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POLYNOMIALS DETERMINING DEDEKIND DOMAINS

JONATHAN A. HILLMAN

If A is a Dedekind domain and / generates a prime ideal of

A[X] which is not "maximal, then the domain A[X]/(f) is

Dedekind if and only if / is not contained in the square of any

maximal ideal of A[X] . This criterion is used to find the ring

of integers of a cyclotomic field, and to determine when a plane

curve is normal.

If / is an irreducible monic polynomial in 7L[X~\ then the ring

K = Q[X]/(f) is an algebraic number field (and conversely every algebraic

number field may be thus realised, by the Primitive Element Theorem [2,

page 185]). The ring TL[X]/(f) is then contained in the ring of integers

of K and so we may ask "when is 2L[X]/(f) the full ring of integers of

Q[X]/(f) ?" The related question "if f in k[T, X] determines an

irreducible plane curve V(f) over a perfect field k , when is V{f)

normal?" was answered by Zariski, who showed in [4] that this is so if and

only if the ideal (f, 8//821, 2f/2X) is the unit ideal. If k is

algebraically closed, then by the Nullstellensatz this is equivalent to "f

is not in m for any maximal ideal m of k[T, X] ", and it is this last

criterion which suggests the answer to our question. As a consequence of

our main theorem we shall show that the ring of integers of a cyclotomic

field may be determined without first computing the discriminant of the
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168 Jona than A. Hi I Iman

f ie ld, and we shall reprove Zariski's result (in the case of plane curves).
Our method shall be to localize, so as to use Nakayama's lemma and the
characterization of a Dedekind domain as a Noetherian domain which is
everywhere locally a principal ideal domain.

We recall f i rs t some basic facts about localization and integral
closure. If if is an integral domain, with field of fractions K , and p
is a prime ideal of R , then the localization of if at p is the subring
if = {r/s in K \ r in if, s in if\p} of K . I t is a local ring, that i s ,

has an unique maximal ideal, generated by the image of p . The ring if is
integrally closed (or normal) if every element of K which is a root of a
monic polynomial with coefficients in if is in if i tself . An integral
domain is 1-dimensional i f every nonzero prime ideal is maximal; a
Noetherian domain 5 is Dedekind (integrally closed and 1-dimensional) if
and only i f for each maximal ideal ft of 5 the maximal ideal of the
localization S is principal [/, page 95]- (A local domain with maximal

ideal principal is called a discrete valuation ring.) If K is an algebraic
number field (a f inite algebraic extension of Q ) , the ring of integers
of K is

0 = {a in K | / (a) = 0 for some monic polynomial f in Z[^f]} .
A

The ring 0v has field of fractions K and is Dedekind, and is contained
A

in every such subring of K [ J , page 96].

The following lemma i s a special case of Nakayama's lemma [ 1 , page

21] .

LEMMA. Let R be a local ring with maximal ideal m generated by 2
elements, m = ( r , s) say. Suppose that I is an ideal of R suah that

2
m = m + I . Then I = m .

2
Proof. Since m = m + I , we may find m, n, p, q in m and i, j

in J such that r = mr + ns + i and s = pr + qs + j . Since the

determinant (l-m){l-q) - (-«)(-p) is not in m , it is invertible in if ,

and so we may solve these two linear equations for r and s in terms of

i and j . Hence m c J , and so J = m . II

In anticipation of our main result (Theorem 2), we shall determine

https://doi.org/10.1017/S0004972700021420 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021420


Polynomials determining Dedekind domains 169

when a polynomial with coefficients in a Dedekind domain generates a prime

ideal or a maximal ideal. It is a familiar consequence of Gauss' Content

Lemma that a nonconstant polynomial / with coefficients in a P.I.D. A

generates a prime ideal of A[X] if and only if it is irreducible in

A [X] and a{f) = (1) , where a(f) is the ideal generated by the

coefficients of / (that is, essentially their highest common factor) and

A is the field of fractions of A [Z, page 127]. The Content Lemma, and

hence this result, may be proved for A any Dedekind domain, by localizing

at maximal ideals of A . (in fact it works also for A any Krull domain,

if we define o{f) as the intersection of all divisorial ideals of A

which contain the coefficients of / , and localize at height one prime

ideals of A .)

If A is a P.I.D. then A[X) is factorial, and so / is irreducible

in A[X] if and only if (/) is a prime ideal of A[X] , and hence if and

only if / is irreducible in A [X] and c{f) = (l) . If A is

integrally closed (in particular if A is Dedekind) then a monic

polynomial / in A[X] is irreducible in A[X] if and only if it is

irreducible in 4 [£] > f°r anJr monic factor in A [X] must have

coefficients which are sums of products of roots of f and so integral

over A . On the other hand A = 7L[\P6] is Dedekind but not a P.I.D. and

f = -V^6.X^ + 5X + V^6 is irreducible in A[X] (and o(f) = 1 ) but

f= (vC6)"1(2X+vC6)(3^+V^6) in AQ[X] .

