THE SIMPLE GROUPS RELATED TO M_{24}, II

Dedicated to the memory of Hanna Neumann

DIETER HELD

(Received 13 March 1972)
Communicated by M. F. Newman

The objective of this paper is to prove the following generalization of the main result in [2]:

Theorem. Let G be a finite simple group which possesses an involution t such that the centralizer of t in G is isomorphic to the centralizer of an involution in H. Then G is isomorphic to $L_{5}(2), M_{24}$, or H.

Remark. By H we denote a simple group of order $2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$ discussed in [2]. The group H has precisely two classes of involutions. If $\boldsymbol{C}(t)$ is isomorphic to the centralizer of a 2-central involution of H, the result follows from [2; Theorem. p. 253]. Thus, in what follows, we shall assume that $C(t)$ is isomorphic to the centralizer of an involution of H which is not contained in the center of a S_{2}-subgroup of H. Using the characterization of $L_{5}(2), M_{24}$, and H by their Sylow 2-subgroups due to. Schoenwaelder [3], Deckers [1] has shown that our theorem holds in case that a S_{2}-subgroup of G has order at most 2^{10}. Thus, we shall assume that 2^{11} divides the order of G.

Familiarity with section 1 and with the lemmas 3.2-3.6 of [2] will be assumed. Table II of [2; p. 279] lists the conjugacy classes of $\boldsymbol{C}(t)$. We use the notation introduced in [2]. In particular, a S_{2}-subgroup S of $C(t)$ will be described by generators and relations given in section 1 of [2]. We put

$$
S=\left\langle z_{1}, z_{3}, z_{4}, \pi, \tau, \mu, \lambda, \mu^{\prime} \tau^{\prime}, z_{2} \tau^{\prime}\right\rangle
$$

and $t=z_{3} \pi$. The four-group $V=\left\langle z_{3} \pi, z_{1} \mu \tau\right\rangle$ is normal in $C(t)$ and $C(t) / V$ contains a unique subgroup H^{*} / V of index 2 isomorphic to $L_{3}(4)$. As in [2; Lemma 2.2, p. 257] put $R_{1}=\left\langle z_{1}, z_{3}, z_{4}, \pi, \mu \tau, \mu^{\prime} \tau^{\prime}\right\rangle$ and $R_{2}=\left\langle z_{1}, z_{3}, \pi, \mu, \tau, \lambda\right\rangle$. Then $R_{1} R_{2}$ is a S_{2}-subgroup of H^{*}. Since $z_{2} \tau^{\prime}$ does not centralize V, we have $C(V)=H^{*}$. Note that $C(V)$ does not split over V.

It seems worthwhile remarking that $C_{H}\left(z_{3} \pi\right)$ is very similar to the centralizer of an involution in the Suzuki sporadic group.

1. Preliminary lemmas

Lemma 1.1. Under the action of $N\left(R_{i}\right) \cap C\left(z_{3} \pi\right), i=1,2$, we have the following classes of involutions in R_{i} : There is one conjugate of $z_{3} \pi$, there are two conjugates of $z_{1} \mu \tau$, there are 15 conjugates of z_{1}, there are 15 conjugates of $z_{1} z_{3} \pi$, and there are 30 conjugates of π.

Proof. The assertion follows immediately from [2; lemma 3.2, p. 271, and table II, p. 279].

Lemma 1.2. For $i=1,2$, the group $N\left(R_{i}\right) \cap C\left(z_{3} \pi\right)$ is a splitting extension of R_{i} by Σ_{5}. We have $\boldsymbol{Z}(S)=\left\langle z_{1}, z_{3} \pi\right\rangle$ and $\left\langle z_{1}\right\rangle$ char S. The involutions $z_{3} \pi$ and $z_{1} z_{3} \pi$ are conjugate in every subgroup of order 2^{10} of G which contains S. There are only the following possibilities for the fusion of involutions of R_{i} under the action of $N\left(R_{i}\right), i=1$ or 2 :
$C_{z_{3} \pi}$
(a) $z_{3} \pi \sim z_{1} z_{3} \pi$
(b) $z_{3} \pi \sim z_{1} z_{3} \pi \sim z_{1} \mu \tau$
(c) $z_{3} \pi \sim z_{1} z_{3} \pi \sim \pi$
(d) $z_{3} \pi \sim z_{1} z_{3} \pi \sim z_{1} \mu \tau \sim \pi$
(e) $z_{3} \pi \sim z_{1} \mu \tau$
(f) $z_{3} \pi \sim \pi$
(g) $z_{3} \pi \sim z_{1} \mu \tau \sim \pi$
(h) $z_{3} \pi$

