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1. Let-L^a;), (n = 0, 1, . . . . ) be the Laguerre, Hn{x) the Hermite
polynomial. Let £j, (a, b), (1 ^ p < oo ), be the space of all functions
f(x) the pth powers of which are integrable over (a, b), with the
norm

,i/pa6

\fto
Let £,,(», b), (p = a>), be the space of all functions f(x) which

are measurable and essentially bounded in [a, b) where the norm
\\f(x) || is the essential upper bound of \f(x) | , (a ^ x ^ b). Let

i},M(x) = x*a e~ix L<£) (x).
Then

W ) [n !/r (n + a + l)]V*}, (n = 0,

is a complete orthogonal and normal system of &2(0, » ), when a is
real and a > — 1. Of course1 every system {</>„}, (n = 0, 1, . . . . ) ,
which is complete with respect to £?(0, oo), (1 < q <^ a>), is also
closed in £j, (0, oo ), (p~l= 1 — q-1). This means that , if <j>n 6 1P (0, co )
and if

Jo
f(x)$n(x)dx=0, [f(x) 6 £,((»,«); » = 0, 1, . . . . ] ,

implies that f{x) = 0, then every function ^(x) € £ p ( 0 , oo ) can be
approximated in the mean with index p by integral linear finite
aggregates of the j>n, and conversely.

When a is not real, K (a) > — 1, then the sequence {(/>̂ o)} is only a
closed, and hence complete, system in £2 (0, oo ). I t has not yet been
proved hitherto8 that the system {t/i^} is a complete system with
respect to £„ (0, oo ) for K (a) > 2/p — 2 in the general case 1 ^ p <S oo ,
or is a closed system in £j,(0, oo ) for R (a) > — 2/p, (1 ^ p < oo ).
The proof of these theorems is given in the present paper.
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136 H. KOBBR

The case K (a) < — 2/p has not yet been discussed at all for any
value of p, not even for p = 1, 2, oo , since then

is infinite. The problem of this paper is to fill this gap. For this
purpose the functions ip%) need some modification. Let m be any
fixed integer and let

m - l

(1.1) Em(z) = e-*— 2 {~xfjh\,
A = 0

the sum being interpreted as zero when m :£S 0, so that Em(x) = e~x

for m l£ 0; for n = 0, 1,2, . . . ., let

(1.2) ^ - < * > = * £

Hence

Tb

and so on. The reason for modifying L w and !/r'a) in this way will be
given in the second section of the paper.

In the third and following sections we shall give some equations
connecting the i/4a)

m, and, subject to certain restrictions on a and m,
we will calculate

and prove some other properties of ^ m . The main property of
the sequence {$,a)

m}, (n = 0, 1, . . . . ) , is that it is a closed system in
£p (0, oo ), (1 :g p < oo ), under such restrictions. In the sixth section
we shall discuss the eigen-functions of the cut Hankel transform and
obtain some integral equations for L^m and for another, more general,
modification A^a)

m of X(
n
al.

My thanks are due to Professor G. N. Watson for his kind advice
and also to A. Erdelyi for kindly suggesting some alterations in the
paper.

2. When modifying the functions iffi into ip^m for H (a) < 0 we
restrict the modification by requiring that the Mellin transform
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O N SOME GENERALISATION'S OF L/AGUERRE POLYNOMIALS 137

of ipM shall remain unchanged formally. Now the functions
z1'2$,"' (*2)i (w = 0, 1, . . . . ) , are eigen-functions of the ordinary Hankel
transform, and the Mellin transform of the Bessel function Ja (x)
remains unchanged formally under certain restrictions when we cut
the first terms of the power series3 for Ja (x); therefore from the
theory4 of " General Transforms" it follows immediately that
xl'2iplf>

m(x2), (n —•- 0, 1, . . . . ) , are eigen-functions of the cut Hankel
transform. When H {$) > — | K (a) we have

(2.1) MM{s)
— hj ft!