If the domain A has only finitely many prime ideals then A[X] has

principal maximal ideals. In fact A must then be a P.I.D. [3, page 2U]

and if (p ) , ..., (pr) are the nonzero prime ideals of A , any

irreducible polynomial of the form / = p ... pXg - 1 (with g in

A[X] ) generates a maximal ideal of A[X] . However it follows from the

next result that these are essentially the only such examples.

THEOREM 1. Let A be a Dedekind domain with infinitely mzny prime

ideals, and let m be a maximal ideal of A[X] . Then m n A + 0 .

Proof. If m n A = 0 then m = m4 is a (proper) maximal ideal of

AAx] , and so is principal. Therefore after localizing away from finitely
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many primes of A , we may assume m = {f) for some nonconstant polynomial

/ . Let p be a nonzero prime of A , and let p in A generate the

maximal ideal of A . Then p maps to a nonzero element of the field

A[X]/(f) , so p.g - 1 = h.f for some g, h in A[X] . Therefore f

maps to a unit in [A f(p))[X] and so the constant term of / is a unit

in A /(p) and all the other coefficients of / are in p . At least one

of these coefficients is nonzero and so is contained in only finitely many

prime ideals of the Dedekind domain A . This contraducts our hypothesis

and so we must have m n A t 0 . //

COROLLARY 1. No maximal ideal of A is principal. II

COROLLARY 2 (Nullstellensatz for two variables). Let F be an

algebraically closed field, and let m be a maximal ideal of F[T, X] .

Then m = (T-ot, X-&) for some a, 3 in F .

Proof. Since F[T] has infinitely many primes, m n F[T] is a non-

zero prime ideal and so T - a is in m for some a . Similarly X - 3

is in m for some 6 , and so (T-a, X-$) = m . //

THEOREM 2. Let A be a Dedekind domain and (f) c A[X] a principal

prime ideal which is not maximal. Then the domain S = A[X]/(f) is

o
Dedekind if and only if f is not in m for any maximal ideal m of

A[X] .

Proof. The maximal ideals m of A[X] which contain / correspond

bijectively to the maximal ideals n of S under the surjection of A[X]

onto S . Thus it will suffice to show that for such an n , the

localization S is a discrete valuation ring if and only if / is not in

o
m . Let q = m n A , B = A and R = A[X] . Since 0 c f.R c m.R is

a chain of distinct prime ideals, mR cannot be principal. Therefore <J

is a nonzero prime ideal of A , for otherwise B would be a field and R

would be a principal ideal domain, as it is a localization of B[X] .

Hence B is a discrete valuation ring, with maximal ideal qB generated

by q say, and R is a local ring with maximal ideal mR generated by q

and g , for some g representing an irreducible factor of the image of /

in {A/q)[X] = [B/{q))[X] . Since mR is not principal, the quotient

mR/mR has dimension 2 as a vector space over the field R/mR , by
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Nakayama's lemma. The maximal ideal of S is mR/(f) and so is

principal if and only if there is some t in R such that mR = (/, t) .

In this case the images of f and t in mR/mFT would form a basis, so

2 2
/ is not in m . Conversely if f is not in m then there is some t

in R such that the images of / and t generate mR/rrm , and hence

mR = (/, t) by Nakayama's lemma again. The theorem follows. //

2
If / is in m , then /' is in m , so / and /' map to 0 in

the field A[X]/m . (Here /' denotes the derivative of / .) Thus,

writing m = (q, g) as in the theorem, the images of / and /' in

(A/q)[X] have a common root in an extension field of A/q . When this is

the case may be determined readily by computing the resultant of / and

/' . Recall that if C is an integral domain and /, g are in C[X] ,

the resultant of / and g is an element R(f, g) in C (expressible as

the determinant of a matrix whose entries are the coefficients of / and

g and zeros) which is 0 if and only if f and g have a common root in

a field containing C [2, page 135]- In particular R(f, f) = 0 if and

only if f has a repeated root. Moreover, if p is a prime ideal of C

and f and g denote the images of / and g in (C/p)[X] , then

#(/> 9) is the image of R(f, g) in C/p (as is clear from the

definition of the resultant in [2]). Thus the condition "/ is not in

2
m " in the theorem is satisfied automatically unless m = (q, g) with Q

containing R(f, f) . Since A is assumed Dedekind, there are only

finitely many such q (and hence only finitely many such m ), provided

that R(f, /') # 0 . (An example in which /' = 0 although f is non-

constant is given below.)

A similar argument using that a local Noetherian domain R with

2
maximal i d e a l m i s r e g u l a r i f and only i f K r u l l dim R = dim . m/m [ I ,

page 123D, gives the following generalization: "if A is a regular

Noetherian domain and /.,...,/, in R are such that

p. = (/,, •••, /.] for 1 < i < ft defines a chain of h distinct prime

ideals, then R/Pr, is regular if and only if the images of /,...,/,

2
in m/m are linearly independent over R/m , for each maximal ideal m
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of R which contains p, ." (in the 1-dimensional Noetherian case

"regular" is equivalent to "integrally closed".) However the two most

interesting cases, namely A = TL or A = k[T] with k a field, fall

within the scope of the theorem as stated.

