THE SIMPLE GROUPS RELATED TO M_{24} , II Dedicated to the memory of Hanna Neumann

DIETER HELD

(Received 13 March 1972)

Communicated by M. F. Newman

The objective of this paper is to prove the following generalization of the main result in [2]:

THEOREM. Let G be a finite simple group which possesses an involution t such that the centralizer of t in G is isomorphic to the centralizer of an involution in H. Then G is isomorphic to $L_5(2)$, M_{24} , or H.

REMARK. By H we denote a simple group of order $2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$ discussed in [2]. The group H has precisely two classes of involutions. If C(t) is isomorphic to the centralizer of a 2-central involution of H, the result follows from [2; Theorem. p. 253]. Thus, in what follows, we shall assume that C(t) is isomorphic to the centralizer of an involution of H which is not contained in the center of a S_2 -subgroup of H. Using the characterization of $L_5(2)$, M_{24} , and H by their Sylow 2-subgroups due to. Schoenwaelder [3], Deckers [1] has shown that our theorem holds in case that a S_2 -subgroup of G has order at most 2^{10} . Thus, we shall assume that 2^{11} divides the order of G.

Familiarity with section 1 and with the lemmas 3.2-3.6 of [2] will be assumed. Table II of [2; p. 279] lists the conjugacy classes of C(t). We use the notation introduced in [2]. In particular, a S_2 -subgroup S of C(t) will be described by generators and relations given in section 1 of [2]. We put

$$S = \langle z_1, z_3, z_4, \pi, \tau, \mu, \lambda, \mu'\tau', z_2\tau' \rangle$$

and $t = z_3\pi$. The four-group $V = \langle z_3\pi, z_1\mu\tau \rangle$ is normal in C(t) and C(t)/V contains a unique subgroup H^*/V of index 2 isomorphic to $L_3(4)$. As in [2; Lemma 2.2, p. 257] put $R_1 = \langle z_1, z_3, z_4, \pi, \mu\tau, \mu'\tau' \rangle$ and $R_2 = \langle z_1, z_3, \pi, \mu, \tau, \lambda \rangle$. Then R_1R_2 is a S_2 -subgroup of H^* . Since $z_2\tau'$ does not centralize V, we have $C(V) = H^*$. Note that C(V) does not split over V.

It seems worthwhile remarking that $C_H(z_3\pi)$ is very similar to the centralizer of an involution in the Suzuki sporadic group.

1. Preliminary lemmas

LEMMA 1.1. Under the action of $N(R_i) \cap C(z_3\pi)$, i = 1, 2, we have the following classes of involutions in R_i : There is one conjugate of $z_3\pi$, there are two conjugates of $z_1\mu\tau$, there are 15 conjugates of z_1 .

PROOF. The assertion follows immediately from [2; lemma 3.2, p. 271, and table II, p. 279].

LEMMA 1.2. For i = 1, 2, the group $N(R_i) \cap C(z_3\pi)$ is a splitting extension of R_i by Σ_5 . We have $Z(S) = \langle z_1, z_3\pi \rangle$ and $\langle z_1 \rangle$ char S. The involutions $z_3\pi$ and $z_1z_3\pi$ are conjugate in every subgroup of order 2^{10} of G which contains S. There are only the following possibilities for the fusion of involutions of R_i under the action of $N(R_i)$, i = 1 or 2:

	·	$C_{z_3\pi}$	$ N(R_i) $
(a)	$z_3\pi \sim z_1 z_3\pi$	16	$2^{13} \cdot 3 \cdot 5$
(b)	$z_3\pi \sim z_1 z_3\pi \sim z_1 \mu \tau$	18	$2^{10} \cdot 3^3 \cdot 5$
(c)	$z_3\pi \sim z_1 z_3\pi \sim \pi$	46	$2^{10} \cdot 3 \cdot 5 \cdot 23$
(d)	$z_3\pi \sim z_1 z_3\pi \sim z_1 \mu \tau \sim \pi$	48	$2^{13} \cdot 3^2 \cdot 5$
(e)	$z_3\pi \sim z_1\mu\tau$	3	$2^9 \cdot 3^2 \cdot 5$
(f)	$z_3\pi \sim \pi$	31	$2^9 \cdot 3 \cdot 5 \cdot 31$
(g)	$z_3\pi \sim z_1\mu\tau \sim \pi$	33	$2^9 \cdot 3^2 \cdot 5 \cdot 11$
(h)	Ζ ₃ π	1	2°·3·5

PROOF. The assertions follow easily from lemma 1.1, the fact that $S'' = \langle z_1 \rangle$, and [2; lemma 3.2].

