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GENERAL THEOREMS FOR UNIFORM ASYMPTOTIC STABILITY AND

BOUNDEDNESS IN FINITELY DELAYED DIFFERENCE SYSTEMS

YOUSSEF N RAFFOUL

Abstract. The paper deals with boundedness of solutions and uniform asymptotic stability
of the zero solution. In our current undertaking, we aim to prove two open problems that

were proposed by the author in his book [12]. Our approach centers on finding the appropriate

Lyapunov functional that satisfies specific conditions, incorporating the concept of wedges.

1. Introduction

Let Z, Z+, R, R+, and Rd be the sets of integers, non-negative integers, real numbers, non-
negative real numbers, and d-dimensional real space, respectively. This paper is concerned with
the uniform asymptotic stability of the zero solution of the finite delay difference equation

(1.1) x(n+ 1) = f(n, xn),

where xn is the segment of x(s) for n − h ≤ s ≤ n, h is a nonzero positive integer. Here,
the function f is continuous in x with f : Z × C → Rd where C is the set of functions ϕ :
{n0 − h, n0 − h+ 1, · · · , n0 − 1, n0} → Rd, h > 0 and integer and n0 ≥ 0 is the initial time. Let

C(n) = {ϕ : {n− h, n− h+ 1, · · · , n− 1, n} → Rd}.
It is to be understood that C(n) is C when n = 0. Also ϕn denotes ϕ ∈ C(n) and ||ϕn|| =
max

n−h≤s≤n
|ϕ(n)|, where | · | is a convenient norm on Rd. For n = n0,

C(0) = {ϕ : {−h,−h+ 1, · · · ,−1, 0} → Rd}.
We say that x(n) ≡ x(n, n0, φ) is a solution of (1.1) if x(n) satisfies (1.1) for n = n0+1, n0+2, · · ·
and x(n) = φ(n), n = n0 − h, n0 − h + 1, · · · , n0 − 1, n0 where φ is a given initial sequence such
that φ : {n0 − h, n0 − h+1, · · · , n0 − 1, n0} → Rd. If x(n) is any solution of system (1.1), then the
variation of the function V, where

V : Z+ × C → R+,

is defines as
△V (x(n)) = V (f(n, x(n)))− V (x(n)) = V (x(n+ 1))− V (x(n)).

Throughout this paper we assume that f(n, 0) = 0, for all n ∈ Z, when we are considering the sta-
bility of the zero solution. In this paper we will prove two general theorems regarding the uniform
asymptotic stability of the zero solution and the uniform boundedness of all solutions in terms of
wedges by assuming the existence of a Lyapunov functional.
Delay discrete systems play a pivotal role in mathematical models that describe how a system
changes over time, but with the added complexity of incorporating delays in the process. These
delays represent the time it takes for a system to respond to inputs or changes in its environment.
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2 YOUSSEF N RAFFOUL

