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Going-Down Results for Ci-Fields

Anthony J. Bevelacqua and Mark J. Motley

Abstract. We search for theorems that, given a Ci -field K and a subfield k of K, allow us to conclude

that k is a C j -field for some j. We give appropriate theorems in the case K = k(t) and K = k((t)). We

then consider the more difficult case where K/k is an algebraic extension. Here we are able to prove

some results, and make conjectures. We also point out the connection between these questions and

Lang’s conjecture on nonreal function fields over a real closed field.

A field k is called a Ci-field if every homogeneous form of degree d in n > di

variables has a nontrivial zero in k. This idea was introduced in [Ts] and rediscovered
in [L]. There are a number of “going-up” theorems for Ci-fields. That is, given
a Ci-field k and an extension K/k, such a theorem allows us to conclude that K is
a C j-field for some j ≥ i. We are concerned with finding corresponding “going-

down” theorems. That is, we are given a Ci-field K and a subfield k ⊆ K, and we
want to conclude that k is a C j-field for some j ≤ i. We provide several theorems of
this type, in analogy to known going-up theorems, and suggest some directions for
further research.

We now list the basic “going-up” results for Ci-fields. For proofs, and a discussion
of the history of these results, see [P] or [G].

Theorem 1 If k is a Ci-field and K/k is an algebraic extension, then K is a Ci-field.

Theorem 2 If k is a Ci-field, then the rational function field k(t) is a Ci+1-field.

Theorem 3 If k is a Ci-field, then the field of formal Laurent series k((t)) is a

Ci+1-field.

We note that a field k is a C0-field if and only if k is algebraically closed. By a
well-known theorem of Chevalley, every finite field is C1.

First we establish going-down versions of Theorems 2 and 3.

Theorem 4 If k(t) is a Ci-field, then k is a Ci−1-field.

Proof Note that since k(t) is not algebraically closed, i ≥ 1. Suppose that k is not
a Ci−1-field. Then there exists a form f of degree d in n > di−1 variables with
coefficients in k and no nontrivial zero over k. Now consider the form

F = f (X0) + t f (X1) + · · · + td−1 f (Xd−1)
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12 A. J. Bevelacqua and M. J. Motley

where each Xi = (Xi1, Xi2, . . . , Xin). The total number of variables is now dn > di .
Thus there exists x, a nontrivial zero over k(t), where x = (x0, x1, . . . , xd−1) and each

xi = (xi1, xi2, . . . , xin). We may assume that all xi j ∈ k[t] and at least one of the xi j is

not divisible by t . Now set t = 0, and the result is f
(

x01(0), x02(0), . . . , x0n(0)
)

= 0.
Since f has no nontrivial zero over k, each x0 j(0) = 0. Thus t divides x0 j for all j.
Write y0 j =

x0 j

t
and set y = (y01, y02, . . . , y0n). Then we may write

td f (y) + t f (x1) + · · · + td−1 f (xd−1) = 0

and dividing by t gives

f (x1) + · · · + td−2 f (xd−1) + td−1 f (y) = 0.

By repeating this argument we conclude that t divides xi j for all i, j, which is a con-
tradiction.

By making the appropriate changes to this proof, we also get

Theorem 5 If k((t)) is a Ci-field, then k is a Ci−1-field.

We would like to have a going-down version of Theorem 1 as well. However it is
clear that there must be some restrictions on the type of algebraic extensions consid-
ered. For example, let F be any field, k = F(S) where S is an infinite set of independent
indeterminates, and K the algebraic closure of k. Then K is C0, k is not Ci for any i,

and K/k is an infinite dimensional algebraic extension. For another example, let R be
a real closed field and C = R(

√
−1). Then R is not Ci for any i, C is C0, and C/R has

dimension 2. Thus, at the least, we should restrict our attention to nonreal subfields
of finite codimension. We are led to the following definitions.

Definition 6 A field K is said to be an Si-field if all subfields L of K such that
[K :L] < ∞ are Ci-fields.

Definition 7 A field K is said to be an Snr
i -field if K is a Ci-field and any nonreal

subfield L of K such that [K :L] < ∞ is a Ci-field.

We note that a field of characteristic zero is Si only if it has no real subfield of finite
codimension. A field of positive characteristic is Si if and only if it is Snr

i .

