Canad. Math. Bull. Vol. 49 (1), 2006 pp. 11-20

Going-Down Results for C_i -Fields

Anthony J. Bevelacqua and Mark J. Motley

Abstract. We search for theorems that, given a C_i -field K and a subfield k of K, allow us to conclude that k is a C_j -field for some j. We give appropriate theorems in the case K = k(t) and K = k((t)). We then consider the more difficult case where K/k is an algebraic extension. Here we are able to prove some results, and make conjectures. We also point out the connection between these questions and Lang's conjecture on nonreal function fields over a real closed field.

A field k is called a C_i -field if every homogeneous form of degree d in $n > d^i$ variables has a nontrivial zero in k. This idea was introduced in [Ts] and rediscovered in [L]. There are a number of "going-up" theorems for C_i -fields. That is, given a C_i -field k and an extension K/k, such a theorem allows us to conclude that K is a C_j -field for some $j \ge i$. We are concerned with finding corresponding "going-down" theorems. That is, we are given a C_i -field K and a subfield $k \subseteq K$, and we want to conclude that k is a C_j -field for some $j \le i$. We provide several theorems of this type, in analogy to known going-up theorems, and suggest some directions for further research.

We now list the basic "going-up" results for C_i -fields. For proofs, and a discussion of the history of these results, see [P] or [G].

Theorem 1 If k is a C_i -field and K/k is an algebraic extension, then K is a C_i -field.

Theorem 2 If k is a C_i -field, then the rational function field k(t) is a C_{i+1} -field.

Theorem 3 If k is a C_i -field, then the field of formal Laurent series k((t)) is a C_{i+1} -field.

We note that a field k is a C_0 -field if and only if k is algebraically closed. By a well-known theorem of Chevalley, every finite field is C_1 .

First we establish going-down versions of Theorems 2 and 3.

Theorem 4 If k(t) is a C_i -field, then k is a C_{i-1} -field.

Proof Note that since k(t) is not algebraically closed, $i \ge 1$. Suppose that k is not a C_{i-1} -field. Then there exists a form f of degree d in $n > d^{i-1}$ variables with coefficients in k and no nontrivial zero over k. Now consider the form

 $F = f(X_0) + t f(X_1) + \dots + t^{d-1} f(X_{d-1})$

Received by the editors March 17, 2004; revised April 23, 2004.

AMS subject classification: 12F, 14G.

Keywords: C_i-fields, Lang's Conjecture.

[©]Canadian Mathematical Society 2006.

where each $X_i = (X_{i1}, X_{i2}, ..., X_{in})$. The total number of variables is now $dn > d^i$. Thus there exists x, a nontrivial zero over k(t), where $x = (x_0, x_1, ..., x_{d-1})$ and each $x_i = (x_{i1}, x_{i2}, ..., x_{in})$. We may assume that all $x_{ij} \in k[t]$ and at least one of the x_{ij} is not divisible by t. Now set t = 0, and the result is $f(x_{01}(0), x_{02}(0), ..., x_{0n}(0)) = 0$. Since f has no nontrivial zero over k, each $x_{0j}(0) = 0$. Thus t divides x_{0j} for all j. Write $y_{0j} = \frac{x_{0j}}{t}$ and set $y = (y_{01}, y_{02}, ..., y_{0n})$. Then we may write

$$t^{d}f(y) + tf(x_{1}) + \dots + t^{d-1}f(x_{d-1}) = 0$$

and dividing by t gives

$$f(x_1) + \dots + t^{d-2} f(x_{d-1}) + t^{d-1} f(y) = 0.$$

By repeating this argument we conclude that *t* divides x_{ij} for all *i*, *j*, which is a contradiction.

By making the appropriate changes to this proof, we also get

Theorem 5 If k((t)) is a C_i -field, then k is a C_{i-1} -field.

We would like to have a going-down version of Theorem 1 as well. However it is clear that there must be some restrictions on the type of algebraic extensions considered. For example, let *F* be any field, k = F(S) where *S* is an infinite set of independent indeterminates, and *K* the algebraic closure of *k*. Then *K* is C_0 , *k* is not C_i for any *i*, and K/k is an infinite dimensional algebraic extension. For another example, let *R* be a real closed field and $C = R(\sqrt{-1})$. Then *R* is not C_i for any *i*, *C* is C_0 , and C/R has dimension 2. Thus, at the least, we should restrict our attention to nonreal subfields of finite codimension. We are led to the following definitions.