Studying the boundedness of solutions and stability of the zero solution is important since many
real-world systems exhibit delays in their responses, such as control systems, biological processes,
communication networks, and economic systems. Understanding and analyzing delay discrete sys-
tems help in designing and optimizing such systems for better performance. It’s important to
study the boundedness of solutions in delay discrete systems to ensure that the system’s behavior
remains manageable and doesn’t diverge or go to infinity, which could lead to instability or unpre-
dictable outcomes. Additionally, the analysis of the stability of the zero solution is as important
as boundedness. The zero solution represents the equilibrium state where the system remains
unchanged over time. Stability analysis of the zero solution helps in understanding whether small
perturbations or disturbances in the system will die out over time (stable), grow indefinitely (un-
stable), or remain at a constant level (marginally stable). This information is crucial for ensuring
the reliability and robustness of the system. For more reading we refer the interested reader to [3],
[4], [5].
The use of Lyapunov functionals in the context of delay difference equations is rooted in stability
analysis and control theory. Lyapunov methods provide a powerful tool for studying the stability
and convergence properties of dynamic systems, including those described by delay difference equa-
tions. Aleksandr Lyapunov introduced the concept of Lyapunov functions in the late 19th century.
His work laid the foundation for stability analysis in differential equations. Lyapunov methods
were later extended to difference equations, which describe systems evolving in discrete time steps.
As the study of systems with time delays gained prominence, researchers began applying Lyapunov
methods to analyze stability in the presence of delays. The advantages and effectiveness of the use
of Lyapunov functional can be seen in many areas including but not limited to stability analysis,
and control design.
Lyapunov functionals provide a systematic way to analyze the stability of solutions to delay dif-
ference equations. They provide a mathematically rigorous framework for stability analysis. They
allow researchers to derive explicit stability criteria and prove the convergence properties of sys-
tems described by delay difference equations. In summary, the use of Lyapunov functionals in delay
difference equations has a rich history and remains a powerful and widely adopted methodology.
We assume the readers are familiar with the calculus of difference equations and for a comprehen-
sive study of the calculus of difference equations, we refer to the books [2], [6], and for an excellent
reference to the use of Lyapunov functionals in discrete systems we refer to the book [12].
In this paper, we refer to wedges as Wi : [0,∞) → [0,∞) that are continuous with Wi(0) = 0,
Wi(r) strictly increasing, and Wi(r) → ∞ as r → ∞, i = 1, 2, 3, 4.
Using Lyapunov functionals, in [14] the author proved general theorems regarding stability of the
zero solution and the boundedness of all solutions of functional systems of difference equations of
the form

(1.2) x(n+ 1) = G(n, x(s); 0 ≤ s ≤ n)
def
= G(n, x(·))

where G : Z+ × Rk → Rk is continuous in x. During our analysis of (1.2), we encountered endless
difficulties due to finding a suitable Lyapunov functional that satisfied the pair of inequalities

(1.3) W1(|x(n)|) ≤ V (n, x(·)) ≤W2(|x(n)|)
and

(1.4) △V (n, x(·)) ≤ −ρW3(|x(n)|) +K

for some positive constant ρ and non-negative constant K.
In this paper we try to close the gap and prove parallel theorems regarding the stability of

the zero solution and the boundedness of all solutions of the finitely delayed functional difference
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equation (1.1). Those parallel theorems that we attempt to prove were proposed as open problems
in the book [12].

This paper is organized as follows: In the introduction, we define our functional delay problem
and provide relevant stability definitions, along with an overview of previous research conducted
in this context. Section 2 focuses on stating and proving a comprehensive theorem concerning the
uniform asymptotic stability of the zero solution for equation (1.1). The theorem necessitates the
presence of a Lyapunov functional meeting specific conditions, which involve wedges. Similarly,
Section 3 addresses another pivotal theorem, emphasizing the uniform boundedness of all solutions
to equation (1.1). Once again, this theorem calls for a Lyapunov functional that satisfies certain
conditions related to wedges. Finally, in Section 4, we present practical applications in the form
of examples derived from our findings.

The next definition and theorem can be found in [13].

Definition 1 ([13]). Let x(t) = 0 be a solution of (1.1).

(a) The zero solution of (1.1) is stable if for each ε > 0 and t1 ≥ t0 there exists δ > 0 such that
[ϕ ∈ C(t1), ∥ϕ∥ < δ, t ≥ t1] imply that |x(t, t1, ϕ)| < ε.

(b) The zero solution of (1.1) is uniformly stable if it is stable and if δ is independent of t1 ≥ t0.

(c) The zero solution of (1.1) is asymptotically stable if it is stable and if for each t1 ≥ t0 there is
an η > 0 such that [ϕ ∈ C(t1), ∥ϕ∥ < η] imply that |x(t, t1, ϕ)| → 0 as t → ∞. Note that if this
is true for every η > 0, then x = 0 is asymptotically stable in the large or globally asymptotically
stable.

(d) The zero solution of (1.1) is uniformly asymptotically stable (UAS) if it is uniformly stable
and if there is an η > 0 such that for each γ > 0 there exist a T > 0 such that [t1 ≥ t0, ϕ ∈
C(t1), ∥ϕ∥ < η, t ≥ t1 + T ] imply that |x(t, t1, ϕ)| → 0 as t → ∞. We note also that if this is true
for every η > 0, then x = 0 is uniformly asymptotically stable in the large.