Now let

(2.2) - m + l - R ( « ) > J H ( o ) > - f f l - H ( 4 ) ,

where TO is a positive integer. Then K (a) < 0 for H (s) ̂  — m+ 1,
and some of the integrals diverge. But the Gamma integral

(z) = 1 e~ dx, [H (z) > 0], is to be replaced by

r(2)= \e-'- s L^iL^-itfa^ ^

x x * - 1

00

where & is an arbitrary integer and where — k + 1 > K (z) > — k.
Hence here we have to replace

f x^+h+'-x e~h-xdx by [ x^+h+s~l Em_
Jo Jo

since - (m - h) + 1 > | H (a) + K (s) + h > - (m - h). Thus (1.2) is
justified.

We shall now compute the Mellin transform and shall give a
formula which has not yet been proved for any value of m. Let

(2 .3) ^m (x;a) = **- 2 (n + f) ^ 1 * Em.h fa), (n = 0, 1, . . . . ) ;
A=O \n—nj h\

let a be an arbitrary complex number, and let

(2.21) H(s )>- iH(a ) , (m = 0), - | H ( a ) - m < H ( « ) < - | H ( a ) - m + 1, (m > 0).

Then

s8"1 #?m (*; o) = 0 (a;a), |>-» 0, 8 = wi + H (« + Ja) - 1 > - 1]
a;8~1 ̂ » (*; o) = 0 (a;"), [a: -» co , ij = m + X (« + Jo) - 2 < - 1].

Hence the integral Xs"1 ip^m (x; a) dx = M^ (s; a) converges, and

by (2.1)

https://doi.org/10.1017/S0013091500024639 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024639
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(2.4) M^{s; a) =2>+' V {\a + ^ S (2a)"

Since

n — hj \h J h=0 \u — 1/ \n —

when w=j= 1, and is equal to ( ), when u = 1, we get
\ n /

( l _ 2 a ) « 2 ^ r ( J a +

(2.5) JfW (« ;«) -

for a=}= \ or a = \ respectively. Hence, when both s and s' — 1 — s
are subjected to the restrictions (2.21),

When a = 1 using (3.4.1) we obtain also

(2.4.1) MM{s; l) = 2*-+T(4a + «) f ( - 1

3. Let a, jS be any complex numbers, m an integer, and let </4a)

(n = 0, 1, ), be denned by (1.2), and Em by (1.1); then

(3.3) <p^+f>(x)-=x^ S

(3.4) 0Wm (x) - ,/£>„,_, (*) = - ( - i*)*-! ^ gf (m; m; a),

where

" /m — 1\ fa + m + n — h — 1
~ V ^ / \ n - h

(3.5) S «

(3.6) x«+
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ON SOME GENERALISATIONS OF LAGUEBEE POLYNOMIALS 139

We omit the proofs of these formulae. When m ̂  0, they are well
known. The formula (3.5) gives the generating function of the ^ m .

4. The problem of orthogonality. Let x72. 0, 1 ̂  p ^ <x, let
H (a) + 2/p be neither a negative even integer nor zero, and let
j = j ( a , p) be "an integer defined by

(4.1) -2j-2/p<n(a)<-2j-2/p+2

when H(a) <2/p. From (1.2) we easily see that

(4.2) ./.W. (,;) = 0 («l«W +i), (x -> 0), </£>.,. = 0 (a;«W+*-i), (x -> oo ).

When H (a) > — 2/p we take j = 0; then

(4.21) 0M. = 0<;> = 0 (**««), (a; -^ 0), 0W = O (e-** ««»<•)), ( * -»« ) .