LEMMA 1.3. The cases (c), (f), and (g) are not possible.

PROOF. Since 11 and 23 do not divide the order of $L_6(2)$, we see that (c) and (g) cannot happen. If we are in case (f), then an element of order 31 acts trivially on the $N(R_i)$ -class of z_1 because $z_1 \sim z_3 \pi$ is impossible by (1.2).

LEMMA 1.4. If a S_2 -subgroup of $N(R_i)$ for i = 1 or i = 2 has order 2^9 we get a contradiction.

PROOF. Assume that $|N(R_i)| = 2^9 \cdot 3 \cdot 5$ or $2^9 \cdot 3^2 \cdot 5$ for one $i \in \{1, 2\}$. Denote by S^* a 2-subgroup of G which contains S as a subgroup of index 2. There is an element $f \in S^*$ such that $S^* = S \langle f \rangle$ and $R_1^f = R_2$. Also we have $(z_3\pi)^f = z_1 z_3 \pi$. If $|N(R_i)| = 2^9 \cdot 3 \cdot 5$, then $[f, z_3\pi] = 1$ which is impossible. Let $|N(R_i)| = 2^9 \cdot 3^2 \cdot 5$ We may assume i = 1. Then f maps the $N(R_1)$ -class of $z_3\pi$ onto the $N(R_2)$ -class of $z_1 z_3 \pi$. However, in $N(R_1)$ the element $z_3\pi$ has precisely three conjugates whereas in $N(R_2)$ the element $z_1 z_3 \pi$ has at least 15 conjugates. We have arrived at a contradiction.

LEMMA 1.5. A S₂-subgroup of $N(R_i)$, i = 1, 2, has order at least 2^{10} . We are in case (a), (b), or (d).

PROOF. This follows from the above lemmas.

LEMMA 1.6. Let T be a subgroup of G of order 2^{10} which contains S. Then, R_1 and R_2 are the only elementary abelian subgroups of T which have order 64.

PROOF. We have $Z(T) = \langle z_1 \rangle$. Denote by R_3 an elementary abelian subgroup of T with $R_1 \neq R_3 \neq R_2$ and $|R_3| = 64$. Thus $SR_3 = T$ and $|S \cap R_3|$ = 2⁵. As $S \cap R_3 \supseteq R_1 R_2 \cap R_3$ and $2^{10} \ge |R_1 R_2 R_3| \ge 2^9$, we must have $2^5 \ge |R_1R_2 \cap R_3| \ge 2_4$. An involution of R_1R_2 lies in R_1 or in R_2 . Let r_1, r_2 be involutions contained in $R_1R_2 \cap R_3$ such that $r_1 \in R_1$ and $r_2 \in R_2 \setminus R_1$. Clearly, $r_1 \in C_{R_1}(r_2) = R_1 \cap R_2 \subset R_2$. Thus, $\langle r_1, r_2 \rangle \subseteq R_2$. It follows $R_1 R_2 \cap R_3 \subseteq R_i$ i = 1 or 2, and so, $R_1 R_2 \cap R_3 = R_3 \cap R_i$, i = 1 or 2. Assume first that $|R_1R_2 \cap R_3| = 2^4$. Then, $|R_1R_2R_3| = 2^{10}$. Without loss of generality we may assume that $R_1R_2 \cap R_3 = R_3 \cap R_1$. Clearly, $|R_2 \cap R_3| \ge 2^2$ and R_2 $\cap R_3 \subseteq R_1R_2 \cap R_3 = R_3 \cap R_1$. Thus, $R_2 \cap R_3$ would be in Z(T) which is impossible. Assume finally that $|R_1R_2 \cap R_3| = 2^5$. Then, $|R_1R_2R_3| = 2^9$. Without loss of generality we may assume that $R_1R_2 \cap R_3 = R_1 \cap R_3$. Clearly, $|R_2 \cap R_3| \ge 2^3$ and $R_2 \cap R_3 \subseteq R_1 R_2 \cap R_3 = R_1 \cap R_3$. Thus, $R_2 \cap R_3$ lies in $Z(R_1R_2R_3)$. But $|T:R_1R_2R_3| = 2$. From the Jordan-canonical form for an element of $T \setminus R_1 R_2 R_3$ on $\Omega_1(Z(R_1 R_2 R_3))$, we get a contradiction to |Z(T)| = 2. The lemma is proved.