In [13] this author proved a general theorem of three parts in which stability, uniform stability
and asymptotic stability were proven concerning the zero solution of the (1.1). However, the result
concerning the uniform asymptotic stability was left open, which we solve, in this paper. The
results of [13] are summarized in Theorem 1.1.

Theorem 1.1. ([13]) Let D > 0 and there is a scalar functional V (t, ψt) that is continuous in ψ
and locally Lipschitz in ψt when t ≥ t0 and ψt ∈ C(t) with ||ψt|| < D. Suppose also that V (t, 0) = 0
and

(1.5) W1(|ψ(t)|) ≤ V (t, ψt).

(a) If

(1.6) △V (t, ψt) ≤ 0 for t0 ≤ t <∞ and ||ψt|| ≤ D,

then the zero solution of (1.1) is stable.

(b) If in addition to (a),

(1.7) V (t, ψt) ≤W2(||ψt||),
then the zero solution of (1.1) is uniformly stable.

(c) If there is an M > 0 with |F (t, ψt)| ≤M for t0 ≤ t <∞ and ||ψt|| ≤ D, and if

(1.8) △V (t, ψt) ≤ −W2(|ψ(t)|),
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then the zero solution of (1.1) is asymptotically stable.

2. General Theorem on (UAS)

In this section we state and solve the open problem that was posed in [12] and [13] regarding
the (UAS) of the zero solution of (1.1).

Theorem 2.1. ([12]) Let D > 0 and there is a scalar functional V (n, ψn) that is continuous in ψ
and locally Lipschitz in ψn when n ≥ n0 and ψn ∈ C(n) with ||ψn|| < D. In addition we assume if
x : [n0 − h,∞) → Rd is a bounded sequence, then F (n, xn) is bounded on [n0,∞). Suppose there is
a function V such that V (n, 0) = 0,

W1(|ψ(n)|) ≤ V (n, ψn) ≤W2(||ψn||),

and

△V (n, ψn) ≤ −W3(|ψ(n)|),

then the zero solution of (1.1) is (UAS).

Proof. Find δ of the uniform stability from part (b) of Theorem 1.1 for the given ε > 0 where
ε = min[1, D2 ]. For a given γ > 0, we need to find an integer T > 0 such that [n1 ≥ n0, ϕ ∈
C(n1), ∥ϕ∥ < η, n ≥ n1 + T ] imply that |x(n, n1, ϕ)| < γ. We determine a δ of uniform stability
for this same γ, so that [n2 ≥ n0, ||ϕn2

|| < δ, n ≥ n2] imply that |x(n, n1, ϕ)| < γ. In order to
distinguish this new δ from the prior δ, denote it by µ. Summing △V (n, ψn) ≤ 0, from s = n1 to
n− 1 leads to

(2.1) V (n, xn) ≤ V (n1, ϕn1
) ≤W2(||ϕn||) < W2(η).

For n ∈ [n2, n3 − 1], suppose that |x(n)| > µ
2 . Then we have

△V (n, xn) ≤ −W3(µ/2).

Consequently, by summing △V (n, xn) ≤ −W3(|x(n)|), will end up with

0 ≤ V (n3, xn3
) ≤ V (n2, xn2

)−
n3−1∑
s=n2

W3(µ/2)

≤ W2(η)− (n3 − n2)W3(µ/2).

This implies that

(2.2) n3 − n2 <
⌊ W2(η)

W3(µ/2)

⌋
.

Here the notation ⌊z⌋ = max{m ∈ Z+ : m ≤ z}. Moreover, it was previously mentioned that if
|x(n)| < µ holds within the interval [n4, n5 − 1], satisfying n5 − n4 ≥ h, then it follows that

(2.3) |x(n)| < γ for n ≥ n5 − 1.