Definition 6 A field K is said to be an S_i -field if all subfields L of K such that $[K:L] < \infty$ are C_i -fields.

Definition 7 A field K is said to be an S_i^{nr} -field if K is a C_i -field and any nonreal subfield L of K such that $[K:L] < \infty$ is a C_i -field.

We note that a field of characteristic zero is S_i only if it has no real subfield of finite codimension. A field of positive characteristic is S_i if and only if it is S_i^{nr} .

We will consider these properties in an attempt to understand when C_i goes-down an algebraic extension. In the next section, we will see that the property S_i goes-up "polite" extensions and that many natural extensions are "polite." Using these ideas we will show that these properties have a connection to the following outstanding conjecture.

Conjecture 8 (Lang's Conjecture) If R is a real closed field and E is a nonreal function field of transcendence degree j over R, then E is a C_j -field.

We will show, among other things, that Lang's Conjecture is equivalent to the statement: If *F* is an algebraically closed field of characteristic 0 and *E* is a function field of transcendence degree *j* over *F*, then *E* is S_j^{nr} . This statement, unlike Lang's Conjecture itself, can be cast in positive characteristic. We are able to prove the truth of the following positive characteristic version of Lang's Conjecture: If *F* is an algebraically closed field of positive characteristic and *E* is a function field of transcendence degree *j* over *F*, then *E* is S_j .

In the last section we study the property S_i for fields of Laurent series.

1 Polite Algebraic and Function Field Extensions

Theorems 1 and 2 imply that if *F* is a C_i -field and E/F has tr deg *j*, then *E* is C_{i+j} . We consider the corresponding questions for S_i or S_i^{nr} . We are able to answer this question in the cases where *F* is an absolutely algebraic or algebraically closed field. In order to do this, we need the following idea.

Definition 9 A field extension E/F is called *polite* if every finite codimension subfield of *E* restricts to a finite codimension subfield of *F*. That is, E/F is polite if for every field $L \subseteq E$ such that [E : L] is finite, $[F : F \cap L]$ is finite.

Let *Q* be a prime subfield; that is, *Q* is either \mathbb{Q} or one of the \mathbb{F}_p . If *F* is any finite extension of *Q* and *E*/*F* is any extension, then *E*/*F* is (almost trivially) polite. The following simple Theorem explains the usefulness of the concept.

Theorem 10 If F is S_i and E/F is a polite extension of tr deg j, then E is S_{i+j} .

Proof Let *L* be a finite codimension subfield of *E*. Since E/F is polite, $F \cap L$ is a finite codimension subfield of *F*. Since *F* is S_i , $F \cap L$ is C_i . Now $E/(F \cap L)$ has tr deg *j* and so $L/(F \cap L)$ has tr deg *j*. Thus *L* is C_{i+j} . Hence *E* is S_{i+j} .

Recall that a field is called *absolutely algebraic* if it is an algebraic extension of its prime subfield.

Corollary 11 An absolutely algebraic field of characteristic p > 0 is S_1 .

Proof The absolutely algebraic field of characteristic p > 0 is a polite extension of transcendence degree 0 of the S_1 field \mathbb{F}_p .

Algebraic extensions are not, in general, polite: Let *C* be an algebraically closed field of characteristic 0 and let R_1 and R_2 be distinct real closed subfields of *C*. Then C/R_1 is not polite as $[C:R_2] = 2$ while $[R_1:R_1 \cap R_2]$ is infinite. Function field extensions are also not, in general, polite. Here are two examples: First, let *t* be an indeterminate. Then $C(t)/R_1$ is not polite as $[C:R_2(t)] = 2$ while $[R_1:R_1 \cap R_2(t)]$ is infinite. Another example is provided below.

Example 12 If k is any field and s, t are algebraically independent indeterminates, then the extension k(s, t)/k(s) is not polite.

Proof L = k(s+t, st) is a subfield of k(s, t) of codimension two as *s* and *t* are roots of $T^2 - (s+t)T + st \in L[T]$. Since *L* consists of symmetric rational functions in *s* and *t* with coefficients in *k*, $L \cap k(s) = k$. Thus $k(s)/L \cap k(s)$ is not finite.

