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Abstract

Aring R is called right pseudo-semisimple if every right ideal not isomorphic to R is semisim-
ple. Rings of this type in which the right socle S splits off additively were characterized; such a
ring has 5% = 0. The existence of right pseudo-semisimple rings with zero right singular ideal
Z remained open, except for the trivial examples of semisimple rings and principal right ideal
domains. In this work we give a complete characterization of right pseudo-semisimple rings with
S =0. We also give examples of non-trivial right pseudo-semisimple rings with Z = 0; in
fact it is shown that such rings exist as subrings in every infinite-dimensional full linear ring. A
structure theorem for non-singular right pseudo-semisimple rings, with homogeneous maximal
socle, is given. The general case is still open.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 16 A 48;
secondary 16 A 42, 16 A 52.

Throughout this paper, S, Z and J will stand for the right socle, the right
singular ideal and the Jacobson radical of a ring R. A local ring R will
mean one in which J # 0 and R/J is a division ring. For a subset X of
R, X° and °X will denote the right and left annihilators in R. It is true in
general that § <°J, and if R /J is semisimple (in particular if R is local),
then S = °J. We also note that Z and J contain no non-zero idempotents
of R; hence aregularring R has Z =J =0.

The split extension R x M of a ring R by an (R — R)-bimodule M,
is the ring of all ordered pairs (r, m),r € R and m € M ; with addition
defined componentwise and multiplication defined by (r, m) - (', m') =
(rr' ,rm’ + mr').
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The set of positive integers will be denoted by N.

1. General resuits

LEMMA 1.1. Let R be a right pseudo-semisimple ring. If R= A& B for
right ideals A and B, then A or B is semisimple.

PROOF. Assume that 4 is not semisimple; then 4 = R. Hence A =
A @B, with A £ 4=R and B, = B. Iterating this process, we obtain
R=4,06B,®---®B, forevery n€N. Hence R contains the right ideal
D.cn B; with B; = B. This right ideal is not finitely generated, and therefore
not isomorphic to R. Thus it is semisimple, and hence B is semisimple.

CoOROLLARY 1.2. Let R be a right pseudo-semisimple ring which is not
semisimple.

(1) If R = A® B for non-zero right ideals A and B, then exactly one
of them is semisimple and the other one is isomorphic to R. In particular
neither A nor B is an ideal.

(2) If e is a non-trivial idempotent of R, then eR(1 —e) #0.

LeMMA 1.3. If R is right pseudo-semisimple, then R/S is a principal right
ideal domain.

ProoF. It is obvious that R/S is a principal right ideal ring. Consider
a,be R with a ¢ S and ab € S. Then aR = R, and hence R=deC
where C = gR = R. Thus 4° < S by Lemma 1.1. Write b = x +y with
x €4’ and y e C. Since S > abR =ayR=yR, wehave y € §. Therefore
b=x+y€eSs.

It follows by Lemma 1.3 that a ring R with zero right socle is right pseudo-
semisimple if and only if it is a principal right ideal domain. We call a right
pseudo-semisimple ring R non-trivial if 0£S # R.

LeEMMA 1.4. Let R be a non-trivial right pseudo-semisimple ring. The
Jfollowing hold in R:

(1) S is the smallest essential right ideal,

2 % =z<8SnJ;

(3) S =Z@I where Z and I consist of homogeneous components ( hence
I is also an ideal ) ;

4) 5= O% for every 0 # x € J, in particular if J #0, then S = o,
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(5Yifa¢ S, then aRNS =aS and S =aS®K where K is isomorphic
to a direct summand of R ( hence finitely generated ) ;
(6) SZ =0 and Z is torsion-free divisible as a left R/S-module.

ProoF. (1) Consider a non-zero right ideal 4 of R. Then either 4 < §
or A= R, and hence A contains a copy of S. In either case ANS #0.

(2) Z = S follows by (1). This also proves that Z ¥ R and hence
Z <S. Then z? < ZS =0, and consequently Z < J.

(3) If X and Y are minimal right ideals with X <Z and Y £ Z, then
XS=0and YS#0. Thus X#7Y.