A final and crucial fact to know is that when |x(n6)| ≤ µ
2 and |x(n7)| ≥ µ with n6 < n7, and given

that f(n, xn) remains bounded in n, there exists a positive constant S such that

(2.4) n7 − n6 > S.

https://doi.org/10.4153/S0008439524000353 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000353


DELAY DIFFERENCE EQUATIONS 5

Thus, by summing △V (n, xn) ≤ −W3(|x(n)|), on the interval [n6, n7 − 1] we get

0 ≤ V (n7, xn7
)− V (n6, xn6

) ≤ −
n7−1∑
s=n6

W3(|x|)

≤ −(n7 − n6)W3(µ/2)

≤ −SW3(µ/2),

since W3 is continuous and increasing. Thus, V (n, xn) decreases by the value TW3(µ/2) on the
interval [n6, n7 − 1]. Consequently, we are now able to find an integer N with

(2.5) NSW3(µ/2) > W2(η).

The information provided in equation (2.2) indicates the existence of an integer ei within each

interval of size
⌈

W2(η)
W3(µ/2)

⌉
, where |x(ei)| ≤ µ

2 . Here the notation ⌈z⌉ = max{m ∈ Z+ : m ≥ z}.
The assertion (2.3) implies the existence of an integer point Ei within each interval of length r for
every n, such that |x(Ei)| ≥ µ. Otherwise, the magnitude of |x(n)| will stay below γ. On the other
hand, as a consequence of statement (2.4) we see that T time units pass between ei and Ei. Let

K = r +
⌊ W2(η)

W3(µ/2)

⌋
.

Then on each interval of length K we have that V (n, xn) decreases SW3(µ/2) units. Consequently,
the values T = NK suffices and as a results we have

|x(n, n1, ϕ)| < γ for n > n1 + T.

This completes the proof. □

Fore more reading on the notion of stability by different approaches we refer to [7]-[13], [17],
[18], [19], and [21].

3. General Theorem on Uniform Boundedness

Now we shift our focus to the study of boundedness of solutions of system (1.1). When Lyapunov
functionals are used to study the behavior of solutions of functional difference equations with finite
delays of the form of (1.1), we are likely to encounter a pair of inequalities of the form

(3.1) V (n, x(·)) =W1(x(n)) +

n−1∑
s=n−r

C(n, s)W2(x(s)),

(3.2) △V (n, x(·)) ≤ −W3(x(n)) + F (n)

where V is a Lyapunov functional bounded below, x is the known solution of the functional
difference equation, and K, F , and Wi, i = 1, 2, 3, are scalar positive functions.
Inequalities (3.1) and (3.2) are full of information that is not visible to the naked eye. Our job now
is to prove a general theorem and try to extract boundedness of the solutions. The next theorem
was proposed as an open problem in [12] so that equations of the form

(3.3) x(n+ 1) = a(n)x(n) +

n−1∑
s=n−r

C(n, s)g(x(s)) + p(n)
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can be handled, where the function g is continuous. Before we state and prove the open problem,
we state a definition regarding uniform boundedness of solutions of (1.1). For more on inequalities
(3.1) and (3.2) we refer to [15].

Definition 2. Solutions of (1.1) are uniformly bounded (UB) if for each B1 > 0 there is B2 > 0
such that

[
n0 ≥ 0, ϕ ∈ C, ||ϕ|| < B1, n ≥ n0

]
implies |x(n, n0, ϕ)| < B2.

Theorem 3.1. Suppose there is a scalar and differentiable functional V (n, xn) that is defined for
n ∈ Z. Assume the delay in (1.1) is r instead of h. Let ϕ : [n0−r,∞) → Rd. Suppose every solution
ϕ(n) of (1.1) satisfies

(3.4) W4(|ϕ(n)|) ≤ V (n, ϕn) ≤W1(|ϕ(n)|) +W2

( n−1∑
s=n−r

W3(|ϕ(s)|)
)

and

(3.5) △V (n, ϕn) ≤ −W3(|ϕ(n)|) +M

for some positive constant M . Then solutions of (1.1) are (UB).

Proof. For n1 ≥ n0, and ϕ ∈ C(n1), we let ||ϕ|| ≤ B1, for positive constant B1. Let x(n) =
x(n, n1, ϕ). A summation of the inequality in (3.5) from s = n− r to s = n− 1 with n− 1 ≥ n1− r
gives

V (n, xn)− V (n− r, xn−r) ≤ −
n−1∑

s=n−r

W3(|x(s)|) +Mr.

