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POSITIVE DEPENDENCE OF EXCHANGEABLE SEQUENCES 

R. M. BURTON AND A. R. DABROWSKI 

ABSTRACT. Infinite sequences of exchangeable binary random variables have 
strong positive dependence properties; in particular, we show they are strong FKG. If 
the infinite exchangeable sequence is allowed to have multiple values this is no longer 
true. Positive dependence conditions such as association still have natural application in 
this context. We establish necessary and sufficient conditions for an infinite exchange­
able sequence to be associated. This result shows that exchangeable Polyà urn pro­
cesses are associated. We also establish necessary and sufficient conditions for finite 
exchangeable sequences to be weakly associated. The match set distribution of a ran­
dom permutation has recently been shown to be associated by an extensive analysis of 
cases. Our result easily yields the weak association of such distributions. 

1. Introduction. This paper examines the positive dependence properties of ex­
changeable sequences of real random variables. Infinité sequences of exchangeable bi­
nary random variables are shown to have strong positive dependence properties; in par­
ticular, we show they are strong FKG (Theorem 2.1). If an infinite exchangeable se­
quence is allowed to have multiple values this is no longer true. Weaker positive depen­
dence conditions, such as association, still may be applied in this context. We establish 
necessary and sufficient conditions for an infinite exchangeable sequence to be associ­
ated (Theorem 3.2). This result shows that exchangeable Polyà urn processes are associ­
ated. Finite exchangeable sequences are distinctly different from infinite exchangeable 
sequences. The conditions of Theorem 3.2 are necessary and sufficient conditions for 
finite exchangeable sequences to be weakly associated. The match set distribution of a 
random permutation has recently been shown to be associated by an extensive analysis 
of cases. Our result easily yields the weak association of such distributions. We start by 
stating the basic definitions of exchangeability and of positive dependence. 

DEFINITION 1.1. A stochastic process {Xt : i e 1} (where / is either N, the set of pos­
itive integers or the finite set {1,2, . . . , TV}) is exchangeable if its distribution is invariant 
under all permutations of the index set. If / = N then the set of exchangeable distribu­
tions is a convex set and its extreme points are the i. i. d. processes. Thus, according to 
deFinetti's Theorem [5], an infinite exchangeable stochastic process is a mixture of i.i. d. 
processes. In particular, we can define a tail field random variable, 0 , so that, conditional 
on 0 , {X,- : i > 1} is an i. i. d. sequence of random variables. 
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DEFINITION 1.2 (SEE VAN DEN BERG AND BURTON [2] OR KEMPERMAN [9]). A 

stochastic process {Xt : / G /} is strong FKG if the random variables have discrete 
distributions and for all n and a, (3 G Rn we have 

P[Xn > a V f3]P[Xn > a A 0] > P[Xn > a]P[Xn > f3]. 

Here Xn = (X\,...9Xn) and all operations are taken coordinate-wise. Of course, we 
require that n G /. 

DEFINITION 1.3 (SEE BARLOW AND PROSCHAN [1]). A stochastic process {X( : i G 

1} is associated if for all n > 1 and for all coordinate-wise non-decreasing functions 
f,g:Rn-^R we have 

Cow(f(Xl,X2,...9Xn),g(XuX2,...,Xnj)>0. 

DEFINITION 1.4 (BURTON, DABROWSKI AND DEHLING [4], SEE ALSO 

C. NEWMAN [10]), A process, {X, : / G / } , is weakly associated, if for every pair of 
coordinate-wise non-decreasing functions,/i: R* —• R and f2'.Rl —* R, with 
Var(/-(Xi,X2)) < +oo we have that Cov(/1(X1),/2(X2)) > 0. Here X{ = 
(X/(i),X/(2),... ,XlW> and X2 = (Xi(k+i),Xi{k+2),... ,X/(*+/)) are defined over two disjoint 
sets of indices. 

