. Incidentally, the other root is not in K[[X−1]] since the

roots add up to −Xp which is not in K[[X−1]]. Now select α∞ to be that root of

Y 2 + XpY + X2q which lies in K[[X−1]].

Having completely specified the functional α, we begin to show that the generic

matrix D =

[ p −1
q 0

]

as in (13), for the chosen polynomial f (Y ), is an endomor-

phism of V(m, k, α). For that we need to show that q = −∂α(p). We can de-

compose a Laurent series σ in K((X−1)) as σ = u + τ where u is a polynomial

in X and τ ∈ K[[X−1]]. We may call u the polynomial part of σ, and denote

it by P∞(σ). We have selected α∞ so that (α∞)2 + Xpα∞ + X2q = 0 and thus

X−2(α∞)2 + X−1 pα∞ + q = 0. Taking the polynomial part of this and noting

that P∞(X−2(α∞)2) = 0, we obtain P∞(q) = −P∞(X−1 pα∞). Using [16, Propo-

sition 2.2] we have P∞(∂α(p)) = P∞(X−1 pα∞). (In these formulas from [16],

p, q were denoted by p∞, q∞, respectively.) Hence P∞(q) = −P∞(∂α(p)). Since

q and ∂α(p) are polynomials in X, each equals its own polynomial part. Therefore

q = −∂α(p).

Now to check that the generic matrix D is an endomorphism of V(m, k, α), it will

do to verify that D meets the criteria of Proposition 3.4. Because k(∞) = ∞ we have

p ∈ K[X] ⊆ Rk,
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and since q = −∂α(p), the matrix D takes the form (20) and satisfies (16) using

t = −1. Condition (17) becomes (p +∂α)Rk ⊆ Rk. This is met because derivers leave

pole spaces invariant and because p as seen above lies in the pole algebra of Rk. To

get the important condition (19) notice k was defined so that

Rk = K[X] +
∑

w(θ)6=0

K[Xθ].

Thus (19) will be met if we can show that ∂α∗p = −∂2
α on every K[Xθ] for which

w(θ) 6= 0, and that ∂α∗p = −∂2
α on K[X]. These latter conditions are nothing but

(29) when w(θ) 6= 0 and (31), where we specialize s = p and t = −1. We now see this

by calling upon Proposition 3.7. Indeed if w(θ) 6= 0, then αθ, as a root of Y 2 − pY + q

in K[[X − θ]], has been selected precisely to satisfy (30) with s = p, t = −1. Also

α∞, as a root of Y 2 + XpY + q in K[[X−1]], has been selected precisely to satisfy (32)

with s = p, t = −1.

Our module V(m, k, α) now has a non-trivial endomorphism. It remains to check

that (k, α) is regulated by Y 2 + pY + q. Proposition 2.7 will ensure the desired pure

simplicity of V(m, k, α). It will also afford us a broad family of constructed regula-

tors. Since D is an endomorphism, Proposition 2.1 says that the regulator of (k, α)

divides the tag polynomial (11) of D. The tag polynomial of D is −(Y 2 + pY + q), an

irreducible quadratic. The regulator must be the monic polynomial Y 2 + pY + q that

we started with. Our construction is complete.

Theorem 3.9 Suppose char K 6= 2. If h is a height function such that h(∞) = ∞,

and h(θ) < ∞ for at least two θ in K, then there is a purely simple module V(m, h, α)

which admits non-trivial endomorphisms.

Proof Let η, ζ be two elements of K for which h(η) < ∞ and h(ζ) < ∞. Using

equivalence of height functions, as in [3, §3] or [17, §6], there is no loss in generality

by presuming h(η) = h(ζ) = 0. Take the polynomial

f (Y ) = Y 2 +
(

X − η + ζ

2

)

Y +
( η − ζ

4

) 2

.