This gives us the relation

(3.6)

n−1∑
s=n−r

W3(|x(s)|) ≤ V (n− r, xn−r)− V (n, xn) +Mr.

Set V (s) = V (s, xs) on an arbitrary interval [n1, L] for any L > n1 + r. Since V is continuous in x,
it has a maximum. Hence, let V (n∗) = maxn1≤n∗≤L V (n). Suppose n∗ ≤ n1+r. Then by summing
(3.5) from n1 to n∗ − 1 followed by the use of (3.4) gives

V (n) ≤ V (n∗) ≤ V (n1)−
n∗−1∑
s=n1

W3(|x(s)|) + (n∗ − n1)M

≤ V (n1) + (n∗ − n1)M

≤ W1(B1) +W2(rW3(B1)) +Mr.

From the left side of (3.4) we have that W4(|x(n)|) ≤ V (n), and hence the above inequality gives

|x(n)| ≤W−1
4

[
W1(B1) +W2(rW3(B1)) +Mr

]
.

On the other hand if n∗ ∈ [n1 + r, L], then V (n∗ − r, xn∗−r)−V (n∗, x∗n) ≤ 0, and hence from (3.6)
we have that

n∗−1∑
s=n∗−r

W3(|x(s)|) ≤Mr.

We observe that for such n∗, △V (n∗) ≥ 0, and hence from (3.5) we have that 0 ≤ −W3(|ϕ(n)|)+M.
This gives

|x(n∗)| ≤W−1
3 (M).
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Thus, for n ∈ [n1, L] we have from (3.4) that

W4(|x(n)|) ≤ V (n) ≤ V (n∗) ≤W1

(
W−1

3 (M)
)
+W2(Mr).

This yields the bound
|x(n)| ≤W−1

4

[
W1

(
W−1

3 (M)
)
+W2(Mr)

]
.

The proof is concluded since L is arbitrary and by taking

B2 = max
{
W−1

4

[
W1(B1) +W2(rW3(B1)) +Mr

]
, W−1

4

[
W1

(
W−1

3 (M)
)
+W2(Mr)

]}
.

□

Fore more reading on the notion of boundedness we refer to [1], [4], [7], [15], and [20].

4. Applications

This section is devoted to applications of Theorems 2.1 and 3.1. Our applications will be
presented in the forms of examples. We begin with the following example.

The next example is concerned with uniform boundedness of solutions of (3.3).

Example 4.1. We consider the scalar nonlinear finitely delayed difference equation

(4.1) x(n+ 1) = b(n)h(x(n)) + a(n)g(x(n− r)) + c(n),

where a, b, c : Z+ → R, r is a positive integer. The functions g and h are considered to be continuous
in x. Suppose there are three positive constants ζ1, ζ2, and ζ3 such that |h(x)| ≤ ζ1|x|, |g(x)| ≤ ζ2|x|,
and |c(n)| ≤ ζ3. Additionally, we assume that

(4.2) lim
n→∞

ζ1|b(n)| ≠ 1,

(4.3) ζ1|b(n)|+ ζ2|a(n+ r)| − 1 ≤ −ζ2|a(n+ r)|,
and

(4.4)

∞∑
n=0

|a(n)| <∞.

Then all solutions of (4.1) are uniformly bounded.

Proof. We consider the Lyapunov functional V (n) := V (n, x(n)),

V (n) = |x(n)|+
n−1∑

s=n−r

|a(s+ r)||g(x(s))|.

Then along solutions of (4.1) we have

△V (n) = |x(n+ 1)| − |x(n)|+ |a(n+ r)||g(x(n))| − |a(n)||g(x(n− r))|
≤ |b(n)||h(x(n))|+ |a(n)||g(x(n− r))|+ ζ3 − |x(n)|
+ |a(n+ r)||g(x(n))| − |a(n)||g(x(n− r))|

=
(
ζ1|b(n)|+ ζ2|a(n+ r)| − 1

)
|x(n)|+ ζ3.