DEFINITION 1.5 (SEE JOAG-DEV, SHEPP AND VITALI [7]). A stochastic process 
{Xi : / G /} is positively quadrant dependent (PQD) if we restrict / and g in the def­
inition of weak association to the indicators of events of the form {X/(D > «i,Xj(2) > 
w 2 , . . . ,Xi(k) > Uk}. 

The above definitions are listed in decreasing order of stringency. A large number of 
positive dependence conditions are discussed in the literature. For further background we 
suggest the book by Barlow and Proschan [ 1 ] and the monograph edited by Tong [11]. We 
will show in Theorem 2.1 that an infinite exchangeable binary sequence is strong FKG. 
The following example shows that a 3-valued exchangeable sequence is not necessarily 
associated, nor even PQD. 

EXAMPLE 1.6. Let y be a Bernoulli random variable with parameter p =.5. Let {X, : 
/ G /} be a sequence of exchangeable real random variables such that, conditional on F, 
{Xt : i > 1} is a sequence of independent and identically distributed random variables 
with P[X = 0] = P[X = 2] =. 5 if Y = 0 and P[X = 1] = 1 if Y = 1. Let I{A} be the 
indicator of the event A, and define/i = l{X{ G {1,2}} and/2 = l{X2 G {2}}. These 
are non-decreasing functions in X\ and X2. Then X\ and X2 are not even PQD because 
Cov(fi,/2) = P[Xi G {1,2},X2 G {2}] - P[XX G {1,2}]P[X2 G {2}] = - 1 / 1 6 < 0. 

Theorem 3.2 states that association of an infinite exchangeable sequence is equiva­
lent to the PQD property for all non-decreasing {0,1,2}-valued images of the original 
sequence. We can check this condition for an important class of processes, exchangeable 
Polyà urn models. 
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DEFINITION 1.7. Consider an urn containing a finite number of balls of various col­
ors. Each color is assigned a distinct real value. Let H e a fixed positive integer. Mix 
the balls, remove one, note the value of its color, replace it in the urn, and add h more of 
this color. By continuing this process we generate a sequence, {Xi : i > 1}, of random 
variables, where Xt is the value assigned to the ith ball drawn from the urn. These ran­
dom variables are exchangeable by a straightforward calculation. Such a process will be 
called an exchangeable Polyà process. 

EXAMPLE 1.8. Let the urn have three balls labelled 0, 1, 2 and let h = 1. If / ^ j then 
P[X{ = i,X2 =j] = 1/12 and P[XX = X2 = i] = 1/6. Thus P[XX = 2,X2 = l]P[X{ = 
1,X2 = 0] < P[X{ = X2 = l]P[Xi = 2,X2 = 0]. So generally exchangeable Polyà 
processes with more than two colors are not strong FKG. Theorem 5.1, below, states that 
such processes are associated. 

SUMMARY OF RESULTS AND GUIDE TO PAPER. Section 2 proves a theorem stating 
that {0, l}-valued infinite exchangeable sequences are strong FKG. Given such a strong 
positive dependence property in the 2-valued case, similar properties in the general ex­
changeable case are to be expected. In Section 3 we show that association of an infinite 
exchangeable sequence is equivalent to verification of PQD for {g(Xi) : / > 1}, for all 
g:R —•* {0,1,2} where g is a non-decreasing function. The same proof yields similar 
necessary and sufficient conditions for a finite exchangeable sequence to be weakly as­
sociated. In Section 4 we examine {0,1,2}-valued infinite exchangeable sequences in 
more detail. Such a sequence is associated if its structural deFinetti measure belongs to 
a particular subset of measures, Si. We state a few properties of that set which are useful 
in computations. In Section 5 we apply our results to exchangeable Polyà urn models 
to show that all such models are associated. As an application of our results to finite 
exchangeable sequences, we provide a short demonstration that match set distributions 
are weakly associated. Fishburn, Doyle and Shepp [6] have shown that match set distri­
butions are associated by coupling arguments and a lengthy examination of cases. Our 
technique provides a large part of this result with much less work. 