16
18
46
48
3
31
33
1

$$
\left|N\left(R_{i}\right)\right|
$$

$$
2^{13 \cdot 3 \cdot 5}
$$

$$
2^{10} \cdot 3^{3} \cdot 5
$$

$$
2^{10} \cdot 3 \cdot 5 \cdot 23
$$

$$
2^{13} \cdot 3^{2} \cdot 5
$$

$$
2^{9} \cdot 3^{2} \cdot 5
$$

$$
2^{9} \cdot 3 \cdot 5 \cdot 31
$$

$$
2^{9} \cdot 3^{2} \cdot 5 \cdot 11
$$

$2^{9} \cdot 3 \cdot 5$

Proof. The assertions follow easily from lemma 1.1, the fact that $S^{\prime \prime}=\left\langle z_{1}\right\rangle$, and [2; lemma 3.2].

Lemma 1.3. The cases (c), (f), and (g) are not possible.
Proof. Since 11 and 23 do not divide the order of $L_{6}(2)$, we see that (c) and (g) cannot happen. If we are in case (f), then an element of order 31 acts trivially on the $N\left(R_{i}\right)$-class of z_{1} because $z_{1} \sim z_{3} \pi$ is impossible by (1.2).

Lemma 1.4. If a S_{2}-subgroup of $N\left(R_{i}\right)$ for $i=1$ or $i=2$ has order 2^{9} we get a contradiction.

Proof. Assume that $\left|N\left(R_{i}\right)\right|=2^{9} \cdot 3 \cdot 5$ or $2^{9} \cdot 3^{2} \cdot 5$ for one $i \in\{1,2\}$. Denote by S^{*} a 2 -subgroup of G which contains S as a subgroup of index 2. There is an element $f \in S^{*}$ such that $S^{*}=S\langle f\rangle$ and $R_{1}{ }^{f}=R_{2}$. Also we have $\left(z_{3} \pi\right)^{f}=z_{1} z_{3} \pi$. If $\left|N\left(R_{i}\right)\right|=2^{9} \cdot 3 \cdot 5$, then $\left[f, z_{3} \pi\right]=1$ which is impossible. Let $\left|N\left(R_{i}\right)\right|=2^{9 \cdot} \cdot 3^{2} \cdot 5$ We may assume $i=1$. Then f maps the $N\left(R_{1}\right)$-class of $z_{3} \pi$ onto the $N\left(R_{2}\right)$-class of $z_{1} z_{3} \pi$. However, in $N\left(R_{1}\right)$ the element $z_{3} \pi$ has precisely three conjugates
whereas in $N\left(R_{2}\right)$ the element $z_{1} z_{3} \pi$ has at least 15 conjugates. We have arrived at a contradiction.

Lemma 1.5. A S_{2}-subgroup of $N\left(R_{i}\right), i=1,2$, has order at least 2^{10}. We are in case (a), (b), or (d).

Proof. This follows from the above lemmas.
Lemma 1.6. Let T be a subgroup of G of order 2^{10} which contains S. Then, R_{1} and R_{2} are the only elementary abelian subgroups of T which have order 64.