Now we make sure the requirements of Theorem 3.1 are met. We may takeW (|x(n)|) =W1(|x(n)|) =
|x(n)|. From the definition of V (n) and due to condition (4.4), we have that

V (n) = |x(n)|+
n−1∑

s=n−r

|a(s+ r)||g(x(s))| ≤ |x(n)|+ ζ2

n−1∑
s=n−r

|a(s+ r)||x(s)|.
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Thus, we take W3(|x(s)|) = ζ2|a(s+ r)||x(s)|. Consequently,

△V (n) ≤
(
ζ1|b(n)|+ ζ2|a(n+ r)| − 1

)
|x(n)|+ ζ3

≤ −ζ2|a(n+ r)||x(n)|+ ζ3

= −W3(|x(n)|) + ζ3.

Thus all the requirements of Theorem 3.1 are satisfied and all solutions of (4.1) are uniformly
bounded.

□

For example the nonlinear delay equation

x(n+ 1) =
1

2

n

n+ 1
x(n) +

1

6

1

n2 + 1

x(n− r)

x2(n) + 1
+ sin(n), n ≥ 0

satisfies conditions of Theorems 2.1 and 3.1 with

ζ1 = ζ2 = ζ3 = 1, |b(n)| ≤ 1

2
, |a(n)| ≤ 1

6
, and

∞∑
n=0

|a(n)| <∞.

Remark 1. In Example 4.1 the boundedness of solutions did not depend on the size of the delay.

In the next example we use a Lyapunov functional, and show that all solution of equations of
the form of (3.3) are (UB).

Example 4.2. Assume D(n, s) ̸= 0 for all −r ≤ s ≤ n, and there is a positive constant M
such that |p(n)| ≤ M for all n = 0, 1, 2, · · · Then solutions of the scalar finitely delayed Volterra
difference equation

(4.5) x(n+ 1) = a(n)x(n) +

n−1∑
s=n−r

D(n, s)x(s) + p(n),

are (UB) provided that

(4.6) lim
n→∞

(−1 + |a(n)|) ̸= 0,

(4.7) −1 + |a(n)|+
∞∑

u=n+1

|D(u, n)| ≤ −
∞∑

u=n

|D(u, n)|,

and

(4.8)

n−1∑
s=n−r

∞∑
u=n

|D(u, s)| ≤ L, for a positive constant L.

Proof. Consider the Lyapunov functional

(4.9) V (n, xn) = |x(n)|+
n−1∑

s=n−r

∞∑
u=n

|D(u, s)||x(s)|.
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Then along the solutions of (4.5) we have

△V (n, xn) ≤
(
|a(n)| − 1

)
|x(n)|+

n−1∑
s=n−r

|D(n, s)||x(s)|+M

+

n∑
s=n−r+1

∞∑
u=n+1

|D(u, s)||x(s)| −
n−1∑

s=n−r

∞∑
u=n

|D(u, s)||x(s)|

≤
(
|a(n)|+

∞∑
u=n+1

|D(u, n)| − 1
)
|x(n)|+

n−1∑
s=n−r

|D(u, s)||x(s)|+M

+

n−1∑
s=n−r+1

∞∑
u=n+1

|D(u, s)||x(s)| −
n−1∑

s=n−r

∞∑
u=n

|D(u, s)||x(s)|.(4.10)

By noting that

n−1∑
s=n−r

∞∑
u=n

|D(u, s)||x(s)| =

n−1∑
s=n−r

[
|D(n, s)||x(s)|+

∞∑
u=n+1

|D(u, s)||x(s)|
]

=

n−1∑
s=n−r

|D(n, s)||x(s)|+
n−1∑

s=n−r

∞∑
u=n+1

|D(u, s)||x(s)|

=

n−1∑
s=n−r

|D(n, s)||x(s)|+
∞∑

u=n+1

|D(u, n− r)||x(n− r)|
]

+

n−1∑
s=n−r+1

∞∑
u=n+1

|D(u, s)||x(s)|.