(4) That S < 7 < % is obvious. Consider an element a € R such that
a ¢ S. Then a° < S and is a direct summand of R (since aR = R).
Therefore a®°NJ = 0 and hence ax # 0. This proves that 0% < S, and
consequently S = O = %,

(5) That aS = aRnN S follows by Lemma 1.3. Let S =aS® K. Then
R=aR+S=aRoK.

(6) The result is trivial in the case Z = 0. Assume that Z # 0. Since
zZ<J, s="z by (4). Hence Z is a torsion-free R/S-module.

Next we prove that Z < A for every right ideal 4 not contained in S'.
Write Z =(ANZ)®B. Then A®B=R. Since B<Z, B>=0 by (2),
and hence B=0. Thus Z=4ANZ and Z < A.

Now consider an element a € R such that a ¢ S. Since aR= R, aR =
bR with B° = 0. If br e Z ,then brS=0,and hence rS=0 and re Z
by (2). Therefore PRNZ = bZ . Now

aZ =aRZ =bRZ =bZ =bRNZ =Z.
Hence Z is divisible as a left R/S-module.

LEMMA 1.5. Let R be a non-trivial right pseudo-semisimple ring.

(1) Z=S ifand only if S* =0 and S<J < S°.

(2) Z #S ifand only if S contains a countable set of non-zero orthogonal
idempotents and s'=7<S.

ProoF. (1) is obvious.

(2) Assume that Z # 5. Then s? # 0, and hence S contains a non-zero
idempotent. By an argument similar to that given in Lemma 1.1, we conclude
that S contains a countable set of non-zero orthogonal idempotents {e,} .

Write S = (/N S) ® X. It is clear that the projections of the e, into
X are still non-zero orthogonal idempotents, and hence X is not finitely
generated. It then follows by Lemma 1.4(5) that J 2 R. Thus J < §, and

since SZ;éO, J<S.
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Let B =S°. Then J < B and so J < Bn.S. Moreover (BﬁS)2 =0,
and hence BNS < J. Thus BNS=J and S =(BNS)® X. Again by
Lemma 1.4(5) we get B % R and hence B < §. Therefore B=BNS=J.

The converse is obvious.

COROLLARY 1.6. If R is a right pseudo-semisimple ring, then the right
socle of R contains the left socle.

ProOOF. The result is obvious in the trivial cases. So assume that R is
non-trivial and consider the two cases of Lemma 1.5.

If Z =S, study a minimal left ideal 4. Assume that A # 0. Then
A = Re for some idempotent e such that 0 # e # 1. However, by Lemma
1.1, either e€ .S or 1 —e € 5, in contradiction to S?=0. Hence 4> = 0,
and A< S by Lemma 1.3.

If Z # 5, then s<s by Lemma 1.5. It follows readily that S is
essential as a left ideal, and therefore contains the left socle.

The following generalization of our theorem in [3] characterizes right
pseudo-semisimple rings with socle square zero.

THEOREM 1.7. Let R be a ring with S2=0. Then R is right pseudo-
semisimple if and only if R/S is a principal right ideal domain and S is
torsion-free divisible as a left R/S-module.

ProoF. The ‘only if* part follows from Lemma 1.3 and Lemma 1.4 ((2)
and (6)).

Conversely, assume that R satisfies the conditions. Consider a right ideal
A of R which is not contained in §, and select x € 4 —§. Since , /SS is
divisible, S = xS < 4. Now R/S is a principal right ideal domain implies
A = aR with a® < S. But then a® = 0 as R /sS is torsion-free. Hence
A=aR=R.

According to Lemma 1.5, a non-trivial right pseudo-semisimple ring with
S? = 0 satisfies 0 #S<J<L S°. We list examples of the four possible cases.

ExaMpPLEs 1.8. (1) S=J = S0 any local ring R with J =0.

2 S=J< S R=F [X] x F(X), the split extension of the polyno-
mial ring over a field F by the rational function field, made into an F[X]-
bimodule via the natural multiplication on the left and multiplication by the
constant coefficient on the right; compare [3].

(3) S < J =25°: the localization of (2) at (X).

(4) S < J < S°: the localization of (2) at (X) N (X + 1).
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THEOREM 1.9. Let R be a ring with S #0 and S2=0. Then R is right
and left pseudo-semisimple if and only if R is a local ring with radical square
zero.

