A THEOREM ON PARTIALLY ORDERED SETS,
WITH APPLICATIONS TO FIXED POINT THEOREMS

SMBAT ABIAN axp ARTHUR B. BROWN

In this paper the authors prove Theorem 1 on maps of partially ordered
sets into themselves, and derive some fixed point theorems as corollaries.

Here, for any partially ordered set P, and any mapping f: P — P and any
point ¢ € P, a well ordered subset W(a) C P is constructed. Except when
W(a) has a last element £ greater than or not comparable to f(¢), W(a), al-
though constructed differently, is identical with the set 4 of Bourbaki (3)
determined by a, f, and P;: {x|x € P, x < f(x)}.

Theorem 1 and the fixed point Theorems 2 and 4, as well as Corollaries 2
and 4, are believed to be new.

Corollaries 1 and 3 are respectively the well-known theorems given in (1,
p. 54, Theorem 8, and Example 4).

The fixed point Theorem 3 is that of (1, p. 44, Example 4); and has as a
corollary the theorem given in (2) and (3).

The proofs are based entirely on the definitions of partially and well ordered
sets and, except in the cases of Theorem 4 and Corollary 4, make no use of
any form of the axiom of choice.

In what follows, “a < &"’ implies that ¢ and & are distinct. Furthermore, we
shall always deal with elements and subsets of a given partially ordered set
P, and ““lub 77’ will denote exclusively ‘‘the least upper bound of 7" in P"’;
that is, an upper bound z of T such that if s is any other upper bound of T,
then z < s. The symbol “C” shall mean “‘is a subset (not necessarily proper)
of.”

Definition. Let P be a partially ordered set and f a mapping of P into P.
For any @ € P, an a-chain C, is a subset of P satisfying the following con-
ditions:

(1) C,is well ordered, with a as its first element and 7 as its last element;

(2) If 2 € C, and z # r, then f(3) € C,, z < f(2), and there exists no
y € C, for which z < y < f(2);

(3) If T is a non-empty subset of C,, then the least upper bound (in P) of
T exists and is in C,.

It will follow from Lemma 4 below that, for given P, f, and @, C, is uniquely
determined by 7.

We designate by W(a) the set of all » € P for which there exists an a-chain
C; having 7 as its last element. We note that (2) implies that W(a) = {a}
except when a < f(a).
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Under the hypotheses of the Definition, we shall first prove the following
lemmas.

Lemva 1. If r € W(a) and C, is an a-chain with last element r, then C, C
Wia).

Proof. If t € C,, the set of all elements of C, which are < ¢ is easily seen
to be an a-chain, and hence ¢ € W(a). Therefore the lemma is true.

LEmMMA 2. If r € W(a) and v < f(r), then f(r) € W(a).
Proof. The set C, \J {f(r)} is obviously an a-chain, and hence f(») ¢ W(a).

LemMma 3. If r,s € W(a) and C, is an a-chain with last element r, then either
s € Crorr <.

Proof. Let T = C, N\ C,. By (1), T # @ and hence, by (3), 2 =1lub T
existsandz € 7. Ifs ¢ C,thenz # 5. Ifalsoz = r then, by (2), 2 < f(z) € T,
contrary to the fact that z = lub 7. Hence s ¢ C, implies that z = 7, so that
r € C,; and since 7 # s, we see by (1) that » < s. Since, by (1), s € C, and
r < s cannot both hold, we infer the truth of Lemma 3.

LemMA 4. If r € W(a), there is just one C, with last element r, namely the
set of all elements of W (a) which are < r.

Proof. This follows from Lemmas 1 and 3.

THEOREM 1. Let P be a non-empty partially ordered set, f a map of P into P,
and a an arbitrary element of P. Then

(4) Wia) is well ordered with a its first element.
Moreover, if ¢ = lub W(a) exists, then

5) Wila) is an a-chain with t its last element,
and

(6) ELS(®.

Proof. Let H be any non-empty subset of W(a),andr € H.Sincer ¢ HN C,,
we see by (1) that H M C, has a first element, which, in view of Lemma 4,
is the first element of H. Hence W (a) is well ordered. By Lemma 1,a € W(a),
and by (1), if » € W(a) then @ < r. Thus we conclude that a is the first
element of W(a). Hence (4) is valid.

