A THEOREM ON PARTIALLY ORDERED SETS, WITH APPLICATIONS TO FIXED POINT THEOREMS

SMBAT ABIAN AND ARTHUR B. BROWN

In this paper the authors prove Theorem 1 on maps of partially ordered sets into themselves, and derive some fixed point theorems as corollaries.

Here, for any partially ordered set P, and any mapping $f: P \to P$ and any point $a \in P$, a well ordered subset $W(a) \subset P$ is constructed. Except when W(a) has a last element ξ greater than or not comparable to $f(\xi)$, W(a), although constructed differently, is identical with the set A of Bourbaki (3) determined by a, f, and $P_1: \{x | x \in P, x \leq f(x)\}$.

Theorem 1 and the fixed point Theorems 2 and 4, as well as Corollaries 2 and 4, are believed to be new.

Corollaries 1 and 3 are respectively the well-known theorems given in (1, p. 54, Theorem 8, and Example 4).

The fixed point Theorem 3 is that of (1, p. 44, Example 4); and has as a corollary the theorem given in (2) and (3).

The proofs are based entirely on the definitions of partially and well ordered sets and, except in the cases of Theorem 4 and Corollary 4, make no use of any form of the axiom of choice.

In what follows, "a < b" implies that a and b are distinct. Furthermore, we shall always deal with elements and subsets of a given partially ordered set P, and "lub T" will denote exclusively "the least upper bound of T in P"; that is, an upper bound z of T such that if s is any other upper bound of T, then z < s. The symbol " \subset " shall mean "is a subset (not necessarily proper) of."

Definition. Let P be a partially ordered set and f a mapping of P into P. For any $a \in P$, an *a*-chain C_r is a subset of P satisfying the following conditions:

- (1) C_r is well ordered, with a as its first element and r as its last element;
- (2) If $z \in C_r$ and $z \neq r$, then $f(z) \in C_r$, z < f(z), and there exists no $y \in C_r$ for which z < y < f(z);
- (3) If T is a non-empty subset of C_r , then the least upper bound (in P) of T exists and is in C_r .

It will follow from Lemma 4 below that, for given P, f, and a, C_r is uniquely determined by r.

We designate by W(a) the set of all $r \in P$ for which there exists an *a*-chain C_r having r as its last element. We note that (2) implies that $W(a) = \{a\}$ except when a < f(a).

Received September 1, 1959.

Under the hypotheses of the Definition, we shall first prove the following lemmas.

LEMMA 1. If $r \in W(a)$ and C_r is an a-chain with last element r, then $C_r \subset W(a)$.

Proof. If $t \in C_r$, the set of all elements of C_r which are $\leq t$ is easily seen to be an *a*-chain, and hence $t \in W(a)$. Therefore the lemma is true.

LEMMA 2. If $r \in W(a)$ and $r \leq f(r)$, then $f(r) \in W(a)$.

Proof. The set $C_r \cup \{f(r)\}$ is obviously an *a*-chain, and hence $f(r) \in W(a)$.

LEMMA 3. If $r, s \in W(a)$ and C_r is an a-chain with last element r, then either $s \in C_r$ or r < s.

Proof. Let $T = C_r \cap C_s$. By (1), $T \neq \emptyset$ and hence, by (3), z = lub T exists and $z \in T$. If $s \notin C_r$ then $z \neq s$. If also $z \neq r$ then, by (2), $z < f(z) \in T$, contrary to the fact that z = lub T. Hence $s \notin C_r$ implies that z = r, so that $r \in C_s$; and since $r \neq s$, we see by (1) that r < s. Since, by (1), $s \in C_r$ and r < s cannot both hold, we infer the truth of Lemma 3.

LEMMA 4. If $r \in W(a)$, there is just one C_r with last element r, namely the set of all elements of W(a) which are $\leq r$.

Proof. This follows from Lemmas 1 and 3.

THEOREM 1. Let P be a non-empty partially ordered set, f a map of P into P, and a an arbitrary element of P. Then

(4) W(a) is well ordered with a its first element.

Moreover, if $\xi = \text{lub } W(a)$ exists, then

(5) W(a) is an a-chain with ξ its last element,

and

$$(6) \qquad \qquad \xi \lessdot f(\xi)$$

Proof. Let H be any non-empty subset of W(a), and $r \in H$. Since $r \in H \cap C_r$, we see by (1) that $H \cap C_r$ has a first element, which, in view of Lemma 4, is the first element of H. Hence W(a) is well ordered. By Lemma 1, $a \in W(a)$, and by (1), if $r \in W(a)$ then $a \leq r$. Thus we conclude that a is the first element of W(a). Hence (4) is valid.