On the other hand, we do have the following positive results.

Theorem 13 If E is any field and F is the algebraic closure of Q, the prime subfield, in E, then E/F is polite.

Proof Let *L* be a finite codimension subfield of *E*.

Suppose first that E/L is Galois. Then L is the fixed field of G, a finite group of automorphisms of E. Since F/Q is algebraic we have $\sigma(F) = F$ for each $\sigma \in G$. If we denote the restriction of $\sigma \in G$ to F by $\bar{\sigma}$, then the correspondence $\sigma \mapsto \bar{\sigma}$ is a homomorphism of G to Aut(F). Let F^G be the fixed field of the group { $\bar{\sigma} \mid \sigma \in G$ }. Then $F^G \subseteq F \cap L$. Since F/F^G is a finite dimensional extension, so is $F/(F \cap L)$.

Now suppose that E/L is purely inseparable. If L = E, then, of course, $F \cap L = F$. If $L \neq E$, then the characteristic is p > 0 and there exists $n \ge 1$ such that $E^{p^n} \subseteq L$. Since *F* is perfect, we have $F = F^{p^n} \subseteq E^{p^n} \subseteq L$. Thus $F \cap L = F$.

Finally suppose that E/L is arbitrary. Let N/L be the normal closure of E/L. Let K be the purely inseparable closure of L in N. Thus N/K is Galois and K/L is purely inseparable. Let F_1 be the algebraic closure of Q in N. We note that $[F_1:F] \leq [N:E]$ is finite. Applying the first paragraph to N/F_1 and the subfield K, we see that $[F_1:F_1 \cap K]$ is finite. Applying the second paragraph to $K/(F_1 \cap K)$ and the subfield L, we get $(F_1 \cap K) \cap L = F_1 \cap K$. Thus $F_1 \cap L = (F_1 \cap K) \cap L$ is a finite codimension subfield of F_1 .

We claim $F_1 \cap L = F \cap L$. Since $F \subseteq F_1$ we have $F \cap L \subseteq F_1 \cap L$. Now, let $\alpha \in F_1 \cap L$. Then α is algebraic over Q and $\alpha \in L \subseteq E$. Thus $\alpha \in F$ and hence $\alpha \in F \cap L$.

Since $[F_1:F \cap L] = [F_1:F_1 \cap L]$ is finite and $[F_1:F]$ is finite, we have $[F:F \cap L]$ is finite.

Recall that *E* is a function field of transcendence degree *j* over *F* means that E/F is finitely generated of tr deg *j* and *F* is the algebraic closure of *F* in *E*.

Corollary 14 If F is an absolutely algebraic field and E is a function field of transcendence degree j over F, then E/F is polite.

Corollary 15 If F is an absolutely algebraic field of characteristic p > 0 and E is a function field of transcendence degree j over F, then E is S_{j+1} .

Using similar techniques we derive the next result.

Theorem 16 If F is an algebraically closed field and E is a finite dimensional extension of a purely transcendental extension of F, then E/F is polite.

We first need a Lemma.

Lemma 17 If σ is an automorphism of E, then $\sigma(F) = F$.

Proof By hypothesis there is a transcendence basis *B* for E/F such that E/F(B) is a finite dimensional extension. We have $Q^a \subseteq F$ and $\sigma(Q^a) = Q^a$ where Q^a is the algebraic closure of *Q*. If $F = Q^a$ then we're done. If not, we have some $\alpha \in F - Q^a$. Now $X^n - \alpha$ splits in *F* for all $n \ge 1$. Thus $\sigma(\alpha) \in E$ is an *n*-th power in *E* for all $n \ge 1$. Assume $\sigma(\alpha) \notin F$. Then $\sigma(\alpha)$ is transcendental over *F*. Now, $F(B)(\sigma(\alpha))$ is algebraic over F(B). Thus there exists a $t \in B$ such that $B' = B \cup \{\sigma(\alpha)\} - \{t\}$ is a transcendence basis for E/F. In addition, E/F(B') is finite dimensional because it is algebraic and finitely generated (by *t* and basis for E/F(B)). Now F[B'] is a UFD and $\sigma(\alpha)$ is a prime element. Hence $X^n - \sigma(\alpha)$ is irreducible over F(B'). Since $X^n - \sigma(\alpha)$ has a root in *E*, we must have $[E:F(B')] \ge n$. Since *n* is arbitrary, we have a contradiction. Thus $\sigma(\alpha) \in F$. Therefore $\sigma(F) \subseteq F$. Suppose $\sigma(F) \neq F$. Choose $\beta \in F \setminus \sigma(F)$. σ is an automorphism, so $\beta = \sigma(\gamma)$ for some $\gamma \in E \setminus F$. Now since $\gamma = \sigma^{-1}(\beta)$, we have $\sigma^{-1}(F)$ is not a subset of *F*. This is a contradiction, and therefore $F = \sigma(F)$.