2. {0, l}-valued infinite exchangeable sequences. Infinite exchangeable se­
quences taking on just two values are discussed in Hill, Lane and Sudderth [8]. They 
show that such sequences are essentially 2-color Polyà urn models. Here we show that 
these sequences have the strongest positive dependence property in common use. 

THEOREM 2.1. A two-valued infinite exchangeable sequence is strong FKG. 

PROOF. Let {X\, X2,...} be exchangeable and without loss of generality we assume 
that Xi has values in {0,1}. It follows from exchangeability, and from van den Berg and 
Burton [2] or Kemperman [9], that {X\,X2,...} is strong FKG if and only if for all N 
and all k, 0 < k < N, the conditional distribution of {X^+i ,XN+2, . . .} given £ ^ i Xi — k 
is associated. We must verify this last condition. 

In this case the sequence of conditional random variables is itself {0,1}-valued and 
exchangeable. DeFinetti's representation shows there is a tail field random variable 0 
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with values in [0,1] so that conditioned on 0, E[XN — 1 | E^LjX/ = k] are i.i.d. 
Bernoulli (0) random variables. The distribution function for 0 is given by 

j[V(l -p)N-kdF(p)/^pk(l -pf-kdF(p) 

where F is the distribution function of the tail field random variable of the original {Xi : 
/ > 1}. Let {yi, F2, • • •} be /. i. d. uniform random variables on [0,1] that are indepen­
dent of 0 . Then we have the conditional sequence {E[X#+/ = 1 | E^Li Xl = k] : i > 1} 
has the same distribution as [l{Y\ + 0 > 1}, /{I2 + 0 > 1}» • • •} a nd so must be asso­
ciated because these variables are increasing functions of {0, Y\, Y2,...}, an associated 
sequence of random variables. • 

3. Association in terms of 3-valued processes. Let {Xi : / > 1} be an infinite 
exchangeable sequence. We have seen in Section 2 that if the Xt are {0, l}-valued, then 
this sequence has the strong FKG property. Further, Examples 1.6 and 1.8 show that for a 
{0,1,2}-valued {Xi : i> 1}, we need no longer have the strong FKG property, nor even 
the PQD property. Simple conditions for the strong FKG property are difficult, as this 
condition is not easily linked to exchangeability. The condition of association, however, 
does permit further analysis. That is the topic of this section. 

Some of our conditions for association will be expressed in terms of a specific class of 
functions. Let 7r be a permutation of {1,2, . . . , k}, and denote by Xi and X^i) the vectors 
(Xi,Z2,... ,Xk), and (X^i^X^), . . . ,X^)). 

DEFINITION 3.1. A function g: Rk —> IR is permutation-symmetric if g(X) = g(Xn) 
for all X € IR* and permutation IT of {1,2, . . . , fc}. A set A is permutation-symmetric if 
/A(JC) is a permutation-symmetric function. 

THEOREM 3.2. Consider an infinite exchangeable sequence {Xi : i > 1} as above. 
Let Xi and X2 denote arbitrary vectors defined on disjoint sets of random variables, say 
on {X\,..., Xk} and {X^+i,..., Xk+i}. The following are equivalent: 

(a) Cov(/^,(Xi), IA20^2)) ^ Q for all permutation-invariant sets A\ andA2 such that 
IAX and IA2 are non-decreasing in each coordinate. 

(b) Cov(gi(Xi),g2(X2)j > 0 for all pairs of functions g \ and g 2 with representation 

gi(Xi) = jrajiIAji<Zï)fori= 1,2 

where ajt > Ofor i = 1,2 and] = 1,2,..., Au, A2/,... ,Anit is a decreasing sequence of 
sets, An = Rk, A12 = ^ andthe Aji are permutation-invariant sets. 

(c) Cov(gi(Xi),g2(X2)) > Ofor all pairs of functions g\, g2 which are applied to 
disjoint sets of random variables, and where each g has a representation as in (3.2b), 
but where the a^ may take on any real value. 