Substituting back into (4.10), we arrive at the inequality

△V (n, xn) ≤
(
|a(n)|+

∞∑
u=n+1

|D(u, n)| − 1
)
|x(n)| −

∞∑
u=n+1

|D(u, n− r)||x(n− r)|+M

≤
(
|a(n)|+

∞∑
u=n+1

|D(u, n)| − 1
)
|x(n)|+M

It is clear from the definition of V (n) that W4(|x|) =W1(|x|) = |x|. As a consequence of (4.8), we
take W3(|x(s)|) =

∑∞
u=n |D(u, s)||x(s)|. Then from △V and (4.7) we have

△V (n, xn) ≤
(
|a(n)|+

∞∑
u=n+1

|D(u, n)| − 1
)
|x(n)|+M

< −
∞∑

u=n

|D(u, n)||x(n)|+M

= −W3(|x(n)|) +M.

Since all conditions of Theorem 3.1 are met, we conclude that all solutions of (4.5) are (UB). □

We end this study with an example showing the zero solution of a totally nonlinear difference
equations is (UAS).
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Example 4.3. Consider the higher order highly nonlinear and finitely delayed difference equation

(4.11) x(n+ 1) = b(n)x3(n− r) + c(n)x3(n),

where b, c : Z+ → R, and r is a positive integer. Let

Q = {ψ ∈ C(n) : ||ψn|| = max
n−r≤s≤n

|ψ(n)| < 1}.

Assume

(4.12) lim
n→∞

(−1 + c2(n)) ̸= 0.

If there is an α ∈ (0, 1) such that

(4.13) c2(n) + β − 1 ≤ −α,

and for positive constant γ,

(4.14) α− b2(n)c2(n)

β − b2(n)
> γ,

with β > b2(n), and β is to be defined shortly. Additionally, if

(4.15) lim
n→∞

(
α− b2(n)c2(n)

β − b2(n)

)
̸= 0,

then the zero solution of (4.11) is asymptotically stable.

Proof. Let x(n) be a solution of (4.11) with x ∈ Q and consider the Lyapunov functional V (n) :=
V (n, x(n)),

V (n) = x2(n) + β

n−1∑
s=n−r

x6(s).

Then along solutions of (4.11) we have

△V (n) = x2(n+ 1)− x2(n) + βx6(n)− βx6(n− r)

= b2(n)x6(n− r) + c2(n)x6(n) + 2b(n)c(n)x3(n)x3(n− r)

+ βx6(n)− βx6(n− r)− x2(n).

Since x(n) ∈ Q, we have that x2(n) > x6(n), and hence

△V (n) ≤
[
c2(n) + β(n)− 1

]
x6(n) +

(
b2(n)− β

)
x6(n− r)

+ 2b(n)c(n)x3(n)x3(n− r)

≤ −αx6(n) +
(
b2(n)− β

)
x6(n− r)

+ 2b(n)c(n)x3(n)x3(n− r)

= −
[
α− b2(n)c2(n)

β − b2(n)

]
x6(n)

−
[ b(n)c(n)√

β − b2(n)
x3(n)−

√
β − b2(n)x3(n− r)

]2
≤ −γx6(n).
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Next we verify all conditions of Theorem 2.1 are met. Let W1(|x(n)|) = x2(n) and W3(|x(n)|) =
γx6(n). Since x(n) ∈ Q, we obtain from V (n) that

x2(n) + β

n−1∑
s=n−r

x6(s) ≤ |x(n)|+ β

n−1∑
s=n−r

|x(s)|

≤
(
1 + rβ

)
||xn||.

Thus, W2(||xn||) =
(
1 + rβ

)
||xn||, and the zero solution of (4.11) is uniformly asymptotically

stable, by Theorem 2.1. For example, if we let

c2 =
1

10
, b2 =

2

10
, β =

1

4
,

then all conditions of Example 4.3 are satisfied with α = 13
20 . □

We end this paper by comparing our results with those of [8]. In [8], the authors prove the
discrete analogue of continuous Halanay inequality and apply it to derive sufficient conditions
for the global asymptotic stability of the equilibrium of certain generalized difference equations.
However, their results regarding stability will not work for equations like (4.5) when p(n) = 0, for
all n ∈ Z+. This is due to the fact that our kernel, D(n, s), is not constant. Additionally, the right
side of (6) of [8] must have the linear term ax(n) for constant a in order to invert and conclude
the results. Of course, our theorems do not ask for such a requirement.
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