Plainly 0^. (a;) belongs to £j, (0, co ); when p = oo , a is not restricted,
and we then permit equality on the right hand side of (4.1). We

now put p = 2 in order to calculate {i//,<(x)}2dx. Let j=j (a, 2)>0,

r :> 0, s ^ 0,

f i ) ̂  (
o

We first take K (a) > — 2j, r + s < 2j — 1, j > 0. Since, for
and £-> oo ,

res
in

xa+T+sE^r(x)Ej_s(x) = 0(x«w+«), 0(a«w+!i-8)

spectively, the integral l<f>t converges. By 2j — 1 — r — s partial

tegrations we get

In all the integrals in Sx plainly ET+1_i+h = e~x, and in S2 plainly
Ej_r-h = e"*, when S2 exists at all. Since

K (a) + 2j - 1 > - 1

every term can easily be calculated, and so we have

When r + s "^ 2j — 1, then one of r, s (say r) must exceed j — I, and
since Ej_r = e"* we can calculate I<f\ directly. We obtain the
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same result. By analytic continuation we see that (4.3) also
holds for

though we have to take the limit of the right hand side for a -» — 2j,
when a = — 2j and r + s 5S 2j — 1. Hence (4.3) is valid for

- 2.7 — 1 < H (a) < — 2j + 1, r ^ 0, 5 ^ 0, j > 0,

while it is trivial for j ^ 0. Now we have

= Z1(r,s)-Z2(r,s)-Z3{r,s),

where Zlt Z2, Z3 correspond to the right-hand terras of (4.3). Thus
Z1 (r, s) is zero when r=^s and T (a + r + l)/V (r + 1) when r = s.

= ( - 1)' 2-+1 T (a+1) 'z( - 1)' fa+^ 0 (r; g+ 1; a) g(s; q+1; a),
«=o \ 9 /

By (3.41) we have finally:

Z2 (r

(4.4) f
o

x ' s ( ~ ° ~ 1 V ( » - ; g + 1, a)g(s;q )
8 = 0 \ 2 /

where JR! is zero when r =}= ^ and F (a + r + 1)/F (r + 1) when r = 5.
Hence the integral vanishes when r -\- s is odd, and then I/J^K and
i/i<a). are mutually orthogonal. This also can be deduced from (2.41).
Taking s = % + it, as a consequence of a well known property of the
Mellin transform, we have

= ̂  J
— h

h /-« \ — * / \ *

and the integrand is an odd function of t, when r + a is odd.

https://doi.org/10.1017/S0013091500024639 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024639


ON SOME GENERALISATIONS OF LAGUERKB POLYNOMIALS 141

When j > 0 and r + s is not odd, then generally t/r^. and ^a). are not
mutually orthogonal. Take for instance j = 1, r = 2, 5 = 0; then

* #:\ e i r f * = ( - i)'-1"12a+2 r <* +! ) (r * a ) ( 5 1 a )
= - 2 * + ] T ( a + 3) 4=0.

When we put j = 0 in (4.4), we get a well known formula.

Of course the system {$,°y, (n = 0, 1, . . . .)> c a n a l s o be ortho-
gonalised when j > 0 by E. Schmidt's method, but the results are
complicated.

5. Completeness and closedness.

THEOREM I. Let l ^ p ^ x , q = pl{p — \), and let ^ ^ be
defined by (1.2), j by (4.1), (j > 0). Then the system {^\{x)},
(n = 0, 1, . . . . ) , belongs to £p(0, co ) and is complete with respect to the
space £,, (0, oo ).

Proof. Let / belong to S.g and satisfy the conditions

(5.1)

We have to show that f(x) = 0. From (5.1) and (3.6) it follows that

(5.2) f xn+f-iyEj_n($x)f(x)dx = 0, ( » = 0 , l , . . . . ) ,

when we put £a=/3 + iy> s 0 t n a t — j — P~x < P < — j — V~l + 1>
1 ^ p ^ oo . Let

- r ^ " ' Y / ( 0 ^ = / i ( ^ ) . - \*fk(i)dt=fk+1(x), (k = 1,2 ; - 1);

then evidently — 1 < j3 + j + 1/j? — 1 < 0,

(5.3) | /! (x) I ^ 4 ^ + V , | / t ( a : ) | ^4^+*+Vi ' - i , (fc = 1, 2, . . . . , ; ) .