We will consider these properties in an attempt to understand when Ci goes-down
an algebraic extension. In the next section, we will see that the property Si goes-up
“polite” extensions and that many natural extensions are “polite.” Using these ideas

we will show that these properties have a connection to the following outstanding
conjecture.

Conjecture 8 (Lang’s Conjecture) If R is a real closed field and E is a nonreal function

field of transcendence degree j over R, then E is a C j-field.
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Going-Down Results for Ci-Fields 13

We will show, among other things, that Lang’s Conjecture is equivalent to the
statement: If F is an algebraically closed field of characteristic 0 and E is a func-

tion field of transcendence degree j over F, then E is Snr
j . This statement, unlike

Lang’s Conjecture itself, can be cast in positive characteristic. We are able to prove
the truth of the following positive characteristic version of Lang’s Conjecture: If F

is an algebraically closed field of positive characteristic and E is a function field of

transcendence degree j over F, then E is S j .
In the last section we study the property Si for fields of Laurent series.

1 Polite Algebraic and Function Field Extensions

Theorems 1 and 2 imply that if F is a Ci-field and E/F has tr deg j, then E is Ci+ j .
We consider the corresponding questions for Si or Snr

i . We are able to answer this
question in the cases where F is an absolutely algebraic or algebraically closed field.

In order to do this, we need the following idea.

Definition 9 A field extension E/F is called polite if every finite codimension sub-
field of E restricts to a finite codimension subfield of F. That is, E/F is polite if for
every field L ⊆ E such that [E : L] is finite, [F : F ∩ L] is finite.

Let Q be a prime subfield; that is, Q is either Q or one of the Fp. If F is any finite
extension of Q and E/F is any extension, then E/F is (almost trivially) polite.

The following simple Theorem explains the usefulness of the concept.

Theorem 10 If F is Si and E/F is a polite extension of tr deg j, then E is Si+ j .

Proof Let L be a finite codimension subfield of E. Since E/F is polite, F ∩ L is a finite
codimension subfield of F. Since F is Si , F ∩ L is Ci . Now E/(F ∩ L) has tr deg j and

so L/(F ∩ L) has tr deg j. Thus L is Ci+ j . Hence E is Si+ j .

Recall that a field is called absolutely algebraic if it is an algebraic extension of its
prime subfield.

Corollary 11 An absolutely algebraic field of characteristic p > 0 is S1.

Proof The absolutely algebraic field of characteristic p > 0 is a polite extension of
transcendence degree 0 of the S1 field Fp.

Algebraic extensions are not, in general, polite: Let C be an algebraically closed
field of characteristic 0 and let R1 and R2 be distinct real closed subfields of C . Then
C/R1 is not polite as [C :R2] = 2 while [R1 : R1 ∩ R2] is infinite. Function field

extensions are also not, in general, polite. Here are two examples: First, let t be an
indeterminate. Then C(t)/R1 is not polite as [C(t) : R2(t)] = 2 while [R1 : R1 ∩R2(t)]
is infinite. Another example is provided below.

Example 12 If k is any field and s, t are algebraically independent indeterminates,
then the extension k(s, t)/k(s) is not polite.
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Proof L = k(s + t, st) is a subfield of k(s, t) of codimension two as s and t are roots of
T2 − (s + t)T + st ∈ L[T]. Since L consists of symmetric rational functions in s and t

with coefficients in k, L ∩ k(s) = k. Thus k(s)/L ∩ k(s) is not finite.

On the other hand, we do have the following positive results.

Theorem 13 If E is any field and F is the algebraic closure of Q, the prime subfield, in

E, then E/F is polite.

Proof Let L be a finite codimension subfield of E.
Suppose first that E/L is Galois. Then L is the fixed field of G, a finite group of

automorphisms of E. Since F/Q is algebraic we have σ(F) = F for each σ ∈ G. If
we denote the restriction of σ ∈ G to F by σ̄, then the correspondence σ 7→ σ̄ is a
homomorphism of G to Aut(F). Let FG be the fixed field of the group {σ̄ | σ ∈ G}.

Then FG ⊆ F ∩ L. Since F/FG is a finite dimensional extension, so is F/(F ∩ L).
Now suppose that E/L is purely inseparable. If L = E, then, of course, F ∩ L = F.

