
A THEOREM ON PARTIALLY ORDERED SETS, 
WITH APPLICATIONS TO FIXED POINT THEOREMS 

SMBAT ABIAN AND ARTHUR B. BROWN 

In this paper the authors prove Theorem 1 on maps of partially ordered 
sets into themselves, and derive some fixed point theorems as corollaries. 

Here, for any partially ordered set P , and any mapping / : P —» P and any 
point a Ç P, a well ordered subset W(a) C P is constructed. Except when 
W(a) has a last element £ greater than or not comparable t o / ( f ) , W(a), al
though constructed differently, is identical with the set A of Bourbaki (3) 
determined by a} / , and P i : {x\x Ç P , x < / ( # ) } • 

Theorem 1 and the fixed point Theorems 2 and 4, as well as Corollaries 2 
and 4, are believed to be new. 

Corollaries 1 and 3 are respectively the well-known theorems given in (1, 
p. 54, Theorem 8, and Example 4). 

The fixed point Theorem 3 is that of (1, p. 44, Example 4); and has as a 
corollary the theorem given in (2) and (3). 

The proofs are based entirely on the definitions of partially and well ordered 
sets and, except in the cases of Theorem 4 and Corollary 4, make no use of 
any form of the axiom of choice. 

In what follows, ua < b,J implies that a and b are distinct. Furthermore, we 
shall always deal with elements and subsets of a given partially ordered set 
P , and "lub T" will denote exclusively "the least upper bound of T in P " ; 
that is, an upper bound z of T such that if 5 is any other upper bound of P, 
then z < s. The symbol u ( 3 " shall mean "is a subset (not necessarily proper) 
of." 

Definition. Let P be a partially ordered set and / a mapping of P into P . 
For any a Ç P , an a-chain Cr is a subset of P satisfying the following con
ditions: 
(1) Cr is well ordered, with a as its first element and r as its last element; 
(2) If z Ç Cr and z 9e r, then f(z) Ç Cr, z < / ( z ) , and there exists no 

y G Cr for which z < y < f{z) ; 
(3) If T is a non-empty subset of Cr, then the least upper bound (in P) of 

T exists and is in Cr. 
It will follow from Lemma 4 below that, for given P , / , and a, Cr is uniquely 

determined by r. 
We designate by W{a) the set of all r G P for which there exists an a-chain 

Cr having r as its last element. We note that (2) implies that W(a) = {a} 
except when a < f(a). 
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Under the hypotheses of the Definition, we shall first prove the following 
lemmas. 

LEMMA 1. If r G W(a) and Cr is an a-chain with last element r, then Cr C 
W{a). 

Proof. Ht G Cr, the set of all elements of Cr which are < / is easily seen 
to be an a-chain, and hence t G W(a). Therefore the lemma is true. 

LEMMA 2. If r G W(a) and r < / ( r ) , thenf(r) G W(a). 

Proof. The set Cr \J {f(r)\ is obviously an a-chain, and hence/(r) G W(a). 

LEMMA 3. If r, s G W(a) and Cr is an a-chain with last element r, then either 
s G Cr or r < s. 

Proof. Let T = Cr H Cs. By (1), T j± 0 and hence, by (3), z = lub T 
exists and z G T.lls $ Cr then s ^ 5. If also s 9e r then, by (2), z < /(z) G 7", 
contrary to the fact that z — lub T. Hence s $ Cr implies that z = r, so that 
r Ç Cs; and since r ^ ,̂ we see by (1) that r < s. Since, by (1), s Ç Cr and 
r < s cannot both hold, we infer the truth of Lemma 3. 

LEMMA 4. If r G W(a), there is just one Cr with last element r, namely the 
set of all elements of W(a) which are < r. 

Proof. This follows from Lemmas 1 and 3. 

THEOREM 1. Let P be a non-empty partially ordered set, f a map of P into P, 
and a an arbitrary element of P. Then 

(4) IF (a) is well ordered with a its first element. 