Now for n = 1, 2

'*> = f x^-* Ei_n (\x)f(x) dx
0

Z' f0

(5.4) Z<*= JZi»|1-nZJ'+-1"(n>O),Zio>= iZ««»1(n = 0)I («=0, 1, . . , j -

when we put

x*fl(x)Ej-n-Alz)dz, ( n = 0 , 1 , . . . . , « = 1 , 2 , j ) .
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It follows from (5.4) that, for n = 0, 1, . . . . ; s = 1, 2, .. .. j ,

(5.41) Zf = 2Z<?11 -f 4w ŝ
n_-1> + 8n(n- 1) Z<?S1

2)+ + 2" + 1 n ! Zfiv

Now all ^ n ) , (n = 0, 1, . . . . ) , vanish in consequence of (5.2), and
hence all Zlf\ Z(f\ ZW also vanish in consequence of (5.41).

Therefore, since !?,•_„_, (x) — e~x for s =j,

(5.42) f fj(x)e~ixxndx = 0, (n = 0, 1 ).
Jo

We now need the following lemma.

LEMMA 1. Let (i) g (x) be 0 (e~cx), {x-> GO ), for some c > 0, and

(ii) g(t)lndt = 0, (ra = 0, 1 ); *Aew gr (0 = 0 in (0, oo ).
Jo
The proof is sketched in Footnote 5.

Here take g (x) = e~ixfj (x), c = | , and it follows from the lemma,
that/,-(a:) = 0, whence fj_x (x) = 0, f(x) = 0.

When p = oo and g = 1, a is not restricted since the value
H (a) = — 2j -(- 2 is also admissible. In this case /? = — j -\- 1,
/ ( x ) e £ ( 0 , oo j . / ^a : )* ' -* - 1 6 £ ( 0 , oo),/t(a;)==o(a;*--*),*=l,2> . . . j - l ;
when a; -* 0 and when a; - * oo , and

\fi(x)\<A(0<x<co), ^ (x) -> 0 (* -> co ),

in consequence of

LEMMA 2. Xef ^(a;) belong to £(0 , oo ), Ze< H (u) > 0, a; > 0, and

Ze^(ar)= g(t)t-»dt. Then h(x) x'1'1 belongs to £ (0, oo ), h(x) = o (x~^),

(x -^0 and x -> oo ).

Hence (5.4), (5.41), (5.42) hold in this case also, and therefore
f(x) = 0 almost everywhere.

When H(a )>—2/p , ( l ^ p < o o ) , or when H (a) ^ - 2/p = 0,
(j5 = ao ) and j = 0, Theorem I is also valid. We then take
g(x) =e-*xx*af{x) = e~*x<f>{x), so t h a t <f> (x) 6 £(0, oo ). Now Lemma 1
holds also when we replace the condition (i) by

(i') g (x) = e-™ <j> (x), [c> 0, $ (x) 6 £ (0, oo )],

and from (5.2) it follows immediately that f(x) = 0.
From the theorem cited above (section 1) we obtain

THEOREM I I . Let 1 5g p < oo , let t^>
i be defined by (1.2) and j by

(4.1); then the sequence {i /^}, (n = 0, 1, ....), is a closed system in the
apace £,, (0, oo ).
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When Hn(x), (rc = 0, 1, . . . .)» a r e t n e Hermite polynomials,
On(x) = e~lx; Hn{x), then {<£„}, (n = 0, 1, ), is complete6 with
respect to the space £p(l ^ p Sg <» )> and closed in the space
£p (1 ^ p < oo ). This will be proved in a very similar way putting