If L 6= E, then the characteristic is p > 0 and there exists n ≥ 1 such that Epn ⊆ L.
Since F is perfect, we have F = Fpn ⊆ Epn ⊆ L. Thus F ∩ L = F.

Finally suppose that E/L is arbitrary. Let N/L be the normal closure of E/L. Let
K be the purely inseparable closure of L in N . Thus N/K is Galois and K/L is purely
inseparable. Let F1 be the algebraic closure of Q in N . We note that [F1 : F] ≤ [N : E]
is finite. Applying the first paragraph to N/F1 and the subfield K, we see that [F1 : F1∩
K] is finite. Applying the second paragraph to K/(F1 ∩ K) and the subfield L, we get
(F1 ∩ K) ∩ L = F1 ∩ K. Thus F1 ∩ L = (F1 ∩ K) ∩ L is a finite codimension subfield
of F1.

We claim F1∩L = F∩L. Since F ⊆ F1 we have F∩L ⊆ F1∩L. Now, let α ∈ F1∩L.

Then α is algebraic over Q and α ∈ L ⊆ E. Thus α ∈ F and hence α ∈ F ∩ L.
Since [F1 :F ∩ L] = [F1 :F1 ∩ L] is finite and [F1 :F] is finite, we have [F : F ∩ L] is

finite.

Recall that E is a function field of transcendence degree j over F means that E/F

is finitely generated of tr deg j and F is the algebraic closure of F in E.

Corollary 14 If F is an absolutely algebraic field and E is a function field of transcen-

dence degree j over F, then E/F is polite.

Corollary 15 If F is an absolutely algebraic field of characteristic p > 0 and E is a

function field of transcendence degree j over F, then E is S j+1.

Using similar techniques we derive the next result.

Theorem 16 If F is an algebraically closed field and E is a finite dimensional extension

of a purely transcendental extension of F, then E/F is polite.

We first need a Lemma.

Lemma 17 If σ is an automorphism of E, then σ(F) = F.
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Proof By hypothesis there is a transcendence basis B for E/F such that E/F(B) is a
finite dimensional extension. We have Qa ⊆ F and σ(Qa) = Qa where Qa is the

algebraic closure of Q. If F = Qa then we’re done. If not, we have some α ∈ F − Qa.
Now Xn − α splits in F for all n ≥ 1. Thus σ(α) ∈ E is an n-th power in E for all
n ≥ 1. Assume σ(α) /∈ F. Then σ(α) is transcendental over F. Now, F(B)

(

σ(α)
)

is algebraic over F(B). Thus there exists a t ∈ B such that B ′
= B ∪ {σ(α)} − {t} is

a transcendence basis for E/F. In addition, E/F(B ′) is finite dimensional because it
is algebraic and finitely generated (by t and basis for E/F(B)). Now F[B ′] is a UFD
and σ(α) is a prime element. Hence Xn − σ(α) is irreducible over F(B ′). Since
Xn − σ(α) has a root in E, we must have [E : F(B ′)] ≥ n. Since n is arbitrary, we

have a contradiction. Thus σ(α) ∈ F. Therefore σ(F) ⊆ F. Suppose σ(F) 6= F.
Choose β ∈ F \ σ(F). σ is an automorphism, so β = σ(γ) for some γ ∈ E \ F. Now
since γ = σ−1(β), we have σ−1(F) is not a subset of F. This is a contradiction, and
therefore F = σ(F).

Proof of the Theorem Let L be a finite codimension subfield of E.

First suppose that E/L is Galois. Then L is the fixed field of G, a finite group
of automorphisms of E. By our Lemma, we have σ(F) = F for all σ ∈ G. Thus

FG ⊆ F ∩ L and F/FG is finite. Hence [F : F ∩ L] is finite.

Now suppose E/L is arbitrary. Let N/L be the normal closure of E/L. Let K be

the purely inseparable closure of L in N . Thus N/K is Galois and K/L is purely
inseparable. By the last paragraph, F ∩ K is a finite codimension subfield of F. If
K = L, then we’re done. Otherwise the characteristic of E is p > 0 and there is an
n ≥ 1 such that K pn ⊂ L. Now F = Fpn ⊆ K pn

. Thus F = F∩K pn ⊆ F∩L. Therefore

F = F ∩ L.

Corollary 18 If R is a real closed field and E is a finite dimensional extension of a

purely transcendental extension of F such that R is algebraically closed in E, then E/R is

polite.