Proof of the Theorem Let *L* be a finite codimension subfield of *E*.

First suppose that E/L is Galois. Then L is the fixed field of G, a finite group of automorphisms of E. By our Lemma, we have $\sigma(F) = F$ for all $\sigma \in G$. Thus $F^G \subseteq F \cap L$ and F/F^G is finite. Hence $[F:F \cap L]$ is finite.

Now suppose E/L is arbitrary. Let N/L be the normal closure of E/L. Let K be the purely inseparable closure of L in N. Thus N/K is Galois and K/L is purely inseparable. By the last paragraph, $F \cap K$ is a finite codimension subfield of F. If K = L, then we're done. Otherwise the characteristic of E is p > 0 and there is an $n \ge 1$ such that $K^{p^n} \subset L$. Now $F = F^{p^n} \subseteq K^{p^n}$. Thus $F = F \cap K^{p^n} \subseteq F \cap L$. Therefore $F = F \cap L$.

Corollary 18 If R is a real closed field and E is a finite dimensional extension of a purely transcendental extension of F such that R is algebraically closed in E, then E/R is polite.

Proof Let *L* be a finite codimension subfield of *E*. We apply the last theorem to E(i)/R(i), where $i^2 = -1$, and the subfield *L*, to conclude that $k = R(i) \cap L$ is a finite codimension subfield of R(i). Since each element of *k* is algebraic over *R* and $Rk \subseteq E$, we have Rk = R and hence $k \subseteq R$. Since [R(i):k] is finite, k = R.

Corollary 19 If F is an algebraically closed or real closed field and E is a function field of transcendence degree j > 0 over F, then E/F is polite.

Corollary 20 If F is an algebraically closed field of characteristic p > 0 and E is a function field of transcendence degree j over F, then E is S_j .

The best we can do to extend the last result to characteristic 0 is to make the following connection to Lang's conjecture, see 2.4 of Chapter 5 in [P].

Theorem 21 The following statements are equivalent.

- If F is an algebraically closed field of characteristic 0 and E is a function field of transcendence degree j over F, then E is S^{nr}_i.
- (2) (Lang's Conjecture) If R is a real closed field and E is a nonreal function field of transcendence degree j over R, then E is C_j.

Proof (1) \Rightarrow (2): Let *R* be a real closed field and *E* a nonreal function field of transcendence degree *j* over *R*. Since *R*(*i*) is algebraically closed, where $i^2 = -1$, *E*(*i*) is S_i^{nr} and hence *E* is C_j .

 $(2) \Rightarrow (1)$: Let *F* be an algebraically closed field of characteristic 0 and *E* a function field of transcendence degree *j* over *F*. Let *L* be a nonreal finite codimension subfield of *E*. Since *E*/*F* is polite, $F \cap L$ is a finite codimension subfield of *F*. Thus, by Artin– Schreier, $F \cap L = F$ or $F \cap L = R$, a real closed subfield of codimension 2. In the first case, *L* is a function field of transcendence degree *j* over *F* and thus *L* is *C_j* by an earlier result. In the second, *L* is a function field of transcendence degree *j* over *R* and hence *L* is *C_j* by Lang's Conjecture.

We note that in light of Theorem 21, and since S_j^{nr} is equivalent to S_j in characteristic p > 0, Corollary 20 can be thought of as the (much easier) positive characteristic version of Lang's Conjecture. In the case of transcendence degree one, we make some further observations.

Lemma 22 Lang's Conjecture holds for transcendence degree one if and only if $R(u, \sqrt{-1-u^2})$ is a C_1 -field for all real closed fields R.

Proof \Rightarrow This is just a special case of Lang's Conjecture.