LEMMA 1.7. If ω is an element of order 5 of $C(z_3\pi)$, then a S_2 -subgroup of $C(\omega)$ has order 2^2 and a S_2 -subgroup of $N(\langle \omega \rangle)$ has order 2^4 .

PROOF. We know that $C(z_3\pi)$ contains a subgroup isomorphic to Σ_5 . Clearly, V lies in $C(\omega)$. Let V* be a subgroup of order 8 of $C(\omega)$ such that $V \subset V^*$. If $z_3\pi \sim z_1\mu\tau$ in G, we get $z_3\pi \in \mathbb{Z}(V^*)$. If $z_3\pi \sim z_1\mu\tau$, then $\mathbb{Z}(V^*)$ contains an involution conjugate to $z_3\pi$ in G. It follows that V must be a S_2 -subgroup of $C(\omega)$.

2. The case (b)

In this section we suppose that a S_2 -subgroup of $N(R_i)$ has order 2^{10} for one $i \in \{1, 2\}$.

LEMMA 2.1. For i = 1 and i = 2 we have $|N(R_i)| = 2^{10} \cdot 3^3 \cdot 5$.

PROOF. Without loss of generality let $|N(R_1)| = 2^{10} \cdot 3^3 \cdot 5$. Denote by T a S_2 -subgroup of $N(R_1)$ with $S \subset T$. From (1.6) we get that R_1 and R_2 are the

only elementary abelian subgroups of order 64 of T. Denote by T^* a subgroup of order 2^{11} of G with $T \subset T^*$. There is an element $f \in T^* \setminus T$ such that $R_1^f = R_2$. The lemma is proved.

LEMMA 2.2. The order of $N(R_1R_2)$ is $2^{11} \cdot 3^2$.

PROOF. From (1.6) we get that 2^{11} divides the order of $N(R_1R_2)$. Since all involutions of V are conjugate, we get $|N(V)| = 2^{9} \cdot 3^3 \cdot 5 \cdot 7$. We know that R_1R_2 is a S_2 -subgroup of C(V) and that $|N(R_1R_2) \cap C(V)| = 2^8 \cdot 3$. The Frattiniargument yields $N(V) = (N(R_1R_2) \cap N(V))C(V)$. It follows that $N(R_1R_2)$ contains an elementary abelian group of order 9. Also one has $|N(R_1R_2) \cap C(z_3\pi)|$ $= 2^9 \cdot 3$. It follows $|N(R_1R_2)| = 2^{11} \cdot 3^2$, since $z_3\pi$ cannot have more than 12 conjugates under the action of $N(R_1R_2)$.

LEMMA 2.3. The involution z_1 has precisely three conjugates under the action of $N(R_1R_2)$.

PROOF. From (1.2) we see that z_1 lies in the center of a S_2 -subgroup of $N(R_1R_2)$. Assume by way of contradiction that 3^2 divides $|C(z_1) \cap N(R_1R_2)|$. We know that $N(R_1R_2) = N(R_1 \cap R_2)$ and that $C(R_1 \cap R_2) = R_1R_2$. Our assumption implies that an element of order 3 centralizes $R_1 \cap R_2$ which is not possible. Since $z_3\pi$ has 12 conjugates in $R_1 \cap R_2$ under $N(R_1R_2)$, we see that z_1 has precisely three conjugates under the action of $N(R_1R_2)$.

LEMMA 2.4. In $N(R_1R_2)$ we have $z_1 \sim \pi$.