f{x) = G1{x) + G2{x),G1{x) = \{f{x)-f(-x)} = -GL(-x),

6. The Hankel transform. Throughout this section we take p — 2.

THEOREM III . Let p = 2, let j =j(a, p) be defined by (4.1), j > 0,
and- let

(6.1) ^ i ( * ) - ^ ( * ) -

then, for n = 0, 1 ,

(6.2) fW {j,* 0W (2/2)} = l.i.m. T j o . ( r 2 / ) (a ;y)j {yi ^ {yZ)} dy

and! a function f(x) € £2 (0, °° ) *'s seZ/ or skew reciprocal with respect to
the cut Hankel transform TM if, and only if, it can be approximated
by finite linear combinations of the xi^^x2) or a ; 5 ^ + ] • (x2),
(n = 0, 1, . . . . ) , respectively.

The transform g = T ( a ) / ( /e £2) exists, is bounded and involutory
and is equivalent to the equation7

(6.3) Q(t) = u>(l)F(-t
o

where we define the integral operator <Jid by

= \. i. m. h(x)x-i+"dx, (hQ£2; — oo < t < oo ).

Now

(6.4) w (t) = 2* T {J (a + 1 + it)}/T {1 (a + 1 - it)},

and since, for 5 = £ (1 ± it), it is clear that

- IK (a) - j < H (5) < - £H (a) - .7 + 1
holds, we have

A=o\2a—1/ \n-h
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in consequence of (2.5), (2.4), (6.3) and (6.4) when <A,(,a)m(a;; a) is defined
b y (2.3). Hence for a ={= \

(6.5) •[ Ja,j(xy)(zy)ytf£i(y,a)dy(l2a)xtfj(xi

When j :£ 0 this is a well known formula due to Erdelyi8. When
a = A we easily obtain8 from (2.5)

(6.51) J* J^j (xy) (zyyylfl*, (y2; J) dy

f(
i

Now (6.2) follows immediately from (6.5) when we take a = 1, and
the sequences { i / ^ } , {$.»+i.j}» (w = °> * )> belong to the spaces H
or H' consisting of all functions which are self or skew reciprocal
in the Hankel transform. We now make use of the following
theorem10:

Let T be a linear involutory and bounded transform in £2 (a> b),
and let {Xn} be a closed system in £2- Further let X2n be self-reciprocal
and let X2n+1 be skew-reciprocal; then {X2n}, {X2,!+i}, (n = 0 , 1, . . . . ) ,
are closed systems in H and H ' respectively.

Hence from Theorem II Theorem III now follows.
Let r be any number (0 < r < 1) and substitute

(6.6) x 2 = x'j ( 1 + i cotnr), y ' 2 = y \ ( 1 — i c o t nr), a = ax ( 1 — i cot-mr)-1

in (6.5) and (6.51). Then, by some calculation and omitting the
indices, for 2a =[=1 —i cotrrr and 2a = 1 — i cot nr we see that formally

(6.7) TW | y*+- c-*f" AW. j

reduces to

{1 - 26/(1 + i cot7rr)}-"x-+ie-*a!:! A^.^a;2; (1 + i cot7rr)/6}
and

(1 _ c 2 ") - ' 1 (n!)-1 x2"+»+i e^
cot"r Ej_n{lx2(l + i cotTrr)}

respectively, where we denote by Tff the operator11

CN

T{r]f = ei i i r ' r- i )(a + 1) cosec Trr 1. i . m. Jaj (xy cosec 7rr) (a;y)* e*-i^+v"-1'">t" f(y)dy,

and where we p u t b = (1 + i cot7Tr)/{2 — a~] (1 — i cot7rr)} and
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These formulae are generalizations of (6.5) and (6.5.1), and plainly
A,, m is a modification of Ln which is more general than Ln m, since

Agn(x; v) = L?(z), [m ^ 0], A<«m(x; 1) = £Wjx).