ProoF. The ‘if* part is obvious. Conversely, assume that R is right and
left pseudo-semisimple. Then the left-right analogue of Corollary 1.6 implies
that S is the left socle of R. Consider a minimal left ideal A. Since
A% = 0, A=Rx with x e J, and 4 %:R/Ox. Since S = °x by Lemma
1.4(4), S is a maximal left ideal. Then § = J as S < J and the result
follows.

ProrosiTION 1.10. Let R be a non-trivial right pseudo-semisimple ring.
Then R/Z is right pseudo-semisimple with Z(R/Z) = 0. Moreover R/Z is
semisimple if and only if R is a local ring with radical square zero.

ProoF. Let T/Z be the right socle of R/Z. Then it is obvious that
§ < T. Moreover T/S is contained in the right socle of R/S. Since R/S
is a domain by Lemma 1.3, T=S8 or T =R.

(i) Consider the case T'=S. Let A/Z be a right ideal of R/Z such that
A/Z ¢ S/Z . Then A £ S and hence 4 =aR for some a € R with @ =0.
Since Z = aZ by Lemma 1.4(6), we obtain

R/Z = aR/aZ = A/Z.

Thus R/Z is right pseudo-semisimple.

Next we prove that Z(R/Z)=0. If Z =5, then R/Z is a domain by
Lemma 1.3, and the result holds trivially. So, assume that Z # S. Then
by Lemma 1.4(3), S = Z & I for a non-zero ideal I of R. Consider
x+Ze€Z(R/Z). Then xS < Z, and hence xI < ZnNI=0. Consequently
xR # R, and therefore x € S. Then xZ = 0 by Lemma 1.4(6), and
xS=x(ZI)=0. Thus x€ Z.

(ii) Now, assume that T = R. Then R/Z is semisimple, and clearly
Z(R/Z) = 0. We claim that Z is a maximal ideal. Let u be a central
idempotent in R/Z . Since Z is a nil ideal by Lemma 1.4(2), we may
assume that ¥ = e + Z for some idempotent e € R. According to Lemma
1.1, ee S or (1 —e) € S; we may assume that e €.S. Then ZnNneR =0.
Since eR(1 —e) < Z, eR(1 —e) = 0. It then follows by Corollary 1.2(2)
that e = 0 or e = 1. Thus R/Z has no non-trivial central idempotents,
and is therefore simple artinian. This proves our claim. Since Z < SNJ by
Lemma 1.4(2), we obtain S = J = Z. It then follows by Lemma 1.3 that
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R/J is a division ring. Hence R is a local ring with J 2 = 0. The rest is
obvious.

2. Maximal socle

We turn to the second type in Lemma 1.5. Here we do not know of an effec-
tive criterion for pseudo-simplicity. However, right pseudo-semisimple rings
R of this type are characterized in the special case where S is a maximal
right ideal. In view of Lemma 1.3, this additional assumption is automati-
cally satisfied if R is regular.

We start by listing some properties of rings R with maximal socle. Note
that such rings are local if and only if S2=0. The proofs are straightforward,
and hence are omitted.

LEMMA 2.1. Let R be a non-local ring with maximal socle (that is, R/S
is a division ring and s? #0). Then R has the following properties:

(1) S is the only proper essential right ideal,

(2) every right ideal is semisimple or a direct summand,

(3) if R=A® B for right ideals A and B, then precisely one of them is
semisimple;,

4)°S=2<J<S,and J*=0;

(5) J < A for every right ideal A not contained in S,

(6) R is regular if and only if J =0 if and only if R is semiprime.

Consider an idempotent g in the socle of an arbitrary ring R. It is well
known that (1 — g)R = R holds if and only if R = R & gR if and only if
there exist ¢, t* € R such that "1 =1 and #* = 1—g (hence R(1-g)=R
also holds). We call ¢ a shift for g.

Now assume that for every isomorphism type of indecomposable idempo-
tents f in S, there is a representative f° for which there exists a shift. Then
R® fR=R® fR=R. It follows that R has a shift for every idempotent
e cS. Indeed, eR = @Lx e;R with e; indecomposable, and hence

RoeR=Reée R --®¢,R=R.

Such a ring R is said to have enough shifts.

THEOREM 2.2. Let R be a non-local ring with maximal socle. Then R is
right pseudo-semisimple if and only if R has enough shifis.