Next, assume & = lub W(a) exists and let W* = W(a) U {£}. We shall
show that W* is an a-chain. Since W(a) is well ordered, W* is well ordered too
and thus (1) is satisfied for W*, with a its first and £ its last element. Now,
let z € W* and z # ¢ Then 2 € W(a) and {x|x € W(a), z < x} # @. Sinec
W (a) is well ordered, z has an immediate successor » in W(a), hence in W* .
By Lemma 4, z and 7 are the last two elements of C,. Hence, by (2) applied to
z as an element of C,, we see that f(z) = 7, so that (2) is satisfied for W*.
To prove (3) for W*, let T be any non-empty subset of W*. Obviously £ is an
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upper bound of 7. If there is no element of W (a) which exceeds every element
of T then, in view of the well orderedness of W (a), any upper bound of T
is also an upper bound of W (a) and hence is > ¢, which implies that ¢ = lub T,
and thus lub 7" € W*. If there is an element r € W(a) which exceeds every
element of T, then 7" C W{(a) and, by Lemma 4, 7" C C,. Hence, by (3),
lub T exists and is in C,, and therefore, by Lemma 1, lub 7" € W (a), so that
again lub T € W*. Consequently (3) is satisfied for W*. Therefore W* is an
a-chain with £ its last element, which implies that ¢ € W(a) and W(a) = W*.
Thus (5) is valid.

Now, suppose ¢ < f(§). By Lemma 2, f(¢§) € W(a), so that (5) is con-
tradicted. Therefore ¢ € f(£). Thus (6) is valid, and Theorem 1 is proved.

THEOREM 2. Let P be a partially ordered set in which
(7) lub of every non-empty well ordered subset W C P exists.
Let f be a map of P into P such that f is isotone, that is,
(8) for every two elements x, vy € P with x < y, we have f(x) < f(¥);
and
(9) there exists an element a € P with a < f(a).

Then there exists at least one & € P such that ¢ = f(&). In fact, £ = lub W(a)
is such an element.

Proof. If a = f(a), the conclusion is obvious. Now suppose a < f(a).

Consider the set W(a), where a is the element referred to in (9). By (4)
and (7), £ = lub W(a) exists, and hence by (5), W(a) = C:. By (9) and
Lemma 2 we see that f(a) € W(a), and therefore ¢ < £ Since W(a) is an
a-chainand W(a) — {£} isnon-empty, we infer from (3) that 8 = lub[W (a) — {¢} ]
is in W(a) = C: According as § = £ or < £ we have

(10) ¢ =lub [W(a) — {£}]
or
(11) £ is the immediate successor of  in W(a).

If (10) holds, take any element z € [W(a) — {¢}]. Then z < &, and by
(8), f(z) < f(¥). By (2), 2 < f(2). Consequently z < f(¢) and therefore f(£)
is an upper bound for [W(a) — {¢}], and thus, by (10), £ < f(§).

If (11) holds, by (2), f(8) = £. Also, since 8 < £, by (8), f() < f(§), so that
again £ < f(§).

Since ¢ < f(£), we see from (6) that § = f(¢). Thus Theorem 2 is proved.

Remark. An alternative proof of Theorem 2 can be given by considering the
set {x|x € P,x < f(x)} and using Theorem 1.

COROLLARY 1. Let f be any isotope map of a non-empty complete lattice L
into itself. Then ¢ = f(§) for some ¢ € L.

Proof. In view of Theorem 2, we need only verify (9). Choose a = the greatest
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lower bound of L. Then clearly (9) is valid, and Corollary 1 follows from
Theorem 2.

COROLLARY 2. Let P be a partially ordered set in which
(12)  every non-empty well ordered subset W C P which is bounded above has a

lub.
Let f be an isotone map of P into P and let there exist two elemenis a, b € P
such that
(13) a < fla) <f() <b.

Thenthereexists& € Psuchthatt = f(§) anda < & < b. In fact, ¢ = lubW(a)
15 such an element.