⇐ Suppose $R(u, \sqrt{-1-u^2})$ is C_1 for a real closed field R, and let F be any nonreal field of transcendence degree one over R. By Corollary 3.4 in Chapter 6 of [P], -1 is a sum of two squares in F, so we can write $-1 = u^2 + v^2$. If u is not transcendental over R, then $R(i) \subset F$ and we are done. Otherwise the function field $R(u, \sqrt{-1-u^2}) \subset F$, and $F/R(u, \sqrt{-1-u^2})$ is algebraic. Since $R(u, \sqrt{-1-u^2})$ is a C_1 -field, it follows that F is a C_1 -field, and so Lang's conjecture holds in this case.

Theorem 23 Lang's Conjecture holds for transcendence degree one if and only if k(x) is an S_1^{nr} -field for all algebraically closed fields k of characteristic zero.

Proof \Rightarrow Suppose Lang's Conjecture holds, and let $L \subseteq k(x)$ be a nonreal subfield with $[k(x):L] < \infty$. Since *k* is algebraically closed, k(x)/k is a polite extension, and so $[k:k\cap L] < \infty$ which implies $[k:k\cap L] = 1$ or 2. Therefore *L* is a nonreal function field of transcendence degree one over *R*, where *R* is some real closed subfield of *k*. By Lang's Conjecture, *L* is a C_1 -field, and thus k(x) is an S_1^{nr} -field.

 \Leftarrow Now suppose k(x) is an S_1^{nr} -field for all k which are algebraically closed of characteristic zero. By the previous Lemma, to prove Lang's Conjecture for transcendence degree one, it is enough to show that $R(u, \sqrt{-1 - u^2})$ is a C_1 -field. Consider $R(u, \sqrt{-1 - u^2})(i)$. This is the function field of a conic over an algebraically closed field, and so is rational. In other words,

$$R(u,\sqrt{-1-u^2})(i) \cong k(x)$$

16

where k = R(i) is algebraically closed. Now k(x) is an S_1^{nr} -field and $R(u, \sqrt{-1 - u^2})$ is a nonreal subfield of codimension 2. Therefore $R(u, \sqrt{-1 - u^2})$ is a C_1 -field and Lang's Conjecture holds for transcendence degree one.

We will end this section with another interesting example of a polite field extension.

Theorem 24 If k is an algebraically closed field, k((s))(t)/k((s)) is a polite extension.

Proof Suppose $L \subseteq k((s))(t)$ with $[k((s))(t):L] < \infty$. Choose a normal closure F of k((s))(t)/L, and let K be the purely inseparable closure of L in F. Note that F/K is a finite Galois extension and K/L is finite purely inseparable extension. Then the algebraic closure of k((s)) in F is a finite extension of k((s)), and so is of the form k((s')). Thus F is an algebraic function field of tr deg 1 over k((s')).

Let $\sigma \in \operatorname{Aut}(F/L)$ and $f \in k((s'))$. We will show that $\sigma(f) \in k((s'))$ as well. First suppose that $f \in k[[s']]$ is a unit. Then f is an n-th power in k((s')) for all n prime to the characteristic of k. Assume that $\sigma(f) \notin k((s'))$. Then $\sigma(f)$ is transcendental over k((s')). Now $T^n - \sigma(f)$ is irreducible in $k((s'))(\sigma(f))[T]$ but has a root in F for any nprime to the characteristic of k. Thus $[F:k((s'))(\sigma(f))] > n$ for all such n, which is a contradiction. Hence $\sigma(f) \in k((s'))$. If $f \in k[[s']]$ is not a unit, then $f + 1 \in k[[s']]$ is a unit. Now repeating the last argument we have $\sigma(f) + 1 = \sigma(f + 1) \in k((s'))$ and so $\sigma(f) \in k((s'))$. Finally, if $f \notin k[[s']]$, then $f^{-1} \in k[[s']]$ and we can conclude that $\sigma(f^{-1}) \in k((s'))$ and hence $\sigma(f) \in k((s'))$. Therefore every $\sigma \in \operatorname{Aut}(F/L)$ restricts to a field embedding $k((s')) \to k((s'))$ over $k((s)) \subset L$. Since k((s'))/k((s)) is algebraic, $\sigma(k((s'))) = k((s'))$ for every $\sigma \in \operatorname{Aut}(F/L)$.