Moreover, if £ = lub W(a) exists, then 

(5) W(a) is an a-chain with £ its last element, 

and 

(6) * < / ( * ) • 

Proof. Let H be any non-empty subset of W(a), and r G H. Since r G Hr\Cr, 
we see by (1) that H C\ Cr has a first element, which, in view of Lemma 4, 
is the first element of H. Hence W(a) is well ordered. By Lemma 1, a G W(a), 
and by (1), if r G W(a) then a < r. Thus we conclude that a is the first 
element of W(a). Hence (4) is valid. 

Next, assume £ = lub W(a) exists and let W* = W(a) VJ {£}. We shall 
show that W* is an a-chain. Since W(a) is well ordered, W* is well ordered too 
and thus (1) is satisfied for W*, with a its first and £ its last element. Now, 
let z G W* and z 9* £. Then z G W(a) and {x\x G W(a), z < x) 5* 0 . Sinec 
W(a) is well ordered, z has an immediate successor r in W(a), hence in W* . 
By Lemma 4, z and r are the last two elements of Cr. Hence, by (2) applied to 
z as an element of Cr, we see that f{z) = r, so that (2) is satisfied for W*. 
To prove (3) for W*, let T be any non-empty subset of W*. Obviously £ is an 
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upper bound of T. If there is no element of W(a) which exceeds every element 
of T then, in view of the well orderedness of W(a), any upper bound of T 
is also an upper bound of W(a) and hence is > £, which implies that £ = lub T, 
and thus lub T G W7*. If there is an element r G W(a) which exceeds every 
element of T, then T d W(a) and, by Lemma 4, T C CT. Hence, by (3), 
lub T exists and is in Cr, and therefore, by Lemma 1, lub T G W(a), so that 
again lub T G W*. Consequently (3) is satisfied for W*. Therefore W* is an 
a-chain with £ its last element, which implies that £ G PF(a) and W(a) = PF*. 
Thus (5) is valid. 

Now, suppose £ < / ( £ ) . By Lemma 2, /(£) G W^a), so that (5) is con
tradicted. Therefore £ < / ( £ ) . Thus (6) is valid, and Theorem 1 is proved. 

THEOREM 2. Le£ P be a partially ordered set in which 

(7) lub of every non-empty well ordered subset W C P exists. 

Let f be a map of P into P such that f is isotone, that is, 

(8) for every two elements x, y G P with x < y, we have f(x) < f(y) ; 

and 

(9) there exists an element a G P with a < / ( a ) . 
Then there exists at least one £ G P such that £ = /(£). In fact, £ = lub W(a) 

is swcA an element. 

Proof. If a = / (a ) , the conclusion is obvious. Now suppose a <f(a). 
Consider the set W(a), where a is the element referred to in (9). By (4) 

and (7), £ = lub W(a) exists, and hence by (5), W(a) = Q. By (9) and 
Lemma 2 we see t h a t / ( a ) G W{a), and therefore a < £. Since W(a) is an 
a-chain and IT7(a) — {£} is non-empty, we infer from (3) that0 = lub[TF(a) — {£}] 
is in W(a) = CV According as 6 = £ or d < £, we have 

(10) £ = lub[W(o) - {£}] 
or 

(11) £ is the immediate successor of 6 in TF(a). 

If (10) holds, take any element z G [W(a) — {£}]. Then s < £, and by 
(8), m < / ( £ ) . By (2), s < / ( * ) . Consequently z < / (£ ) and therefore /(£) 
is an upper bound for [W(a) — {£}], and thus, by (10), £ < / ( £ ) . 

If (11) holds, by (2),/(0) = £. Also, since 0 < £, by (8),/(0) < / ( £ ) , so that 
again £ < / ( £ ) . 

Since £ < / ( £ ) , we see from (6) that £ = /(£). Thus Theorem 2 is proved. 

Remark. An alternative proof of Theorem 2 can be given by considering the 
set {x\x G P , x < /(#)} and using Theorem 1. 

COROLLARY 1. Let f be any isotope map of a non-empty complete lattice L 
into itself. Then £ = /(£) for some £ G L. 

Proof. In view of Theorem 2, we need only verify (9). Choose a = the greatest 
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lower bound of L. Then clearly (9) is valid, and Corollary 1 follows from 
Theorem 2. 