PROOF. Assume by way of contradiction that there is an element g in $N(R_1R_2)$ such that $(z_3\pi)^g = \pi$. Then, $R_1^g = R_2$. This is impossible, since in $N(R_1)$ the element $z_3\pi$ has only 18 conjugates, whereas in $N(R_2)$ the element π has at least 30 conjugates. Hence, $z_3\pi \sim \pi$ holds in $N(R_1R_2)$. Thus, $z_1 \sim \pi$ in $N(R_1R_2)$.

LEMMA 2.5. The case (b) is not possible.

PROOF. The only elements of $R_1 \cap R_2$ conjugate to z_1 are $z_1, \pi, z_1\pi$. All other involutions of $R_1 \cap R_2$ are conjugate to $z_3\pi$ under $N(R_1R_2)$. We know that $V\tau$ is conjugate to Vz_1 in N(V). All elements of Vz_1 except z_1 are conjugate to $z_3\pi$ in G. The coset $R_1\tau$ has precisely 16 involutions which fuse under S in the following way:

$$\begin{split} \tau &\sim z_1 \tau \sim \pi \tau \sim z_1 \pi \tau, \\ z_3 \tau &\sim z_1 z_3 \tau \sim z_3 \pi \tau \sim z_1 z_3 \pi \tau, \\ \mu &\sim z_1 \mu \sim z_3 \pi \mu \sim z_1 z_3 \pi \mu, \\ \pi \mu &\sim z_1 \pi \mu \sim z_1 z_3 \mu \sim z_3 \mu. \end{split}$$

Hence, $R_1\tau$ contains at least eight involutions conjugate to $z_3\pi$ in G. Thus R_2 contains at least 20 conjugates of $z_3\pi$. Since under the action of $N(R_2)$ the ele-

ment $z_3\pi$ has only 18 conjugates, we get $z_3\pi \sim z_1$ as $z_1 \sim \pi$ which is impossible. The lemma is proved.

3. The cases (a) and (d)

In this section we finish the proof of our theorem. We know that $2^{13} \cdot 3 \cdot 5$ divides $|N(R_i)|$ and that $|N(R_i)|$ divides $2^{13} \cdot 3^2 \cdot 5$ for i = 1 and i = 2. Remember that $N(R_i)$ contains a subgroup Σ isomorphic to Σ_5 .

We study the structure of $N(R_i)$. Put $\mathbf{R} = N(R_i)/R_i$. We may choose Σ to be a subgroup of $C(z_3\pi)$. Then, $[\Sigma', V] = \langle 1 \rangle$. The only simple groups which can be involved in \mathbf{R} are A_5 and A_6 . It is a consequence of (1.7) that $O_2(\mathbf{R}) \neq \langle 1 \rangle$. Denote by L the inverse image of $O_2(\mathbf{R})$ in $N(R_i)$. Then, $|L| \ge 2^7$. Because of $C(R_i) = R_i$, we get $Z(L) \subset R_i$. Obviously, $L \cap C(z_3\pi) = R_i$ because $\Sigma \cap L = \langle 1 \rangle$. Assume that Z(L) lies in V. Then, |Z(L)| = 2, and Z(L) is centralized by Σ . This would imply $Z(L) = \langle z_3\pi \rangle$, a contradiction. Hence, $Z(L) \notin V$. It follows that Σ' is faithfully represented on Z(L). Thus, $|Z(L)| \ge 2^4$. Assume that $V \cap Z(L) \neq \langle 1 \rangle$. This intersection does not contain $\langle z_3\pi \rangle$. Hence, $Z(L) \cap V$ is equal to $\langle z_1\mu\tau \rangle$ or to $\langle z_1z_3\pi\mu\tau \rangle$. But $z_2\tau'$ normalizes $Z(L) \cap V$. This gives a contradiction. We have shown that $R_i = V \times Z(L)$. Since Σ' normalizes Z(L) we get that $V \times Z(L)\Sigma'$ splits over V. This is not possible. The theorem is proved.

References

- [1] M. Deckers, 'Simple groups having centralizers of involutions isomorphic to those in He', *Archiv Math.* (To appear).
- [2] D. Held. 'The simple groups related to M24', J. Algebra 13 (1969), 253-296.
- [3] U. Schoenwaelder, 'Finite groups with a Sylow 2-subgroup of type M₂₄', J. Algebra (To appear).

Department of Mathematics University of Mainz 6500 Mainz Germany