Proof Let L be a finite codimension subfield of E. We apply the last theorem to
E(i)/R(i), where i2

= −1, and the subfield L, to conclude that k = R(i)∩ L is a finite

codimension subfield of R(i). Since each element of k is algebraic over R and Rk ⊆ E,
we have Rk = R and hence k ⊆ R. Since [R(i) : k] is finite, k = R.

Corollary 19 If F is an algebraically closed or real closed field and E is a function field

of transcendence degree j > 0 over F, then E/F is polite.

Corollary 20 If F is an algebraically closed field of characteristic p > 0 and E is a

function field of transcendence degree j over F, then E is S j .

The best we can do to extend the last result to characteristic 0 is to make the fol-
lowing connection to Lang’s conjecture, see 2.4 of Chapter 5 in [P] .

Theorem 21 The following statements are equivalent.
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(1) If F is an algebraically closed field of characteristic 0 and E is a function field of

transcendence degree j over F, then E is Snr
j .

(2) (Lang’s Conjecture) If R is a real closed field and E is a nonreal function field of

transcendence degree j over R,then E is C j .

Proof (1) ⇒ (2): Let R be a real closed field and E a nonreal function field of tran-

scendence degree j over R. Since R(i) is algebraically closed, where i2
= −1, E(i) is

Snr
j and hence E is C j .

(2) ⇒ (1): Let F be an algebraically closed field of characteristic 0 and E a function
field of transcendence degree j over F. Let L be a nonreal finite codimension subfield

of E. Since E/F is polite, F ∩ L is a finite codimension subfield of F. Thus, by Artin–
Schreier, F ∩ L = F or F ∩ L = R, a real closed subfield of codimension 2. In the
first case, L is a function field of transcendence degree j over F and thus L is C j by

an earlier result. In the second, L is a function field of transcendence degree j over R

and hence L is C j by Lang’s Conjecture.

We note that in light of Theorem 21, and since Snr
j is equivalent to S j in character-

istic p > 0, Corollary 20 can be thought of as the (much easier) positive characteristic
version of Lang’s Conjecture. In the case of transcendence degree one, we make some
further observations.

Lemma 22 Lang’s Conjecture holds for transcendence degree one if and only if

R(u,
√
−1 − u2) is a C1-field for all real closed fields R.

Proof ⇒ This is just a special case of Lang’s Conjecture.

⇐ Suppose R(u,
√
−1 − u2) is C1 for a real closed field R, and let F be any nonreal

field of transcendence degree one over R. By Corollary 3.4 in Chapter 6 of [P], −1 is a
sum of two squares in F, so we can write −1 = u2 + v2. If u is not transcendental over

R, then R(i) ⊂ F and we are done. Otherwise the function field R(u,
√
−1 − u2) ⊂ F,

and F/R(u,
√
−1 − u2) is algebraic. Since R(u,

√
−1 − u2) is a C1-field, it follows

that F is a C1-field, and so Lang’s conjecture holds in this case.

Theorem 23 Lang’s Conjecture holds for transcendence degree one if and only if k(x)
is an Snr

1
-field for all algebraically closed fields k of characteristic zero.

Proof ⇒ Suppose Lang’s Conjecture holds, and let L ⊆ k(x) be a nonreal subfield

with [k(x) : L] < ∞. Since k is algebraically closed, k(x)/k is a polite extension, and
so [k : k∩L] < ∞ which implies [k :k∩L] = 1 or 2. Therefore L is a nonreal function
field of transcendence degree one over R, where R is some real closed subfield of k.
By Lang’s Conjecture, L is a C1-field, and thus k(x) is an Snr

1
-field.

⇐ Now suppose k(x) is an Snr
1

-field for all k which are algebraically closed of
characteristic zero. By the previous Lemma, to prove Lang’s Conjecture for transcen-
dence degree one, it is enough to show that R(u,

√
−1 − u2) is a C1-field. Consider

R(u,
√
−1 − u2)(i). This is the function field of a conic over an algebraically closed

field, and so is rational. In other words,

R(u,
√

−1 − u2)(i) ∼= k(x)

https://doi.org/10.4153/CMB-2006-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-002-5


Going-Down Results for Ci-Fields 17

where k = R(i) is algebraically closed. Now k(x) is an Snr
1

-field and R(u,
√
−1 − u2)

is a nonreal subfield of codimension 2. Therefore R(u,
√
−1 − u2) is a C1-field and

Lang’s Conjecture holds for transcendence degree one.