Proof. Let Q = {x|x € P, a < x < b}. Since f is isotone, we see by (13)
thatif x € Q, thena < f(a) < f(x) < f(d) < b. Hence f maps Q into Q. More-
over, since Q is bounded above by b, we see from (12) that (7) is valid for Q.
Therefore the hypotheses of Theorem 2 are satisfied by Q, f, and a. Thus from
Theorem 2 we infer the validity of Corollary 2.

COROLLARY 3. If f is an isotone map of a conditionally complete lattice into
itself and if a < f(a) < f(0) < b, then & = f(§) for some & with a < & < b.
THEOREM 3. Let P be a non-empty partially ordered set in which
(14) lub of every non-empty well ordered subset W C P exists.
Let f be a map of P into P such that
(15) for every x € P, x < f(x).
Then there exists at least one ¢ € P such that ¢ = f(£). In fact, for everya € P,

& = lub W(a) s such an element.

Proof. Consider an a-chain W(a) C P. By (4) and (14), ¢ = lub W(a)
exists. By (15) and (6), £ = f(£). Thus Theorem 3 is proved.

In the following a generalization of Corollary 2 is proved with the help of
the axiom of choice.

THEOREM 4. Let P be a partially ordered set in which
(16) lub of every non-empty well ordered subset which is bounded above exists.
Let g be a map of P into P such that, for every two elements x,y € P,

(17) if glx) < g(), thenx < y;
and, for x,y,s € P,
(18) if gx) < s < g(y), then g='(s) # Q.

Furthermore, let f be an isotone map of P into P, and let there exist a, b € P,
with a < b, satisfying

gla) <fl@) and f(b) < g(d).
Then the reexists at least one £ € P such that a < &£ < b and f(§) = g(§).
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Proof. If f(a) = g(a) or f(b) = g(b), the conclusion is obvious. Hence we
may assume that

(19) gla) <fl@) and  f(b) < g(d).

Consider the set {S;} of all non-empty subsets .S; C P such that there
exists s; € P with g=1(s;) = S,. Clearly, {S;}  @. By the axiom of choice,
there exists a function ¢ mapping {.S;} into P, such that ¢(S;) € S;. Hence

(20) gog7(s:) = sa.
We observe also that, in view of (17),

(21) if s; < s, then every element of g~'(s;) < every element of g=!(s;).
We shall show now that the function

22) h = og'f
maps the set Q = {x|]x € P, a < x < b} into itself. If x € Q, then, since f
is isotone, by (19) we have

(23) g(a) < fla) < flx) < f(b) < g(d),
and hence by (18) we see that g~![f(x)] # @. By (21) and (23) we find,
a < g~ '[f(x)] < b. Hence, by (22), h(x) € Q. Taking x = a, we infer also
that
(24) a < h(a).

Furthermore, since f is isotone, if x < y then f(x) < f(y), and from (21) we
infer that g~ '[f(x)] < g7 [f(9)], so that by (22) % is isotone on Q.

From (24) we see that ¢ and % satisty (9) on Q. Also, since Q is bounded
above by b, we see from (16) that Q satisfies (7).

Hence Q and % satisfy the hypotheses of Theorem 2, and consequently there
exists ¢ € Q such that 2(¢) = £ Applying g to each side we have, by (22)

gog Hf(®] = g(®),
and thus, by (20),
f(&) = g(®).

This completes the proof.

COROLLARY 4. If tn Theorem 4 instead of condition (17) we assume that g is
isotone, then the conclusion of Theorem 4 remains valid provided P is a simply
ordered set.

REFERENCES

G. Birkhoff, Lattice theory (A.M.S. Coll. Publ., 25, rev. ed.; New York, 1948).
N. Bourbaki, Théorie des ensembles (Paris, 1956), chapter 111, p. 48, Example 6b.

1.
2.
3. ————— Sur le Théoréme de Zorn, Archiv der Mathematik, 2 (1949-50), 434-437.

University of Pennsylvania
and
Queens College

https://doi.org/10.4153/CJM-1961-007-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1961-007-5