(d) For all coordinate-wise non-decreasing functions gi:Rk —>R, g2'-Rl —> R, which 
are permutation symmetric, which are applied to disjoint sets of random variables, and 
which then have finite variance, we have that Cov(gi(Xi), g2(X2)) > 0. 
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(e) The sequence {X; : i > 1} is weakly associated. 
(f) The sequence {X; : i > 1} is associated. 

PROOF. That (a) & (b) is simple. Let g be as in (c). Set g = g + \ min{g(x)}\ and note 
that Co\(gi(Xi),g2(X2)) = Cov(gr(Xi),g2(X2)). This shows (b) & (c). Clearly (d) => 
(c). For (c) =£• (d), note that the measurable coordinate-wise non-decreasing function on 
Rm are limits of the functions described in (c). In fact, the functions in (c) may be taken to 
converge monotonically (either increasing or decreasing) to the appropriate limit. If the 
limit is L2, then the approximation of (c) can also can be taken in L2. Clearly (e) implies 
(d). 

Assume (d). Exchangeability requires that (Xi, X2) have the same joint distribution as 
(X7r(i),X7r(2)). Here the permutations IT are taken over {Xi,... ,Xk} and {X^+i,... ,Xk+[} 
separately. Hence for any permutation 7ri,2, we must have that 

Cov(/UX*i))J2(X*<2))) = Cov(fi(Xi),/2(X2)) > 0 . 

Let Ei (E2) denote a sum over all permutations of the indices {1,2,...,/:} (respectively 
{k+ \,k + 2,.. . ,£ + /}) and define g,(X,) = E l/(X7r(0), for / = 1 or 2. These gt: R

m —• R 
are non-decreasing. By exchangeability, 

C o v ^ K X O ^ X , ) ) = J2i E2Cov(/1(X,(1)),/2(X,(2))) 

= fc!/!Cov(f1(Xi),/2(X2)). 

This yields (e). Since (f) implies (e), it remains to show the reverse implication. Consider 
/ , and g non-decreasing in each coordinate, and consider 

E{/(X1 , . . . ,X„)^(X1 , . . . ,Xn)}-E{f(X1 , . . . ,Xn)}-E{^(X1 , . . . ,Xn)}. 

We need only look at simple functions/, and g. We proceed to general functions by stan­
dard limiting arguments as in (c) => (d). Suppose/(Xi,..., Xn) = I[X\ >f\,...,Xn >fn] 
and g(Xi,... ,X„) = I[X\ > g i , . . . ,X„ > gn] for some constants/-,^ G R U {—oo}. 
Let us denote I[Xt > ft] by </>/ and I[Xt > gt] by 7/. By exchangeability, wthout loss of 
generality, we can write/(Xi,... ,X„) = nJU 4>i and g(Xu ... ,Xn) = n?=i 7,-. Then if 
the variables {X,} are conditionally independent and indentically distributed with con­
ditional distribution function F, we have that 

Ef(Xu... 9Xn)g(Xu ..., .Xn) = E [ n &7/1 = / E 

= ff[EF[<l>ni]dM(F) 
J i= i 

> /nE F [^]E F [7 , ]JM(F) 
J i=\ 

= jf\EF[(t>iW-F[li+n\dM(F) 

dM(F) 

i=i 

= E/(X!,...,Xn)g(X1+n,...,X2n). 
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The desired inequality now follows from the assumed weak association. • 

REMARK 3.3. Note that the condition (3.2a) is equivalent to the following simple 
statement. For any choice of positive integers / and k, define Xi, X2 as before, and for 
any 'non-decreasing' choice of permutation-symmetric sets A\, A2 we have 

P[<Xi,X2)GAi xA 2 ]>P[X! 6Ai]P[X2€A2]. 