Proof. We have $\boldsymbol{Z}(T)=\left\langle z_{1}\right\rangle$. Denote by R_{3} an elementary abelian subgroup of T with $R_{1} \neq R_{3} \neq R_{2}$ and $\left|R_{3}\right|=64$. Thus $S R_{3}=T$ and $\left|S \cap R_{3}\right|$ $=2^{5}$. As $S \cap R_{3} \supseteq R_{1} R_{2} \cap R_{3}$ and $2^{10} \geqq\left|R_{1} R_{2} R_{3}\right| \geqq 2^{9}$, we must have $2^{5} \geqq\left|R_{1} R_{2} \cap R_{3}\right| \geqq 2_{4}$. An involution of $R_{1} R_{2}$ lies in R_{1} or in R_{2}. Let r_{1}, r_{2} be involutions contained in $R_{1} R_{2} \cap R_{3}$ such that $r_{1} \in R_{1}$ and $r_{2} \in R_{2} \backslash R_{1}$. Clearly, $r_{1} \in C_{R_{1}}\left(r_{2}\right)=R_{1} \cap R_{2} \subset R_{2}$. Thus, $\left\langle r_{1}, r_{2}\right\rangle \subseteq R_{2}$. It follows $R_{1} R_{2} \cap R_{3} \subseteq R_{i}$ $i=1$ or 2 , and so, $R_{1} R_{2} \cap R_{3}=R_{3} \cap R_{i}, i=1$ or 2 . Assume first that $\left|R_{1} R_{2} \cap R_{3}\right|=2^{4}$. Then, $\left|R_{1} R_{2} R_{3}\right|=2^{10}$. Without loss of generality we may assume that $R_{1} R_{2} \cap R_{3}=R_{3} \cap R_{1}$. Clearly, $\left|R_{2} \cap R_{3}\right| \geqq 2^{2}$ and R_{2} $\cap R_{3} \subseteq R_{1} R_{2} \cap R_{3}=R_{3} \cap R_{1}$. Thus, $R_{2} \cap R_{3}$ would be in $Z(T)$ which is impossible. Assume finally that $\left|R_{1} R_{2} \cap R_{3}\right|=2^{5}$. Then, $\left|R_{1} R_{2} R_{3}\right|=2^{9}$. Without loss of generality we may assume that $R_{1} R_{2} \cap R_{3}=R_{1} \cap R_{3}$. Clearly, $\left|R_{2} \cap R_{3}\right| \geqq 2^{3}$ and $R_{2} \cap R_{3} \subseteq R_{1} R_{2} \cap R_{3}=R_{1} \cap R_{3}$. Thus, $R_{2} \cap R_{3}$ lies in $Z\left(R_{1} R_{2} R_{3}\right)$. But $\left|T: R_{1} R_{2} R_{3}\right|=2$. From the Jordan-canonical form for an element of $T \backslash R_{1} R_{2} R_{3}$ on $\Omega_{1}\left(Z\left(R_{1} R_{2} R_{3}\right)\right)$, we get a contradiction to $|Z(T)|=2$. The lemma is proved.

Lemma 1.7. If ω is an element of order 5 of $C\left(z_{3} \pi\right)$, then a S_{2}-subgroup of $C(\omega)$ has order 2^{2} and a S_{2}-subgroup of $N(\langle\omega\rangle)$ has order 2^{4}.

Proof. We know that $C\left(z_{3} \pi\right)$ contains a subgroup isomorphic to Σ_{5}. Clearly, V lies in $C(\omega)$. Let V^{*} be a subgroup of order 8 of $\boldsymbol{C}(\omega)$ such that $V \subset V^{*}$. If $z_{3} \pi \sim z_{1} \mu \tau$ in G, we get $z_{3} \pi \in \boldsymbol{Z}\left(V^{*}\right)$. If $z_{3} \pi \sim z_{1} \mu \tau$, then $\boldsymbol{Z}\left(V^{*}\right)$ contains an involution conjugate to $z_{3} \pi$ in G. It follows that V must be a S_{2}-subgroup of $C(\omega)$.

2. The case (b)

In this section we suppose that a S_{2}-subgroup of $N\left(R_{i}\right)$ has order 2^{10} for one $i \in\{1,2\}$.