We shall now consider some examples. If A = Z and / is monic then

S = 7Z[X]/{f) is contained in the ring of integers 0 of the algebraic
K

numberfleld K = Q[X]/(f) and Theorem 1 gives an effective method of

determining when S is all of 0v . In this case 0v is generated as an

abelian group by the powers of a single element, for if £ is the image of

X in S then S = Z[5] . For instance, let K = <PU]/($ ) be the field

of nth roots of unity, where $ is the nth cyclotomic polynomial.

Since A - 1 (and hence $ ) has distinct roots over any field of

characteristic prime to n , the only primes dividing /?($ , $'] are

factors of n . If n = mq with q = p and (m, p) = 1 then

$ (X) = $ ( ^ 1 / $ (A^/p) so $ = $<i>(£?) modulo (p) . Let £ be a

pr imi t ive wth root of uni ty . Then $ (X) divides $ (A ") and so

4> (C ) divides $ ( l ) = p . Therefore $ i s not in (6 , p) for any
?Z 777 P W
8 which is an irreducible factor of $ modulo (p) , and so

m c

TL\x, ] =Z[X]/($ ) is the full ring of integers of K .

In general however it is not so easy to decide when the ring of

integers of an algebraic number field has such a "primitive" basis.

Although it is possible in principle to list the finitely many irreducible

monic polynomials in 7L[X] with the same degree and smaller discriminant

than a given one f , and hence to decide whether there is one determining

the full ring of integers of the field Q[X]/(f) , it is already an arduous

task for a pure cubic, f = X - m . Nevertheless the criterion of Theorem

1 suffices to show that if m is square free and neither of m - 1 nor

m + 1 is divisible by 9 , then 7L[X]l[X -m) is Dedekind. (Note also

3 2
that X - m determines the same number field, but does not satisfy the
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criterion of the theorem.)

One might ask instead what is the minimum number of elements needed to

generate 0 as a ring. In particular do two suffice? See [5] and [6]
A

for methods of effectively determining 0 .

K

The case A = k[T] corresponds to the geometric question: "when is a

plane curve V(f) = {(a, b) in k | f(a, b) = 0} nonsingular?". The word

"nonsingular" is here open to several interpretations. The classical one

is that /, 9//3T and df/dX should generate the unit ideal, and thus

have no common zeros (with coefficients in any extension field of k ), so

that the curve has everywhere a well defined tangent line, while the one

more amenable to algebra is that the coordinate ring 5 = k[T, X]/(f)

should be a Dedekind domain. The latter is the more intrinsic notion, in

that it depends only on the coordinate ring of the curve, and not the

planar embedding. A curve V(f) whose coordinate ring is Dedekind is said

to be normal (over k ).

If V(f) is nonsingular in the classical sense, then it is certainly

normal. For otherwise, by the theorem there would be some maximal ideal m

of k[T, X] such that / is in m , and hence (f, 9//3T, df/dX) would

be contained in m and so not be the unit ideal. Zariski showed that if

ft is a perfect field (that is, if char k = 0 , or char k = p and the

map : x -*• a? for all x in k is surjective) the two interpretations are

equivalent [4]. This may be seen as follows. If m is a maximal ideal of

k[T, X] , then a variation of the argument of Corollary 2 shows that

m = (<j>(r), \\>{T, X)) for some <j> and i|» , and so if L = k[T, X]/m the

extension L/k is finite. If k is perfect, L/k must be separable, and

so if k is an algebraic closure of k the ring k[T, X]/k = k ® L is a

direct sum of copies of k , indexed by the n = [L : k] imbeddings of L

in k [2, page U35]. Hence km = D m. where m. is a maximal ideal

of k[T, X] , and the map from k ® L to © {k[T, X]/m.) sending
15i5n v

K ® (g+m) to [Kg+m.) is an isomorphism. Therefore the map from

k ® (m/m ) to @ m./m. sending K ® (g<fr+hty+m ) to K̂ (j)+Khi|)+m?

is onto, and so also an isomorphism, by a dimension count. Now if / is
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in k[T, X] and I = (/, 3//321, Zf/dX) <=_ m , then kl cm. for each

X S i S n . By the Nullstellensatz m. = [T-t., X-x.) for some t., x.

in k and on considering the Taylor expansions of / at [t., x.) we see

2 2
that f must be in m. for each 1 2 •£ < n . Hence / is in m . Thus

if V(/) is normal, (/, df/dT, df/dX) is contained in no maximal ideal

and so must be the unit ideal.

Zariski gave the following example to show that the assumption that k

be perfect is in general necessary. Suppose that k is not perfect and

that b is not a pth power in k (where p = char k ). Let

f = <]? _ b . Then 3//32" = 3//3X = 0 and so V(f) is singular everywhere

from the classical point of view, but T - b is irreducible in k[T] [2,

page 222], so K = k[T]/(n?-b) is a field and k[T, X]/{f) = K[X] is a

principal ideal domain, and so V(f) is normal.
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