Now, just as in the argument of Theorem 16, $[k((s')):k((s')) \cap K] < \infty$. If K = L, then we're done. Otherwise the characteristic is p > 0 and there exists an $n \ge 1$ such that $K^{p^n} \subseteq L$ for some n. By Theorem 28 from the next section, we conclude $k((s')) \cap K = k_0((u))$ where $u \in k((s'))$ and k_0 is isomorphic to a finite codimension subfield of k. Since k is a perfect field, we can suppose $k_0 \subseteq k$ by the Corollary to Theorem 10 of [C], and, since k is algebraically closed of characteristic p > 0, we must have $k_0 = k$. Therefore $k((u^{p^n})) = (k((s')) \cap K)^{p^n} \subseteq k((s')) \cap L$. But $[k((s')):k((u^{p^n}))]$ is finite, and so $[k((s')):k((s')) \cap L]$ is finite. Since k((s)) is algebraically closed in k((s))(t), then $k((s')) \cap L = k((s)) \cap L$ and so k((s))(t)/k((s)) is polite.

The following corollary is also of some interest.

Corollary 25 If k is an algebraically closed field of characteristic p > 0 and K = k((s))(t), then every finite codimension subfield $L \subseteq K$ is isomorphic to K.

Proof Since k((s))(t)/k((s)) is polite, $[k((s)):k((s)) \cap L] < \infty$, and, as we saw in the last paragraph of the proof of Theorem 24, we can write $k((s)) \cap L = k((u))$ for some $u \in k((s))$. Thus *L* is a function field of genus 0 over k((u)), and so *L* is the function field of a conic. We now follow the argument of Example 2.10 in Chapter 5 of [P]. The homogeneous equation is of degree 2 in 3 variables, and since k((u)) is a C_1 -field,

17

there is a nontrivial zero. Then *L* contains a rational place, and therefore is a rational function field L = k((u))(x) for some $x \in L$.

Corollary 26 If k is an algebraically closed field of characteristic p > 0, then k((s))(t) is S_2 .

2 Complete Fields

We are also able to establish going-down theorems in some cases for fields complete with respect to a discrete real valuation.

We recall the concept of the degree of imperfection of a field of positive characteristic; see, for example, [Be-Ma] and [Te]. If *F* is a field of characteristic p > 0, then F^p is a subfield of *F* and F/F^p is a purely inseparable extension. The degree of imperfection of *F*, denoted doi(*F*), is defined to be *i* where $p^i = [F:F^p]$, $i \ge 0$. (We allow $i = \infty$ when $[F:F^p]$ is infinite.) If *F* has characteristic 0, we set doi(*F*) = 0. With this convention, *F* is perfect if and only if doi(*F*) = 0. And, *F* has finite degree of imperfection if and only if the characteristic is 0 or the characteristic is p > 0 and $[F:F^p]$ is finite.

We rely on the following theorems, which appear in [Be-Mo].

Theorem 27 If K is complete with respect to a real valuation, K is not algebraically closed, and doi(K) is finite, then every finite codimension subfield of K is closed and hence complete.

Theorem 28 Let K = k((t)) where doi $(k) < \infty$. Then every finite codimension subfield of K is of the form $k_0((s))$ where k_0 is isomorphic to a finite codimension subfield of k and $s \in K$.

Using this, we can prove that if k is an S_i -field, then k((t)) is an S_{i+1} -field. We require the following lemma.

Lemma 29 If k is an S_i -field of characteristic p > 0, then doi $(k) \le i$.

Proof Let a_1, \ldots, a_l be elements of k linearly independent over k^p . Then the form $\sum_{j=1}^l a_j X_j^p$ has degree p with l variables and only the trivial zero in k. Thus $l \le p^i$.

Theorem 30 If k is an S_i -field, then K = k((t)) is an S_{i+1} -field.

Proof Since *k* is S_i , doi(*k*) is finite by the previous lemma. Let *L* be a finite codimension subfield of *K*. By our previous results, $L = k_0((s))$ where k_0 is a finite codimension subfield of *k*. Since *k* is S_i , k_0 is C_i and hence $L = k_0((s))$ is C_{i+1} . Therefore, *K* is S_{i+1} .

Corollary 31 If k is an S_i^{nr} -field, then k((t)) is an S_{i+1}^{nr} -field.