Lemma 2.1. For $i=1$ and $i=2$ we have $\left|N\left(R_{i}\right)\right|=2^{10 \cdot} \cdot 3^{3} \cdot 5$.
Proof. Without loss of generality let $\left|N\left(R_{1}\right)\right|=2^{10} \cdot 3^{3} \cdot 5$. Denote by T a S_{2}-subgroup of $N\left(R_{1}\right)$ with $S \subset T$. From (1.6) we get that R_{1} and R_{2} are the
only elementary abelian subgroups of order 64 of T. Denote by T^{*} a subgroup of order 2^{11} of G with $T \subset T^{*}$. There is an element $f \in T^{*} \mid T$ such that $R_{1}{ }^{f}=R_{2}$. The lemma is proved.

Lemma 2.2. The order of $N\left(R_{1} R_{2}\right)$ is $2^{11} \cdot 3^{2}$.
Proof. From (1.6) we get that 2^{11} divides the order of $N\left(R_{1} R_{2}\right)$. Since all involutions of V are conjugate, we get $|N(V)|=2^{9} \cdot 3^{3} \cdot 5 \cdot 7$. We know that $R_{1} R_{2}$ is a S_{2}-subgroup of $C(V)$ and that $\left|N\left(R_{1} R_{2}\right) \cap C(V)\right|=2^{8} \cdot 3$. The Frattiniargument yields $N(V)=\left(N\left(R_{1} R_{2}\right) \cap N(V)\right) C(V)$. It follows that $N\left(R_{1} R_{2}\right)$ contains an elementary abelian group of order 9. Also one has $\left|N\left(R_{1} R_{2}\right) \cap C\left(z_{3} \pi\right)\right|$ $=2^{9} \cdot 3$. It follows $\left|N\left(R_{1} R_{2}\right)\right|=2^{11} \cdot 3^{2}$, since $z_{3} \pi$ cannot have more than 12 conjugates under the action of $N\left(R_{1} R_{2}\right)$.

Lemma 2.3. The involution z_{1} has precisely three conjugates under the action of $N\left(R_{1} R_{2}\right)$.

Proof. From (1.2) we see that z_{1} lies in the center of a S_{2}-subgroup of $N\left(R_{1} R_{2}\right)$. Assume by way of contradiction that 3^{2} divides $\left|C\left(z_{1}\right) \cap N\left(R_{1} R_{2}\right)\right|$. We know that $N\left(R_{1} R_{2}\right)=N\left(R_{1} \cap R_{2}\right)$ and that $C\left(R_{1} \cap R_{2}\right)=R_{1} R_{2}$. Our assumption implies that an element of order 3 centralizes $R_{1} \cap R_{2}$ which is not possible. Since $z_{3} \pi$ has 12 conjugates in $R_{1} \cap R_{2}$ under $N\left(R_{1} R_{2}\right)$, we see that z_{1} has precisely three conjugates under the action of $N\left(R_{1} R_{2}\right)$.

Lemma 2.4. In $N\left(R_{1} R_{2}\right)$ we have $z_{1} \sim \pi$.

Proof. Assume by way of contradiction that there is an element g in $N\left(R_{1} R_{2}\right)$ such that $\left(z_{3} \pi\right)^{g}=\pi$. Then, $R_{1}^{g}=R_{2}$. This is impossible, since in $N\left(R_{1}\right)$ the element $z_{3} \pi$ has only 18 conjugates, whereas in $N\left(R_{2}\right)$ the element π has at least 30 conjugates. Hence, $z_{3} \pi \sim \pi$ holds in $N\left(R_{1} R_{2}\right)$. Thus, $z_{1} \sim \pi$ in $N\left(R_{1} R_{2}\right)$.