Next, assume $\xi = \text{lub } W(a)$ exists and let $W^* = W(a) \cup \{\xi\}$. We shall show that W^* is an *a*-chain. Since W(a) is well ordered, W^* is well ordered too and thus (1) is satisfied for W^* , with *a* its first and ξ its last element. Now, let $z \in W^*$ and $z \neq \xi$. Then $z \in W(a)$ and $\{x|x \in W(a), z < x\} \neq \emptyset$. Since W(a) is well ordered, *z* has an immediate successor *r* in W(a), hence in W^* . By Lemma 4, *z* and *r* are the last two elements of C_r . Hence, by (2) applied to *z* as an element of C_r , we see that f(z) = r, so that (2) is satisfied for W^* . To prove (3) for W^* , let *T* be any non-empty subset of W^* . Obviously ξ is an upper bound of T. If there is no element of W(a) which exceeds every element of T then, in view of the well orderedness of W(a), any upper bound of Tis also an upper bound of W(a) and hence is $\geq \xi$, which implies that $\xi = \operatorname{lub} T$, and thus lub $T \in W^*$. If there is an element $r \in W(a)$ which exceeds every element of T, then $T \subset W(a)$ and, by Lemma 4, $T \subset C_r$. Hence, by (3), lub T exists and is in C_r , and therefore, by Lemma 1, lub $T \in W(a)$, so that again lub $T \in W^*$. Consequently (3) is satisfied for W^* . Therefore W^* is an a-chain with ξ its last element, which implies that $\xi \in W(a)$ and $W(a) = W^*$. Thus (5) is valid.

Now, suppose $\xi < f(\xi)$. By Lemma 2, $f(\xi) \in W(a)$, so that (5) is contradicted. Therefore $\xi \ll f(\xi)$. Thus (6) is valid, and Theorem 1 is proved.

THEOREM 2. Let P be a partially ordered set in which

(7) lub of every non-empty well ordered subset $W \subset P$ exists.

Let f be a map of P into P such that f is isotone, that is,

(8) for every two elements $x, y \in P$ with $x \leq y$, we have $f(x) \leq f(y)$; and

(9) there exists an element $a \in P$ with $a \leq f(a)$.

Then there exists at least one $\xi \in P$ such that $\xi = f(\xi)$. In fact, $\xi = \text{lub } W(a)$ is such an element.

Proof. If a = f(a), the conclusion is obvious. Now suppose a < f(a).

Consider the set W(a), where *a* is the element referred to in (9). By (4) and (7), $\xi = \text{lub } W(a)$ exists, and hence by (5), $W(a) = C_{\xi}$. By (9) and Lemma 2 we see that $f(a) \in W(a)$, and therefore $a < \xi$. Since W(a) is an *a*-chain and $W(a) - \{\xi\}$ is non-empty, we infer from (3) that $\theta = \text{lub } [W(a) - \{\xi\}]$ is in $W(a) = C_{\xi}$. According as $\theta = \xi$ or $\theta < \xi$, we have

(10)
$$\xi = \text{lub} [W(a) - \{\xi\}]$$

or

```
(11) \xi is the immediate successor of \theta in W(a).
```

If (10) holds, take any element $z \in [W(a) - \{\xi\}]$. Then $z < \xi$, and by (8), $f(z) \leq f(\xi)$. By (2), z < f(z). Consequently $z < f(\xi)$ and therefore $f(\xi)$ is an upper bound for $[W(a) - \{\xi\}]$, and thus, by (10), $\xi \leq f(\xi)$.

If (11) holds, by (2), $f(\theta) = \xi$. Also, since $\theta < \xi$, by (8), $f(\theta) \leq f(\xi)$, so that again $\xi \leq f(\xi)$.

Since $\xi \leq f(\xi)$, we see from (6) that $\xi = f(\xi)$. Thus Theorem 2 is proved.

Remark. An alternative proof of Theorem 2 can be given by considering the set $\{x | x \in P, x \leq f(x)\}$ and using Theorem 1.

COROLLARY 1. Let f be any isotope map of a non-empty complete lattice L into itself. Then $\xi = f(\xi)$ for some $\xi \in L$.

Proof. In view of Theorem 2, we need only verify (9). Choose a = the greatest

lower bound of L. Then clearly (9) is valid, and Corollary 1 follows from Theorem 2.

COROLLARY 2. Let P be a partially ordered set in which

(12) every non-empty well ordered subset $W \subset P$ which is bounded above has a lub.

Let f be an isotone map of P into P and let there exist two elements $a, b \in P$ such that

(13)
$$a \leqslant f(a) \leqslant f(b) \leqslant b.$$

Then there exists $\xi \in P$ such that $\xi = f(\xi)$ and $a \leq \xi \leq b$. In fact, $\xi = \text{lub}W(a)$ is such an element.