COROLLARY 2. Let P be a partially ordered set in which 

(12) every non-empty well ordered subset W C P which is bounded above has a 
lub. 

Let f be an isotone map of P into P and let there exist two elements a, b Ç P 
such that 
(13) a<f(a) <f(b) <b. 

Then there exists £ £ P such that £ = /(£) and a < £ < b. In fact, £ = lub FF (a) 
is such an element. 

Proof. Let Q = {x\x Ç P, a < x < b}. Since / is isotone, we see by (13) 
that if x G Q, then a < f{a) < /(*) < f(b) < ô. Hence/ maps Q into 0. More
over, since Q is bounded above by b, we see from (12) that (7) is valid for Q. 
Therefore the hypotheses of Theorem 2 are satisfied by Q, f, and a. Thus from 
Theorem 2 we infer the validity of Corollary 2. 

COROLLARY 3. If f is an isotone map of a conditionally complete lattice into 
itself and if a < f(a) < f(b) < b, then £ = /(£) /or some £ zew/& a < £ < 6. 

THEOREM 3. Le/ P be a non-empty partially ordered set in which 

(14) lub of every non-empty well ordered subset W C P exists. 

Let f be a map of P into P such that 

(15) for every x £ P, x < / ( x ) . 

Then there exists at least one £ £ P ŝ £& ̂ a / £ = /(f) . In fact, for every a £ P , 
£ = lub FF (a) is swc/z an element. 

Proof. Consider an a-chain W{a) C P, By (4) and (14), £ = lub W(a) 
exists. By (15) and (6), £ = /(£). Thus Theorem 3 is proved. 

In the following a generalization of Corollary 2 is proved with the help of 
the axiom of choice. 

THEOREM 4. Let P be a partially ordered set in which 

(16) lub of every non-empty well ordered subset which is bounded above exists. 

Let g be a map of P into P such that, for every two elements x, y £ P , 

(17) if g(x) < g(y), then x < y; 

and, for x, y, s £ P , 

(18) if g{x) < s < g{y), then g-^s) j* 0 . 

Furthermore, let f be an isotone map of P into P, and let there exist a, b £ P , 
with a < b, satisfying 

g (a) <f(a) and f(b) < g(b). 

Then the reexists at least one £ £ P such that a < £ < b and f(Ç) = g(£). 
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Proof. If f{a) = g (a) or f(b) = g(b), the conclusion is obvious. Hence we 
may assume that 
(19) g(a)<f(a) and /(*) < g(b). 

Consider the set {Si} of all non-empty subsets Si C P such that there 
exists Si G P with g_1(s<) = St. Clearly, {Si} ^ 0 . By the axiom of choice, 
there exists a function <p mapping {St} into P , such that <p(Si) Ç St. Hence 

(20) gvr'tei) = st. 
We observe also that, in view of (17), 

(21) if Si < Sj, then every element of g" -1^) < every element of g~1(sJ). 
We shall show now that the function 

(22) h = <pg-y 

maps the set Q = {x\x £ P, a < x < b} into itself. If x Ç Ç, then, since / 
is isotone, by (19) we have 

(23) g(a) <f(a) < / ( * ) < f(b) < g(b), 

and hence by (18) we see that g-'L/X*)] ^ 0- By (21) and (23) we find, 
# < ^g_ 1[ /W] < b- Hence, by (22), h(x) Ç. Q. Taking x = a, we infer also 
that 
(24) a < h(a). 

Furthermore, since / i s isotone, if x < 3> then/(x) Kf(y), and from (21) we 
infer that <pg~l\f{x)] < ^T^LfOOL SO that by (22) & is isotone on Q. 

From (24) we see that a and & satisfy (9) on Q. Also, since Q is bounded 
above by b, we see from (16) that Q satisfies (7). 

Hence Q and h satisfy the hypotheses of Theorem 2, and consequently there 
exists £ £ Q such that &(£) = £. Applying g to each side we have, by (22) 

g<Pg-llM)l = «(*), 
and thus, bv (20), 

This completes the proof. 

COROLLARY 4. If in Theorem 4 instead of condition (17) we assume that g is 
isotone, then the conclusion of Theorem 4 remains valid provided P is a simply 
ordered set. 
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