ProoF. From (1) and (2) of Lemma 2.1, the proof is obvious.
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COROLLARY 2.3. Let R be a ring with maximal socle. The following are
equivalent:

(1) R is right and left pseudo-semisimple and regular,

(2) R is right pseudo-semisimple and J = 0;

(3) R is semiprime and has enough shifts.

ProoF. That (1) implies (2) and that (2) implies (3) are obvious.
Assume (3). Since R is semiprime, 52 # 0 and therefore R is non-local.
Then (3) implies (1) follows from Lemma 2.1(6) and Theorem 2.2.

The next proposition effectively reduces the study of pseudo-simplicity for
rings with maximal socle to the non-singular case.

ProrosITION 2.4. Let R be a non-local ring with maximal socle. Then
R/Z is right pseudo-semisimple if and only if R is right pseudo-semisimple
or R=A® B, where A is a local ring with radical square zero and B is
semisimple.

ProoF. It is clear that R/Z is semisimple for any ring R = A® B as
described above; the “if> part then follows from Proposition 1.10. Conversely,
assume that R = R/Z is right pseudo-semisimple. The right socle of R can
cither be S or R.

In the first case, for any right ideal C £ S we have C = ¢R with °< Z.
Since Z < C by Lemma 2.1 ((4) and (5)), we obtain C = ¢cR. Also C
is a direct summand of R, and hence is projective. Thus ® is a direct
summand of R, and consequently ¢® = 0. Therefore C = R ,and R is
right pseudo-semisimple.

In the second case, we have Z =J and J 2-0. Since R is semisimple,
R = @]_, T;, where each T, is a simple artinian ring. Then 1 = Y7 ¢,

l —
where the e, are orthogonal idempotents of R, €, is central in R and

1]
2R = T,. Since for i # j, e; = 0 and R/S is a domain, all the e,
except possibly one, are in §. We denote the exceptional one by e¢. By
Lemma 2.1(3), (1 —e)R £ S and therefore (1 -e)Re <ZnN(1-e)R=0.
Also
eR(1-e)<Z="5<"1-¢)=Re,

and hence eR(1—¢) = 0. Thus ¢ is a central idempotentin R. Let 4 = eRe
and B = (1-e)R(1—e). Then B is semisimple. As A/J(A) = eR is simple
artinian, J(A4) is a maximal ideal in 4. However J(4) = ANJ <ANS;
and so J(4) = ANS. Now A/J(4) = A/(ANS)=A+S/S=R/S,a
division ring. It is obvious that J(A4) # 0 and J (A)2 =0. Hence 4 isa
local ring with radical-square zero.
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COROLLARY 2.5. Let R be a non-local ring with homogeneous maximal
socle. Then R is right pseudo-semisimple if and only if R/Z is.

We end this section by showing that any non-trivial right pseudo-semi-
simple ring R with Z =0 can be embedded in one with maximal socle.

PROPOSITION 2.6. Let R be a non-trivial right pseudo-semisimple ring with
Z =0. Then R is isomorphic to a subring of a right pseudo-semisimple ring
R, with Z(R,) =0 and S(R,) maximal.

PROOF. Let = = {c € R: ¢ = 0OandcS = S}. Clearly ¥ is multi-
plicatively closed and 1 € Z. If xc = 0 for x € R and ¢ € I, then
xS =xcS =0; hence x € Z = 0. Thus X consists of regular elements.
Now we prove that X is a right Ore set. Let ce Z and re R. If re S,
then r € c¢S; consequently r1 = ¢’ with ¥ € R. Assume that r ¢ S,
and let B={b € R:rbe cR}. Itisclear that S < B. If S = B, then
cRNrR=rB < S. This implies cRN7R =0 in R, in contradiction of the
fact that R is a principal right ideal domain. Thus S < B, and therefore
B = ¢'R with ¢’ € T (see Lemma 1.4(5)). Then rc'R < cR, and hence
rc’ =cr' for r eR.

Let R, = Ry, the localization of R with respect to X, and identify R
with its image in R, . One can easily check that .S, is an essential right ideal
in R_, and is semisimple as a right R _-module. Thus S, is the right socle of
R, . We prove that S, is a maximal right ideal. Clearly S, # R, . If S, <M
for some right ideal M of R, , then M = DR_ for a right ideal D of R
with S < D. Hence D=dR with de€X,and M =dRR,=dR,=R,.