Proof. Let $Q = \{x | x \in P, a \leq x \leq b\}$. Since f is isotone, we see by (13) that if $x \in Q$, then $a \leq f(a) \leq f(x) \leq f(b) \leq b$. Hence f maps Q into Q. Moreover, since Q is bounded above by b, we see from (12) that (7) is valid for Q. Therefore the hypotheses of Theorem 2 are satisfied by Q, f, and a. Thus from Theorem 2 we infer the validity of Corollary 2.

COROLLARY 3. If f is an isotone map of a conditionally complete lattice into itself and if $a \leq f(a) \leq f(b) \leq b$, then $\xi = f(\xi)$ for some ξ with $a \leq \xi \leq b$.

THEOREM 3. Let P be a non-empty partially ordered set in which (14) lub of every non-empty well ordered subset $W \subset P$ exists. Let f be a map of P into P such that

(15) for every $x \in P$, $x \leq f(x)$.

Then there exists at least one $\xi \in P$ such that $\xi = f(\xi)$. In fact, for every $a \in P$, $\xi = \text{lub } W(a)$ is such an element.

Proof. Consider an *a*-chain $W(a) \subset P$. By (4) and (14), $\xi = \text{lub } W(a)$ exists. By (15) and (6), $\xi = f(\xi)$. Thus Theorem 3 is proved.

In the following a generalization of Corollary 2 is proved with the help of the axiom of choice.

THEOREM 4. Let P be a partially ordered set in which

(16) lub of every non-empty well ordered subset which is bounded above exists. Let g be a map of P into P such that, for every two elements $x, y \in P$,

(17)
$$if g(x) < g(y), then x < y;$$

and, for x, y, $s \in P$, (18) if $g(x) \leq s \leq g(y)$, then $g^{-1}(s) \neq \emptyset$.

Furthermore, let f be an isotone map of P into P, and let there exist a, $b \in P$, with a < b, satisfying

 $g(a) \leq f(a)$ and $f(b) \leq g(b)$.

Then the reexists at least one $\xi \in P$ such that $a \leq \xi \leq b$ and $f(\xi) = g(\xi)$.

Proof. If f(a) = g(a) or f(b) = g(b), the conclusion is obvious. Hence we may assume that

(19)
$$g(a) < f(a)$$
 and $f(b) < g(b)$.

Consider the set $\{S_i\}$ of all non-empty subsets $S_i \subset P$ such that there exists $s_i \in P$ with $g^{-1}(s_i) = S_i$. Clearly, $\{S_i\} \neq \emptyset$. By the axiom of choice, there exists a function φ mapping $\{S_i\}$ into P, such that $\varphi(S_i) \in S_i$. Hence

$$g\varphi g^{-1}(s_i) = s_i.$$

We observe also that, in view of (17),

(21) if $s_i < s_j$, then every element of $g^{-1}(s_i) < \text{every element of } g^{-1}(s_j)$. We shall show now that the function

$$(22) h = \varphi g^{-1} f$$

maps the set $Q = \{x | x \in P, a \leq x \leq b\}$ into itself. If $x \in Q$, then, since f is isotone, by (19) we have

(23)
$$g(a) < f(a) \leq f(x) \leq f(b) < g(b),$$

and hence by (18) we see that $g^{-1}[f(x)] \neq \emptyset$. By (21) and (23) we find, $a < \varphi g^{-1}[f(x)] < b$. Hence, by (22), $h(x) \in Q$. Taking x = a, we infer also that

$$(24) a < h(a).$$

Furthermore, since f is isotone, if $x \leq y$ then $f(x) \leq f(y)$, and from (21) we infer that $\varphi g^{-1}[f(x)] \leq \varphi g^{-1}[f(y)]$, so that by (22) h is isotone on Q.

From (24) we see that a and h satisfy (9) on Q. Also, since Q is bounded above by b, we see from (16) that Q satisfies (7).

Hence Q and h satisfy the hypotheses of Theorem 2, and consequently there exists $\xi \in Q$ such that $h(\xi) = \xi$. Applying g to each side we have, by (22)

$$g\varphi g^{-1}[f(\xi)] = g(\xi),$$

and thus, by (20),

 $f(\xi) = g(\xi).$

This completes the proof.

COROLLARY 4. If in Theorem 4 instead of condition (17) we assume that g is isotone, then the conclusion of Theorem 4 remains valid provided P is a simply ordered set.

References

1. G. Birkhoff, Lattice theory (A.M.S. Coll. Publ., 25, rev. ed.; New York, 1948).

2. N. Bourbaki, Théorie des ensembles (Paris, 1956), chapter III, p. 48, Example 6b.

3. ----- Sur le Théorème de Zorn, Archiv der Mathematik, 2 (1949-50), 434-437.

University of Pennsylvania and Queens College