We will end this section with another interesting example of a polite field exten-
sion.

Theorem 24 If k is an algebraically closed field, k((s))(t)/k((s)) is a polite extension.

Proof Suppose L ⊆ k((s))(t) with [k((s))(t) : L] < ∞. Choose a normal closure F

of k((s))(t)/L, and let K be the purely inseparable closure of L in F. Note that F/K

is a finite Galois extension and K/L is finite purely inseparable extension. Then the

algebraic closure of k((s)) in F is a finite extension of k((s)), and so is of the form k((s ′)).
Thus F is an algebraic function field of tr deg 1 over k((s ′)).

Let σ ∈ Aut(F/L) and f ∈ k((s ′)). We will show that σ( f ) ∈ k((s ′)) as well. First

suppose that f ∈ k[[s ′]] is a unit. Then f is an n-th power in k((s ′)) for all n prime to
the characteristic of k. Assume that σ( f ) 6∈ k((s ′)). Then σ( f ) is transcendental over
k((s ′)). Now Tn − σ( f ) is irreducible in k((s ′))(σ( f ))[T] but has a root in F for any n

prime to the characteristic of k. Thus [F :k((s ′))(σ( f ))] > n for all such n, which is a

contradiction. Hence σ( f ) ∈ k((s ′)). If f ∈ k[[s ′]] is not a unit, then f + 1 ∈ k[[s ′]] is
a unit. Now repeating the last argument we have σ( f ) + 1 = σ( f + 1) ∈ k((s ′)) and
so σ( f ) ∈ k((s ′)). Finally, if f /∈ k[[s ′]], then f −1 ∈ k[[s ′]] and we can conclude that
σ( f −1) ∈ k((s ′)) and hence σ( f ) ∈ k((s ′)). Therefore every σ ∈ Aut(F/L) restricts

to a field embedding k((s ′)) → k((s ′)) over k((s)) ⊂ L. Since k((s ′))/k((s)) is algebraic,
σ
(

k((s ′))
)

= k((s ′)) for every σ ∈ Aut(F/L).

Now, just as in the argument of Theorem 16, [k((s ′)) : k((s ′)) ∩ K] < ∞. If K = L,

then we’re done. Otherwise the characteristic is p > 0 and there exists an n ≥ 1 such
that K pn ⊆ L for some n. By Theorem 28 from the next section, we conclude k((s ′))∩
K = k0((u)) where u ∈ k((s ′)) and k0 is isomorphic to a finite codimension subfield of
k. Since k is a perfect field, we can suppose k0 ⊆ k by the Corollary to Theorem 10 of

[C], and, since k is algebraically closed of characteristic p > 0, we must have k0 = k.
Therefore k((upn

)) = (k((s ′)) ∩ K)pn ⊆ k((s ′)) ∩ L. But [k((s ′)) : k((upn

))] is finite, and
so [k((s ′)) : k((s ′)) ∩ L] is finite. Since k((s)) is algebraically closed in k((s))(t), then
k((s ′)) ∩ L = k((s)) ∩ L and so k((s))(t)/k((s)) is polite.

The following corollary is also of some interest.

Corollary 25 If k is an algebraically closed field of characteristic p > 0 and K =

k((s))(t), then every finite codimension subfield L ⊆ K is isomorphic to K.

Proof Since k((s))(t)/k((s)) is polite, [k((s)) : k((s)) ∩ L] < ∞, and, as we saw in the

last paragraph of the proof of Theorem 24, we can write k((s)) ∩ L = k((u)) for some
u ∈ k((s)). Thus L is a function field of genus 0 over k((u)), and so L is the function
field of a conic. We now follow the argument of Example 2.10 in Chapter 5 of [P].
The homogeneous equation is of degree 2 in 3 variables, and since k((u)) is a C1-field,
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18 A. J. Bevelacqua and M. J. Motley

there is a nontrivial zero. Then L contains a rational place, and therefore is a rational
function field L = k((u))(x) for some x ∈ L.

Corollary 26 If k is an algebraically closed field of characteristic p > 0, then k((s))(t)
is S2.

2 Complete Fields

We are also able to establish going-down theorems in some cases for fields complete
with respect to a discrete real valuation.