Since η 6= ζ , this polynomial lies in the family given by (33). Its discriminant is

w =

(

X − η + ζ

2

) 2

− 4
( η − ζ

4

) 2

= X2 − (η + ζ)X + ηζ,

having exactly the roots η and ζ . For this f (Y ) take the height function k precisely

as in (34) and select α as in the construction following (34). The construction was

designed so that the resulting module V(m, k, α) is purely simple and has the endo-

morphism

D =

[

p −1

q 0

]

where p = X − η + ζ

2
and q =

( η − ζ

4

) 2

.
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Notice that h ≤ k and since h(∞) = ∞ we have

(35) p ∈ K[X] ⊆ Rh ⊆ Rk.

Since f (Y ) regulates (k, α), the operator f (∂α) has finite rank on Rk. Hence f (∂α)

has finite rank on the lesser space Rh. Thus the regulator of (h, α) must be a monic

factor of f (Y ). Because f (Y ) is already monic and irreducible, f (Y ) must be the

regulator of (h, α). By Proposition 2.7, V(m, h, α) is purely simple.

To see that D remains an endomorphism of V(m, h, α) it suffices to invoke Propo-

sition 3.4 for the matrix D and for the original height function h. Because of (35) the

matrix D is of the type (20), and we can easily see that (16) and (17) hold. Finally

(19) is true because it already holds using the larger space Rk.

Completing the Main Theorem

Theorems 3.8 and 3.9 in conjunction with our final result furnish the proof of Theo-

rem 1.1. Our final result also offers a slightly different construction of a purely simple

module having non-trivial endomorphisms.

Theorem 3.10 Suppose char K 6= 2. If h is a height function such that

h(∞) <∞, h(η) <∞, h(ζ) = ∞ for some η and some ζ in K,

then there is a purely simple V(m, h, α) which admits non-trivial endomorphisms.

Proof Take any positive integer m. Using equivalence of height functions we can use

[3, §3] or [17, §6] and safely suppose that h(∞) = m and h(η) = 0. Let ν =

√
ζ − η

be one of the square roots of ζ − η. Take the polynomial f (Y ) = Y 2 + 2νXζY − Xζ .

This polynomial is irreducible over K[Xζ] by Eisenstein’s criterion, and being monic

it is irreducible over K(X), the fraction field of K[Xζ]. The discriminant of f (Y ) is

w = (2νXζ)2 + 4Xζ = 4
X + ν2 − ζ

(X − ζ)2
= 4

X − η

(X − ζ)2
.

Since η 6= ζ , we see that ord∞(w) = ordη(w) = −1, ordζ(w) = 2 and ordθ(w) = 0

for all other θ in K.

Now we specify a functional α so that f (Y ) is the regulator of (h, α) and so that

its generic matrix

D =

[

2νXζ −1

−Xζ 0

]

is an endomorphism of V(m, h, α). To select α it suffices to specify the expansions

αθ for each θ in K ∪ {∞}. The choices of αη and α∞ do not matter, but to fix things

put them equal to 0.

To specify αθ when θ 6= η consider the polynomial g(Y ) = Y 2 − 2νXζY − Xζ

whose discriminant is w, the same as for f (Y ). For each θ in K, other than η and ζ ,

we have ordθ(w) = 0. Hence w has a square root, say σ, in K((X − θ)). In fact
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σ ∈ K[[X − θ]] because ordθ(σ) must be 0. Hence the roots (νXζ ±σ)/2 of g(Y ) are

in K[[X − θ]]. Select αθ to be any one of these roots of g(Y ).

It remains to specify αζ . Since ordζ(w) is the even number 2, the discriminant w

of the polynomial g(Y ) is a perfect square in K((X − ζ)). Hence g(Y ) has a root in

K((X − ζ)). One of these two roots lies in the subalgebra K[[X − ζ]]. Indeed, if ρ, τ
are the roots of g(Y ) in K((X−ζ)), we have ρτ = −Xζ so that ordζ(ρ)+ordζ(τ ) = 1.