The formal deduction of (6.7) from (6.5) and (6.5.1) can be justified.
The substitution (6.6) is due to Erdelyi who communicated it to me to
enable me to deduce (6.7) in the case j 5S 0 from his formula which is
mentioned above.

Taking j ^ 0, a = ± J, from (6.8) we have by some calculation

F,{e-^' Hn{ax)} = e~^{(l — a2 + a2e-4i")*}n Hn{axe-2hrS (1 - a 2 + a2 e-4iVs)~s}
when a2=j= 1 — e~ii7rs, and

F, {e-^ Hn (ax)} = {2e-2i'e (1 - e - 4 i V s ) - ! }" e - ^ xn

when a2 = 1 — e~'iiwS, where we denote by F,f the operator11

ex${-ixy cosec 2ns+fr(x2 + yz) cot2irs}f (y)dy,

-N

for 0 < s < £ and / 6 £2 (— » • <» )•

FOOTNOTES.

1. S. Banach, Th&orie des operations lineaires (Warszawa, 1932), 58, th&>r£me 7,
S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen (Warszawa-Lwow,
1935), [625J and [624]. There the theorem is proved for a finite interval, but
it is also true for an infinite one, since the well known theorem [1.71] on
moments is also valid for an infinite interval.

The theorem is also valid for complex-valued functions.

2. Of. Kaczmarz-Steinhaus, I. c. This book contains a proof, page 280 et seq., but
Kaczmarz's definition of a complete system is different from that used here. In
order to apply their general theorem [874] on Laguerre polynomials, the condi-
tion n - l » (nq)V(nq) -> 0, (n-> oo , q = lip'), has to be replaced by

Urn [n-1 v (nq)V(nq)} < oo (n->oo).

Then the theorem covers the completeness of { f ( a ) } , (n = 0, 1, ), in the
cases 1 < p < oo .

3. H. Kober, Quart. J. of Math. (Oxford) 8 (1937), 186-99. Full details are given in
the sixth section of the present paper.

4. G. N. Watson, Proc. London Math. Soc. (2), 35 (1933), 156-99.
I. W. Busbridge, Journal London Math. Soc. 9 (1934), 179-87.
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5. We can obtain the proof of this lemma by following the lines of the proof [483]
given by Kaczmarz-Steinhaus. Let 0 < b < c, h (t) = eM g (t); then (i) and (ii)
imply (j (t) g £ (0, so ), h (t) (< £ (0, x ). The function

F(s)=\ e-'t<j(t)dt=:[ e-(bie
Jo Jo

is regular for R (x) > - b ; and for, \ s \ < b,

'—\ e-bt \h(t)\t"dt<A 2 p max (e~««»)
; Jo n=0 n • 0 < ( < xn=0 J

s\nfn

< 4 ^ ' y- (27rn)-! + ^. < oo .
71 = 1

Therefore for, | s | < 6,

J ( s ) = 2 — e-bth{t)t>idt= Y, — jjf(t)t"dt=O.
n = 0 n ' Jo n = 0 n - Jo

Hence "̂(8) vanishes for H(s) > - 6, and by Lerch's theorem so also does g(x).

6. Of. Kaczmarz-Steinhaus, 1. c. [874J; the proof covers the cases 1 < p < co . Here
I outline another proof.

7. H. Kober, I. c.

8. Quart. J. of Math. (Oxford), 9 (1938), 196-8.

9. When j < 0 cf. G. Szego, Math. Zeitsehrift, 25 (1926), 87-115.

10. H. Kober, Annals of Math., 40 (1939), 549-59.
11. Originally we deduced (6.7) for j <0 from the properties of the operator 2<a\ with

which we have already dealt in a former paper, Quart. J. of Math. (Oxford), 10
(1939), 45-59. The assertion stated on page 52, line 19-21, is untrue in general ;
when r = £, it can be replaced by some results given in this paper. The operator
Fs has also been dealt with in that paper.

T H E U N I V E R S I T Y , B I R M I N G H A M .
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