Next we prove that R, is right pseudo-semisimple. Let A4 be a right
ideal of R. Then 4 < S or A4 = aR with a° = 0. Thus AR, < S, or
AR, =aRR,=aR_=R,.

Let x € Z(R,). Then xS, =0, and hence xS = 0. Since x = rc~"' for
some ceX, rS=xcS=x5=0. Thus re Z =0, and hence x =0.

REMARK. We note that in Proposition 2.6, X is actually the largest right
Ore set of R, and hence R, is the maximal right classical ring of fractions
of R.

3. Subrings of full linear rings

If R is aring with Z = 0, then the maximal right quotient ring of R is
a regular right self-injective ring having R as a subring. Moreover if § is
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essential in R, then Q = End S, and is therefore a product of full linear
rings (compare [5, Chapter 12]); it is just one full linear ring if and only if
S is homogeneous.

In this section we discuss the existence of pseudo-semisimple rings which
are subrings of full linear rings; in view of Lemma 1.5(2), non-trivial exam-
ples can only occur with linear rings of infinite dimensional vector spaces.

Throughout this section, Q will stand for the endomorphism ring of a
vector space V of infinite dimension over a division ring D. We shall
call an element ¢t € Q a shift endomorphism if it is an isomorphism onto a
subspace of codimension one. For such ¢ we choose a complement U of
tV,sothat ¥V =tV ® U and dimU = 1. We define " =¢' on tV and
t'=0on U.Let e=1-1". Then e is the projection onto U along ¢V,
and hence is of rank one. A subring R of Q is said to contain a shift, if
t,t* € R for some shift ¢; it is clear that ¢ € R and (1 —e)R = R (also
R(1—e)=R).

LEMMA 3.1. Let L be a non-zero left ideal of Q consisting of linear trans-
Jormations of finite rank, and let T be a subring of Q having L as a two
sided ideal. If T contains a shift and T /L is a division ring, then T is a
right pseudo-semisimple ring with S(T) =L and Z(T) = 0; moreover T is
regular if and only if N{kerx: xe€ L} =0.

Proor. Let f be an indecomposable idempotent in L. Since L is a left
ideal in Q, f stays indecomposable in Q, and therefore fQ is a minimal
right ideal. Let ft # 0 for some ¢ € T. Then there exists ¢ € @ with
ftqg = f. Consequently ftqf = f and qf € L < T. This proves that fT
is a minimal right ideal in 7.

Given x € L, there exists p € Q such that xpx = x. Then g = px isan
idempotent in L, and x7 = xg7 = gT . One may write g=g, +---+ g,
where the g; € Q are orthogonal idempotents of rank one. However g, =
8,8 € L, and it follows by the preceding argument that g, 7 is a minimal
right ideal. Therefore x7 = gT is semisimple. Hence L is contained in
the right socle of 7'. Since T contains a shift, 7" is not semisimple. Then
T/L is a division ring implies that L is the right socle of T.

Our argument also shows that any minimal right ideal in L is generated
by a rank one idempotent. Since rank one idempotents are isomorphic in Q,
they are also isomorphic in 7T (again since L is a left ideal in Q). Thus L
is homogeneous. Let ¢ be the given shift in 7. Then it is clear that the rank
one idempotent e = 1 — #¢* is in L, and hence all rank one idempotents
in L are isomorphic to e. Then T is right pseudo-semisimple by Theorem
2.2
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Given 0 #y€ Q,then 0 #yQe < L<T and Qe < L<T. Hence T,
is essential in Q. , and therefore Z(T) = 0. (This also proves that Q is the
maximal quotient ring of 7.)

Now we prove the last statement of the theorem. In view of Lemma
1.5(2) and Lemma 2.1(6), T is regular if and only if L° = 0. Let W =
({kerx:x € L}. If W # 0, then there exists ¢ € Q such that 0 # geV <
W (since QeV = V), and therefore 0 # ge € ) ; thus L # 0. Conversely,
assume that W =0 andlet r € L°. Then rV < kerx for every x € L, and
therefore r = 0. This proves that L® = 0 holds if and onlyif W =0.