Proof Let $L \subseteq k((t))$ be a nonreal subfield with $[k((t)):L] < \infty$. From the previous theorem, we know that L = k'((u)), with $[k:k'] < \infty$. Further, since L = k'((u)) is nonreal, then k' is nonreal by Example 1.2 of Chapter 3 in [P]. Since k is an S_i^{nr} -field, k' is a C_i -field, and so L = k'((u)) is a C_{i+1} -field. Therefore k((t)) is an S_{i+1}^{nr} -field.

Corollary 32 If k is an algebraically closed field, then $k((x_1)) \cdots ((x_n))$ is an S_n^{nr} -field.

Proof Since *k* is algebraically closed, it satisfies the condition for being a S_0^{nr} -field vacuously by a theorem of Artin–Schreier; see Chapter VI, Theorem 17 in [J]. The theorem follows by induction on *n*.

In light of Theorem 23, we note that Corollary 32 can be thought of as a local version of Lang's Conjecture in transcendence degree one. We can go a little further. It was shown in [L] that if K is complete with respect to a discrete real valuation, and with algebraically closed residue class field k, then K is a C_1 -field. We can extend this theorem.

Theorem 33 If K is complete with respect to a discrete real valuation v, with algebraically closed residue class field k, then K is an S_1^{nr} -field.

Proof If *K* and *k* have the same characteristic, then *K* is a Laurent series field by the Cohen structure theorem, and the result follows from Corollary 32. So we may assume *K* has characteristic zero and *k* has characteristic p > 0. Suppose $L \subseteq K$ is a nonreal subfield with $[K:L] < \infty$. Then, by Theorem 27, *L* is a closed subfield of *K*, and hence is a complete field. As *k* is an extension of degree at most 2 of the residue class field of *L* and *k* is an algebraically closed field of positive characteristic, the residue field of *L* must also be *k*. So we see that *L* is complete with respect to a discrete real valuation and has algebraically closed residue field as well. Thus *L* is a C_1 -field by Theorem 10 of [L], and so *K* is an S_1^{nr} -field.

3 Conjecture

We end with a conjecture.

Conjecture 34 Every C_i -field is S_i^{nr} .

The only evidence we have for this conjecture is a lack of counterexamples. We have seen that it implies Lang's Conjecture (Theorem 21) and that many reasonable classes of C_i -fields are S_i^{nr} (Corollaries 15, 20, 26, 32 and Theorem 33).

References

- [Be-Ma] M. F. Becker and S. MacLane, The Minimum Number of Generators for Inseparable Algebraic Extensions. Bull. Amer. Math. Soc. 46(1940), 182-186.
- [Be-Mo] A. Bevelacqua and M. Motley, *Finite Codimension Subfields of a Field Complete with Respect to a Real Valuation*. Comm. Algebra, to appear.
- [C] I. S. Cohen, On the Structure and Ideal Theory of Complete Local Rings. Trans. Amer. Math. Soc. (1) 59(1946), 54–106.

A. J. Bevelacqua and M. J. Motley

- [G] Marvin J. Greenberg, *Lectures on Forms in Many Variables*. Benjamin, 1969.
- [J] Nathan Jacobson, Lectures in Abstract Algebra Volume 3. Van Nostrand, San Francisco, 1964.
- [L] S. Lang, On Quasi-Algebraic Closure. Ann. of Math. 55(1952), 373–390.
- [N] Jurgen Neukirch, Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322, Springer, 1999.
- [P] Albrecht Pfister, *Quadratic Forms with Applications to Algebraic Geometry and Topology*. Cambridge University Press, 1995.
- [S] J. P. Serre, *Local Fields*. Springer-Verlag, New York, 1979.
- [Te] O. Teichmuller, *p*-Algebren. Deutsche Math. 1(1936), 362–388.
- [Ts]C. Tsen, Zur Stufentheorie der Quasi-algebraisch-Abgeschlossenheit kommutativer Körper.J. Chinese Math. Soc. 171(1936), 81–92.
- [Z-S] Oscar Zariski and Pierre Samuel, Commutative Algebra Volume 2. Springer-Verlag, 1960.

Department of MathematicsDepartment of MathematicsUniversity of North DakotaPikeville CollegeGrand Forks, North Dakota 58202Pikeville, Kentucky 41501USAUSAemail: anthony_bevelacqua@und.nodak.eduemail: mmotley@pc.edu