Moreover, the sequence {X; : / > 1} is associated iff {g(Xi) : / > 1} is associated 
for any non-decreasing function g: R —> R. Consequently if we look only at {0,1,2}-
valued functions g, then this suffices for the association of {Xi : / > 1}. Furthermore, 
the transform g' = 2 — g allows us to consider only those sets A/ which count the num­
bers of variables g(Xt) which exceed 0 and exceed 1. If we consider finite exchangeable 
sequences, then the arguments proving the equivalence of conditions (a) through (e) of 
Theorem 3.2 still hold. The only place where we used an infinite index set was to show 
the equivalence of (e) and (f). We summarize the conclusions of this paragraph in the 
following theorem. 

THEOREM 3.4. Let {Xi : i > 1} be an infinite (finite) exchangeable sequence of 
real-valued random variables. Then {Xi : i > 1} is (weakly) associated iff for any 
non-decreasing function g:R —• {0,1,2}, and for any negative integers k, /, m and n, 
f(k + mj + n) >/(*,/) .f(m,n).Hemf(i,j) = Plg(Xx) > l,...,g(X/) > 1, g(XM) > 2, 
g(Xnj)> 2,1 

REMARK 3.5. The equivalence of weak association and association as given in the 
proof of Theorem 3.2 depends on being able to 'slide' a finite piece of the sequence 
into the future. If the sequence is finite, this will not be possible in all circumstances. 
We conjecture that for a finite exchangeable sequence which cannot be embedded into a 
longer exchangeable sequence, weak association does not necessarily imply association. 

4. Infinite exchangeable sequences. The proof of Theorem 3.2 used only the per­
mutation invariance property of exchangeable sequences. In the case of infinite 
exchangeable sequences, we will exploit DeFinetti's expression of an infinite exchange­
able sequence as a conditionally /. i. d. sequence, and explore further the question as to 
when an exchangeable sequence is associated. We will maintain the following notation. 
The random variable M takes its values in the space, M, of probability measures on R. 
The space 9v( has the topology induced by the Prohorov metric, and is partially ordered 
by the stochastic ordering, <C, of probability measures. Given M = m, the sequence 
{Xi : / > 1} is independent and identically distributed with common law m. 

Section 4.1 looks at the case where M is concentrated on a totally ordered subset of !M. 
Theorem 3.2 indicates that the association of an infinite exchangeable sequence reduces 
to the question of the association of {0,1,2}-valued images of that sequence. Section 4.2 
will examine those cases. 
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4.1 Totally ordered case. A function/: fW i—• R is non-decreasing if for £, 77 G fW, 
£ <C 77 implies/(£) < /O7). Suppose M is concentrated on a totally ordered subset of fW. 
For Xi, X2, Ai, and A2 as in Theorem 3.2, 

P[Xi GAi ,X 2 EA 2 ]= / ,P [Xi eAi |M]-P[X 2GA 2 |M]dX(Af) 

= J^MM)f2(M)dL(M) 

> jMf{ (M) d£(Af) j^/2(M) d£(M) 

= P[Xi €Ai]P[X2€A2] . 

The inequality above follows from the fact that a singleton, e.g. {M}, is always associ­

ated. Association follows by Theorem 3.2 and we have the following. 

THEOREM 4.1.1. Let an infinite real exchangeable sequence be represented as con­
ditionally independent sequences given M, where M is a random variable taking values 
in the space of probability measures, M. If M takes values (with probability one) in a 
totally ordered subset of !M, then the sequence is associated. 

Since the set of probability measures on {0,1} is totally stochastically ordered, 
{0, l}-valued exchangeable sequences are automatically associated (even strong FKG 
by Theorem 2.1). However, there are {0,1,2}-valued exchangeable sequences which 
are associated but for which M is not concentrated on a totally ordered subset of 9A.. 

DEFINITION 4.1.2. Define m(p, q) to be the probability measure that puts mass p on 
0, q on 1 and 1 — p — q on 2. 