We recall the concept of the degree of imperfection of a field of positive charac-
teristic; see, for example, [Be-Ma] and [Te]. If F is a field of characteristic p > 0,
then Fp is a subfield of F and F/Fp is a purely inseparable extension. The degree of

imperfection of F, denoted doi(F), is defined to be i where pi
= [F : Fp], i ≥ 0. (We

allow i = ∞ when [F :Fp] is infinite.) If F has characteristic 0, we set doi(F) = 0.
With this convention, F is perfect if and only if doi(F) = 0. And, F has finite degree
of imperfection if and only if the characteristic is 0 or the characteristic is p > 0 and

[F : Fp] is finite.

We rely on the following theorems, which appear in [Be-Mo].

Theorem 27 If K is complete with respect to a real valuation, K is not algebraically

closed, and doi(K) is finite, then every finite codimension subfield of K is closed and

hence complete.

Theorem 28 Let K = k((t)) where doi(k) < ∞. Then every finite codimension

subfield of K is of the form k0((s)) where k0 is isomorphic to a finite codimension subfield

of k and s ∈ K.

Using this, we can prove that if k is an Si-field, then k((t)) is an Si+1-field. We

require the following lemma.

Lemma 29 If k is an Si-field of characteristic p > 0, then doi(k) ≤ i.

Proof Let a1, . . . , al be elements of k linearly independent over kp. Then the form
∑l

j=1
a jX

p
j has degree p with l variables and only the trivial zero in k. Thus l ≤ pi .

Theorem 30 If k is an Si-field, then K = k((t)) is an Si+1-field.

Proof Since k is Si , doi(k) is finite by the previous lemma. Let L be a finite codimen-

sion subfield of K. By our previous results, L = k0((s)) where k0 is a finite codimen-
sion subfield of k. Since k is Si , k0 is Ci and hence L = k0((s)) is Ci+1. Therefore, K is
Si+1.

Corollary 31 If k is an Snr
i -field, then k((t)) is an Snr

i+1
-field.
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Proof Let L ⊆ k((t)) be a nonreal subfield with [k((t)) : L] < ∞. From the previous
theorem, we know that L = k ′((u)), with [k :k ′] < ∞. Further, since L = k ′((u)) is

nonreal, then k ′ is nonreal by Example 1.2 of Chapter 3 in [P]. Since k is an Snr
i -field,

k ′ is a Ci-field, and so L = k ′((u)) is a Ci+1-field. Therefore k((t)) is an Snr
i+1

-field.

Corollary 32 If k is an algebraically closed field, then k((x1)) · · · ((xn)) is an Snr
n -field.

Proof Since k is algebraically closed, it satisfies the condition for being a Snr
0

-field
vacuously by a theorem of Artin–Schreier; see Chapter VI, Theorem 17 in [J]. The
theorem follows by induction on n.

In light of Theorem 23, we note that Corollary 32 can be thought of as a local
version of Lang’s Conjecture in transcendence degree one. We can go a little further.
It was shown in [L] that if K is complete with respect to a discrete real valuation, and
with algebraically closed residue class field k, then K is a C1-field. We can extend this

theorem.

Theorem 33 If K is complete with respect to a discrete real valuation v, with alge-

braically closed residue class field k, then K is an Snr
1

-field.

Proof If K and k have the same characteristic, then K is a Laurent series field by

the Cohen structure theorem, and the result follows from Corollary 32. So we may
assume K has characteristic zero and k has characteristic p > 0. Suppose L ⊆ K is
a nonreal subfield with [K :L] < ∞. Then, by Theorem 27, L is a closed subfield
of K, and hence is a complete field. As k is an extension of degree at most 2 of the

residue class field of L and k is an algebraically closed field of positive characteristic,
the residue field of L must also be k. So we see that L is complete with respect to a
discrete real valuation and has algebraically closed residue field as well. Thus L is a
C1-field by Theorem 10 of [L], and so K is an Snr

1
-field.

3 Conjecture

We end with a conjecture.

Conjecture 34 Every Ci-field is Snr
i .

The only evidence we have for this conjecture is a lack of counterexamples. We

have seen that it implies Lang’s Conjecture (Theorem 21) and that many reasonable
classes of Ci-fields are Snr

i (Corollaries 15, 20, 26, 32 and Theorem 33).
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