Lemma 2.5. The case (b) is not possible.
Proof. The only elements of $R_{1} \cap R_{2}$ conjugate to z_{1} are $z_{1}, \pi, z_{1} \pi$. All other involutions of $R_{1} \cap R_{2}$ are conjugate to $z_{3} \pi$ under $N\left(R_{1} R_{2}\right)$. We know that $V \tau$ is conjugate to $V z_{1}$ in $N(V)$. All elements of $V z_{1}$ except z_{1} are conjugate to $z_{3} \pi$ in G. The coset $R_{1} \tau$ has precisely 16 involutions which fuse under S in the following way:

$$
\begin{aligned}
& \tau \sim z_{1} \tau \sim \pi \tau \sim z_{1} \pi \tau \\
& z_{3} \tau \sim z_{1} z_{3} \tau \sim z_{3} \pi \tau \sim z_{1} z_{3} \pi \tau \\
& \mu \sim z_{1} \mu \sim z_{3} \pi \mu \sim z_{1} z_{3} \pi \mu \\
& \pi \mu \sim z_{1} \pi \mu \sim z_{1} z_{3} \mu \sim z_{3} \mu
\end{aligned}
$$

Hence, $R_{1} \tau$ contains at least eight involutions conjugate to $z_{3} \pi$ in G. Thus R_{2} contains at least 20 conjugates of $z_{3} \pi$. Since under the action of $N\left(R_{2}\right)$ the ele-
ment $z_{3} \pi$ has only 18 conjugates, we get $z_{3} \pi \sim z_{1}$ as $z_{1} \sim \pi$ which is impossible. The lemma is proved.

3. The cases (a) and (d)

In this section we finish the proof of our theorem. We know that $2^{13 \cdot 3 \cdot 5}$ divides $\left|N\left(R_{i}\right)\right|$ and that $\left|N\left(R_{i}\right)\right|$ divides $2^{13 \cdot} \cdot 3^{2} \cdot 5$ for $i=1$ and $i=2$. Remember that $N\left(R_{i}\right)$ contains a subgroup Σ isomorphic to Σ_{5}.

We study the structure of $N\left(R_{i}\right)$. Put $R=N\left(R_{i}\right) / R_{i}$. We may choose Σ to be a subgroup of $\boldsymbol{C}\left(z_{3} \pi\right)$. Then, $\left[\Sigma^{\prime}, V\right]=\langle 1\rangle$. The only simple groups which can be involved in R are A_{5} and A_{6}. It is a consequence of (1.7) that $O_{2}(R) \neq\langle 1\rangle$. Denote by L the inverse image of $O_{2}(R)$ in $N\left(R_{i}\right)$. Then, $|L| \geqq 2^{7}$. Because of $C\left(R_{i}\right)=R_{i}$, we get $\boldsymbol{Z}(L) \subset R_{i}$. Obviously, $L \cap C\left(z_{3} \pi\right)=R_{i}$ because $\Sigma \cap L=\langle 1\rangle$. Assume that $Z(L)$ lies in V. Then, $|Z(L)|=2$, and $Z(L)$ is centralized by Σ. This would imply $\boldsymbol{Z}(L)=\left\langle z_{3} \pi\right\rangle$, a contradiction. Hence, $Z(L) \nsubseteq V$. It follows that Σ^{\prime} is faithfully represented on $Z(L)$. Thus, $|\boldsymbol{Z}(L)| \geqq 2^{4}$. Assume that $V \cap Z(L) \neq\langle 1\rangle$. This intersection does not contain $\left\langle z_{3} \pi\right\rangle$. Hence, $Z(L) \cap V$ is equal to $\left\langle z_{1} \mu \tau\right\rangle$ or to $\left\langle z_{1} z_{3} \pi \mu \tau\right\rangle$. But $z_{2} \tau^{\prime}$ normalizes $Z(L) \cap V$. This gives a contradiction. We have shown that $R_{i}=V \times Z(L)$. Since Σ^{\prime} normalizes $\boldsymbol{Z}(L)$ we get that $V \times \boldsymbol{Z}(L) \Sigma^{\prime}$ splits over V. This is not possible. The theorem is proved.

References

[1] M. Deckers, 'Simple groups having centralizers of involutions isomorphic to those in He', Archiv Math. (To appear).
[2] D. Held. 'The simple groups related to $M_{24}{ }^{4}$, J. Algebra 13 (1969), 253-296.
[3] U. Schoenwaelder, 'Finite groups with a Sylow 2-subgroup of type M_{24} ', J. Algebra (To appear).

Department of Mathematics
University of Mainz
6500 Mainz
Germany