EXAMPLE 4.1.3. Let M take on values m(. 5,. 5), m(. 5,0), m(0,. 5) and m{\, \) with 
probability . 25 each. By an induction argument on k, /, m, and n in Theorem 3.4, we can 
show that this defines an associated {0,1,2}-valued exchangeable sequence. M is not 
concentrated on a totally ordered set. 

EXAMPLE 4.1.4. Let M take on values m(p, 1 — 2p) uniformly for p e [0,. 5]. By 
direct calculations in Theorem 3.4, we can show that this defines an associated {0,1,2}-
valued exchangeable sequence. M is not concentrated on a totally ordered set. 

EXAMPLE 4.1.5. Let M take on values m\ and ra2 with probability. 5 each. Suppose 
these two measures are incomparable. By direct calculations as in Example 1.6, this 
defines a {0,1,2}-valued exchangeable sequence which is not associated. 

4.2 {0,1,2}-valued exchangeable sequences. Let 9vt = {m(p, q)} now denote the set 
of probability measures on {0,1,2}, and let fVD denote the space of Borel probability 
measures on 9\{. We will often identify an M G M with an 9\{-valued random variable, 
M whose distribution is M. Of course, this abuse is common in probability. We want to 
determine exactly when the {0, l,2}-valued sequence, {X; : / > 1}, is associated. For 
this sequence define (foxfM defined by / as in Theorem 3.4) 

Jl(iJ,k,Q = [Me M:fM(i + kJ + l)>fM(iJ).fM(kJ)l and 

A=f)JZ(ij\kJ). 
tjki 
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Clearly a sequence {Xt : i > 1} is associated if and only if its structural measure, M, 
belongs to A. The topology on M may be identified with the Euclidean topology on 
A = {(p,q, r) G [0,1] : p + q + r = 1}. The topology on Ml is generated by the Prohorov 
metric. Then each A(i,j, k, I) is a closed set. Consequently A is a closed set as well. 

Since M = m(p, q) leads to independent, identically distributed random variables, 
each such 'pure' measure belongs to A. IffM(i + kJ + l) =/M(ÎJ) -fhiiK /) for all choices 
of the indices, the M must be a 'pure' measure. If M is concentrated on a totally ordered 
subset of fW, then Section 4.1 implies that it belongs to A. Examples 4.1.3 and 4.1.4 
show that A contains M which put mass on incomparable m(p,q). If {X[ : / > 1}, is 
associated, then {(2 — Xfi : i > 1} is also associated. Consequently if M G A, then its 
skew-symmetric image defined by the above transform, M*, also belongs to A. However, 
not every skew-symmetric M is in A. For example take M equal to m(0,1) and m(. 5,0) 
with probability . 5 each. 

Consider M and TV in A, a G [0,1], and define P — M with probability a, and P — N 
with probability ( 1 — a). Then L(a) — fP(i+kJ+l) —fp(ij) -fp(h 0 is a quadratic function 
in a, and we may easily specify whether or not L(a) is non-negative for all a G [0,1] in 
terms of L(0), L(l), and \fM(i,j) —fin(ij)] * Kv(^»0 ~fN(kJ)]- For example, if this last 
product is non-negative, then L(a) is non-negative for a G [0,1]. This type of calculation 
shows that no linear combination of m(0,1) and m(. 5,0) is associated. Consequently, A 
is not convex. Since the measure of Example 4.1.3 can be expressed as the average of 
two totally ordered measures, each of which is the skew-symmetric image of the other, 
we obtain the association of that example from the above reasoning. It is not difficult 
to find other examples for other cases. A similar reasoning may also be applied to the 
complement of A to show that it has properties similar to those of A. 

5. Applications. Theorem 2.1 shows that 2-valued Polyà urns are strong FKG. Ex­
ample 1.8 shows we cannot expect the strong FKG property to hold for more general 
Polyà processes. It is difficult to apply the geometric characterization of the structural 
measure given by Theorem 3.2 directly. However, the reduction to 3-valued processes in 
Theorem 3.4 is useful. We show the following result. 

THEOREM 5.1. Every exchangeable Polyà process is associated. 