At this point it is convenient to discuss some examples. We start with [2,
Example 4.26], which is originally due to G. M. Bergman, and represents a
regular, but not unit-regular ring, in which perspectivity is transitive. This
example was suggested to us by K. R. Goodearl through a communication by
K. M. Rangaswami. Similar examples can be obtained from the more general
construction to be discussed in Proposition 3.5.

ExXAMPLE 3.2. (A regular right and left pseudo-semisimple ring which is
not semisimple.) Let ¥V = F[[¢]], the power series ring over a field F con-
sidered as an F-space, Q = End V., and F((¢)) the Laurent series ring,
that is, the quotient field of F[[¢]]. Let

L={xe€Q:ImeN "V =0)},
T={xe€Q:3neN, ac F((t)((x —a)t"V =0)}.

It is obvious that ¢ is a shift and ¢, t* € T. One can verify that L is a
left ideal of Q consisting of linear transformations of finite rank, 7 is a
subring of Q having L as a two sided ideal and 7/L = F((¢t)). Moreover
N{kerx: x € L} =,en t"V = 0. Thus T is right pseudo-semisimple and
regular by Lemma 3.1. According to Corollary 2.3, T is also left pseudo-
semisimple.

EXAMPLE 3.3. (A non-singular right pseudo-semisimple ring which is not
left pseudo-semisimple.) Modifying the above example by taking V =
F[[t]]® F((t)), one obtains a right pseudo-semisimple ring T with Z(T) =
0. However

J(T) =(\{kerx: x € L} = F((1)).

Thus T is not left pseudo-semisimple in view of Corollary 2.3.

A right pseudo-semisimple ring R in which Z # § satisfies 0 < Z <
J < §. Examples 3.2 and 3.3 correspond to the cases 0 = Z = J and
0 = Z < J, respectively. Examples of the other two cases can be obtained
using split extensions.
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Let A be any right pseudo-semisimple ring with Z(A4) = 0 and A4/S(A4)
a division ring. Let R = 4 x A/S(4). Then R has right singular ideal
0xA/S(A4), right socle S(A4)xA4/S(A) and Jacobson radical J(A4)xA4/S(A);
and R is right pseudo-semisimple by Proposition 2.4.

For the case 0 < Z = J (respectively 0 < Z < J),take R=TxT/L
where T is the ring of Example 3.2 (respectively 3.3).

LEMMA 3.4. Let t € Q = End V), be a shift. If q is a non-zero polynomial
over the centre of D, then q(t) has infinite rank.

ProoF. Let ¢ =a, X" +---+a,X" where m <n and a,, # 0. Without
loss of generality we may assume that @, = 1. Let K = kerg(z). Then

clearly 'K <K for every i € N. Now

*m n—m
O0=t"g)K=(1+a, t+ -+a,it K,

m+1

andso K <tK. Thus K = 'K <t'V forevery i € N. Writing V =tVaU,
we get
V=tver 'Us --0tUeU.

Therefore K N @f:o U= 0, and hence K has infinite codimension. Thus
q(¢) is of infinite rank.

Let A denote the prime subring of D, that is, the subring of D generated
by the identity element. We shall say that the pair (¢, L) is permissible if
t is a shift endomorphism and L a non-zero left ideal of Q consisting of
linear transformations of finite rank such that:

(P)V0O#geA[XlVvxeQ (xe Lexq(t)e L),

(P,) VO #q € A[X]3y € L (kerq(z) Nkery =0).

REMARK. One particular choice of L is the ideal consisting of all linear
transformations of finite rank. For this choice, a shift ¢t € Q is such that
(¢, L) is permissible if and only if kerg(¢) has finite dimension and Img(¢)
has finite codimension for all 0 # g € A[X].

A shift ¢ satisfying the above requirements exists in every full linear ring
Q = End V. Indeed A[X] is countable, and therefore the central localiza-
tion D[X, X _1]* at the non-zero elements of A[X] is a countable dimen-
sional D-space. Consequently V = D[X]® D[X, X _l]idim "), Define ¢ as
componentwise multiplication by X . This yields a shift with kerg(¢) = 0 for
every 0 # g € A[X]. Moreover, if g is of degree n, then by the Euclidean
Algorithm

n—1

D[X]=q(X)D[X]6 Do DX & --& DX
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Clearly q[X]D[X, X '1]_ =D[X,X _1]‘ . Therefore Img(¢) has finite codi-
mension.