Consequently ordζ(ρ) ≤ 0 or ordζ(τ ) ≤ 0, meaning that one of these roots lies in

the subalgebra K[[X − ζ]]. Select αζ to be that root of g(Y ) which lies K[[X − ζ]].

Now α is completely specified.

In preparation for D to satisfy Proposition 3.4, we check that

(36) ∂α(2νXζ) = Xζ .

If σ ∈ K((X − ζ)), let Pζ(σ) denote the finite part of the expansion of σ that involves

only the positive powers of Xζ . In particular Pζ(σ) = 0 if and only if σ ∈ K[[X −ζ]].

In [16] we refer to Pζ(σ) as the principal ζ-part of σ. We have chosen α so that αζ is

a root of g(Y ), i.e., (αζ)2 − 2νXζα
ζ − Xζ = 0. Take the principal ζ-part and notice

that Pζ((αζ)2) = 0 to obtain −2νPζ(Xζα
ζ) = Pζ(Xζ). From [16, Proposition 2.1] we

have that Pζ(Xζα
ζ) = −Pζ(∂α(Xζ)). These last two equalities give 2νPζ(∂α(Xζ)) =

Pζ(Xζ). After observing that Pζ(Xζ) = Xζ and from (4) that Pζ(∂α(Xζ)) = ∂α(Xζ),

we obtain the desired ∂α(2νXζ) = Xζ .

Now we check that D as above is an endomorphism of V(m, h, α) by testing D

against the criteria of Proposition 3.4, with s = 2νXζ , t = −1. Since h(ζ) = ∞
we have Xζ ∈ K[Xζ] ⊆ Rh. We checked that −Xζ = −∂α(2νXζ) and clearly 0 =

−∂α(−1). Hence D takes the form (20). To get (16) observe that (−1)Pm = Pm ⊆ Rh

simply because h(∞) = m. The condition (17) becomes (2νXζ + ∂α)Rh ⊆ Rh. This

holds because derivers leave pole spaces invariant and because, as seen above, Xζ is in

the pole algebra of Rh.

Most importantly we have to verify that (19) holds for D. Since h(∞) = m, the

height function h is such that

Rh ⊂ Pm+1 +
∑

θ∈K
θ 6=η

K[Xθ].

To obtain (19) it therefore suffices to show that using s = 2νXζ , t = −1 we have

(∂α∗s − ∂α∗t ◦ ∂α)Pm+1 ⊆ Pm and(37)

∂α∗s = ∂α∗t ◦ ∂α on every K[Xθ] other than K[Xη].(38)

According to (4), derivers lower the degree of any polynomial. Hence (37) holds no

matter what s and t are. To get (38) we apply Proposition 3.7. The functional α was

deliberately selected so that αθ is a root of g(Y ) for every θ in K other than η. With

s = 2νXζ and t = −1, we have ∂α(t) = 0 and ∂α(s) = Xζ , using (36). Then g(Y )

becomes −tY 2 − (s + ∂α(t))Y − ∂α(s). As this is the negative of the polynomial in

(30), Proposition 3.7 gives (38). Thus D is an endomorphism of V(m, h, α).
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Finally the regulator of (h, α) divides the tag polynomial of D. According to (11)

that tag polynomial is −Y 2 − 2νXζY + Xζ , the negative of our monic irreducible

f (Y ). Thus the regulator of (h, α) is f (Y ) and Proposition 2.7 shows that V(m, h, α)

is purely simple.

Open Problem

We have seen that if V(m, h, α) is purely simple with non-trivial endomorphisms,

then End V(m, h, α) embeds in the quadratic function field K(X)[Y ]/( f ), where f

is the regulator of (h, α). It is not known exactly which K-subalgebras of this field

arise as End V(m, h, α). For instance, subfields other than K do not arise, see [12].

Preliminary investigations indicate that the geometry of the curve given by f will be

relevant.
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