PROOF. Because of Theorems 3.4 and 2.1 we may assume the process has three 
colors labelled 0, 1,2. Suppose there are N balls labelled 2, M balls labelled 1 and L 
balls labelled 0. We let 

/(/i,m) = P[Xi = X2 = • • • = Xn = 2-Xn+l =-.-Xn+m = 1] 

N(N + h)---(N+(n- l)ft)M(Af+ A)---(Af+ ( m - l)h) 

~ (N + M + L)(N + M + L + h) - • • (N + M + L + (n + m - \)h)' 

Let x = N/h, y = Mjh and t = (N + M + L)/h. Then/0i, m) = (x)n(y)m/(t)n+m, where 
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we use the notation (x)n — x(x + 1) •••(* + n — 1). Let 

f(n9m) = P[X{ = -"Xn = 2-Xn+l > l,. . . ,Xn+m > 1] 

= Y (m)f(n + km-k)=f: (m) (x)n+k(y)m-k 

fc=0 \ V k=0\k/ (t)n+m 

To check association we need to check f(n + s,m + r) > f(n, m)f(s, r) for all n, m, s, r. 
This amounts to showing 

m+r—k yt)n+m+s+r 

n + m\( n + m+l\ / n + m + s + r\ 

£™ 0 ^j=0 (7) 0) (*WO0m-«(As+j(y)r-j ( ' W O . 

Now t > x + y and the right hand side is equal to 

+ m + l \ / 
t+\ )'"V t + 2 

which clearly decreases as t increases. Thus the left hand side is largest when t — x + _y. 
For t = x + y the inequality is clearly true because this is the situation of a two color 
exchangeable process which is strong FKG and thus associated. Note that even though 
the process is not in general strong FKG this argument shows that it is some sense "more" 
associated than the two state process. • 

Now we show that match set distributions are weakly associated. We let N > 1 and 
choose a premutation a:{l,...,N} —* { 1 , . . . , TV} with uniform probability. Consider 
the random variables X\,..., XN where X( = I{cr(i) = i} is the indicator of the event that 
/ is fixed under the permutation. These random variables are clearly exchangeable. Fish-
burn, Doyle and Shepp [6] have shown by a lengthy examination of cases and coupling 
arguments that the above random variables are associated. Theorem 3.4 can be easily 
employed to show the random variables are weakly associated. The fact that the proof 
of association is so much more difficult in this case provides "evidence" that there are 
random variables that are exchangeable, weakly associated but not associated. 

THEOREM 5.2. The match set random variables (X\,..., X^) are weakly associated. 

PROOF. By Theorem 3.4 we need only check that for all non-decreasing functions 
g: {0,1} —» {0,1,2} and for any nonnegative integers k, /, m and n with k + l+m + n <N 
that/"(& + m,l + ri) >f(k, I) -f(m, n) where 

f(ij) = P[g(Xx) > 1,... ,g(Xi) > hg(Xi+l) > 2,g(Xi+j) > 2,1. 

We take the case where g is the identity. The other cases are similar. In this case, the 
condition is vacuous unless / = n = 0. Now/(/,0) = (N — /)!/iV! and the condition 
easily follows. • 

REMARK 5.3. Our final remark concerns the central limit theorem for associated and 
exchangeable infinite sequences. If {Xi : / > 1} is an infinite exchangeable sequence, 
the results of Blum et al. [3] state that the central limit theorem (with a standard normal 
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limit) holds if and only if EX{ = 0, EX2
{ = 1, EXxXj = 0, and E(X? - 1)(X? - 1) = 1. The 

first and third conditions imply that all the lag covariances, Cov(X\,Xj)j > 1, must be 
0. For an associated sequence, this requirement implies that the sequence is, in fact, an 
/. /. d. sequence. In particular, the Polyà urn models discussed earlier cannot satisfy the 
central limit theorem. 

The authors would like to thank the referee for enhancing the presentation of the proof 
of Theorem 3.2. 
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