The following proposition ensures that subrings as described in Lemma
3.1 exist in every infinite-dimensional full linear ring.

PROPOSITION 3.5. Let (t, L) be a permissible pair. Then
T={xeQ:3p,0#qeAd[X](xq(t) - p(t) € L)}

is a non-singular right pseudo-semisimple ring with L as its right socle and
T/L = A(X), the quotient field of A[X].

ProoF. From Lemma 3.4 and condition (P,), a routine verification es-
tablishes that T is a subring of Q, and ¢: x — p/q is a well defined ring
homomorphism of T into A(X). To show that ¢ is surjective consider any
p/q € A(X). By (P,) we have y € L such that kerg(f) Nkery = 0. Hence
q(t) I kery is one-to-one. Let V' = g(¢f)kery & C. Then the mapping x given
by

x(q(t)v) =p(t)v, vekery; x|.=0
is a well defined element in Q. Let o = xq(f) ~ p(¢). Then of, , =0.
Write V' = kery @ W. Since yW = W, there exists f € @Q such that
Byly = 1. It then follows that o = afy € L. This shows that x € T as
well as ¢(x)=p/q.

It is clear that kerp = {x € Q: 30 # g € A[X] (xq(¢) € L)}. Then
by (P,), L =kerp. Hence L isanidealin T and T/L = A(X). Now
tl1—t=0 and t't—1 =0 imply that ¢,7" € T. The result now follows
from Lemma 3.1.

THEOREM 3.6. A ring R is a non-singular right pseudo-semisimple ring
with homogeneous maximal socle if and only if

(1) R is a subring of a full linear ring Q,

(2) there exists a permissible pair (t, L) in Q with L an ideal in R and
R/L a division ring, and

(3) the ring T corresponding to (t, L), as in Proposition 3.5, is a subring
of R.

PRrOOF. The ‘if* part follows from Lemma 3.1 as ¢, ¢t € T <R.

‘Only if’. Since R is right non-singular and S is homogeneous, the
maximal quotient ring Q@ of R is a full linear ring; Q = End V,. Also
Q = End Si, and hence § is a left ideal of Q consisting of linear trans-
formations of finite rank. By Theorem 2.2, R has a shift for some inde-
composable idempotent e € .S. As e is a rank one projection, ¢ is a shift
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endomorphism in Q. We verify conditions (P,) and (P,) for the pair
(t,S).

Let 0 # g € A[X]. Then g(¢) is not of finite rank by Lemma 3.4 and
hencenotin S. It follows by Lemma 2.1 ((2) and (3)) that R = fR&(1-f)R
such that g(¢)R=fR and 1 - f € S. Let f=¢q(t)r, r€ R. Then rq(t) is
also an idempotent, and rq(t) ¢ S; otherwise q(t) = fq(t) =q(t)rq(t) € S,
a contradiction.

For the non-trivial implication of (P,), assume that xq(f) € S for some
x€ Q. Then xf=xq(t)reS. Also x(1- f)eS. Thus x€S.

To prove (P,), note that 1-rq(¢) € S by Lemma 2.1(3). Clearly kerg(¢)n
ker(1 —rg(2))=0.

Now (P,) and (P,) being established, we may form the subring 7 of Q
according to Proposition 3.5. Let x € T. Then xq(¢) - p(t) =s € S, for
some p, 0#q¢€ A[X]. With f and r as before, we obtain

xf=xq)r=(p(t)+s)reR,
and x(1— f)e S<R. Hence xeR.

Added in Proof

Using Lemma 3.1, the referee suggested the following example of a regu-
lar pseudo-semisimple ring which is not semisimple (a similar example was
suggested by Mark L. Teply). Let Q be the ring of R, x R, column-finite
matrices over a field F ,let L = Socle Q (set of matrices with a finite number
of non-zero rows), and let M be the subset of Q consisting of all matrices
of the form.

4 a4 a4
by, a, a, a
b, b a, a; a, )
b, b a
b,
where only a finite number of the b, are non-zero. Let T =L+ M. Itis
clear that T is a ring which contains the standard shift
0 -
1
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L is a two sided ideal in T, and T/L = F((t")) where
0 1

The authors are thankful to the referee for other comments and sugges-
tions.
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