ON RIGHT UNIPOTENT SEMIGROUPS II

by P. S. VENKATESAN

(Received 3 August, 1976)

We describe two congruences α and γ contained in \mathscr{L} on an arbitrary orthodox semigroup. Let S be a right unipotent semigroup. We show that (i) α is an inverse semigroup congruence and γ is the finest fundamental inverse semigroup congruence on S, (ii) S is a union of groups if and only if $\gamma = \mathscr{L}$ on S and (iii) S is a band of groups if and only if $\alpha = \mathscr{L}$ on S.

Let A be a regular semigroup and let $x \in A$. Throughout the paper V(x) stands for the set of inverses of x, and E(A) for the set of idempotents of A. A is said to be an orthodox semigroup if E(A) is a subsemigroup of A. If A is an orthodox semigroup then $V(b)V(a) \subseteq V(ab)$ for all a, b in A [9]. For the general terminology and notation, the reader is referred to [2].

The author wishes to thank the referee for his suggestions and remarks.

1. The congruences α , β , γ , δ and μ . Let S be an orthodox semigroup and let E = E(S). The greatest idempotent-separating congruence μ on S (Howie [5, Theorem VI. 1.17], Meakin [7]) is given by the rule:

 $(x, y) \in \mu = \mu(S) \Leftrightarrow x'ex = y'ey$

and xex' = yey' for all $e \in E$ and for some $x' \in V(x)$ and $y' \in V(y)$.

We define the binary relations α and γ on S thus:

 $(x, y) \in \alpha = \alpha(S) \Leftrightarrow x'ex = y'ey$ for all $e \in E$ and for some $x' \in V(x), y' \in V(y)$;

 $(x, y) \in \gamma = \gamma(S) \Leftrightarrow x'exy'ey = x'ex$ and

y'eyx'ex = y'ey for all $e \in E$ and for some $x' \in V(x)$, $y' \in V(y)$.

The proof of Theorem 1 below is like Meakin's (loc. cit.) derivation of μ for S. THEOREM 1. Let S be an orthodox semigroup and let E = E(S). Then (1) α and γ are congruences on S,

(2) γ is the greatest congruence contained in \mathcal{L} on S.

Proof. Clearly α is reflexive and symmetric. Let $(x, y) \in \alpha$. Then there exist $x' \in V(x)$ and $y' \in V(y)$ such that x'ex = y'ey for all $e \in E$. Let $x'' \in V(x)$ and $y'' \in V(y)$. Taking in turn e = xx'' and e = yy'', we have x'x = y'xx''y and y'y = x'yy''x. Therefore x'x = x'xy'y =y'y. If $(y, z) \in \alpha$ then $y^*ey = z'ez$ for all $e \in E$ and some $y^* \in V(y)$, $z' \in V(z)$. So $y^*y =$ z'z = z'yy'z. Set $p = y^*yx'$ and q = z'yy'. Then $pxp = y^*(yx'xy^*yx') = y^*yx' = p$ and xpx = $xy^*y(x'x) = xy^*y = (xy'y)y^*y = xy'y = x$. Therefore $p \in V(x)$. Similarly $q \in V(z)$. Now, for all $e \in E$, we have $pex = y^*y(x'ex) = y^*y(y'ey) = y^*(yy'e)y = z'(yy'e)z = qez$, giving $(x, z) \in \alpha$. So α is transitive and hence an equivalence relation on S.

Glasgow Math. J. 19 (1978) 63-68.

Let $a \in S$ and $a' \in V(a)$. Then for all $e \in E$ we have a'(x'ex)a = a'(y'ey)a and x'(a'ea)x = y'(a'ea)y. Since $a'ea \in E$ [9], we get that α is a congruence on S.

We now consider γ , which is clearly reflexive and symmetric. Let $(x, y) \in \gamma$. Then x'exy'ey = x'ex and y'eyx'ex = y'ey for all $e \in E$ and some $x' \in V(x)$, $y' \in V(y)$. If $(y, z) \in \gamma$ then there exist inverses y^* of y and z' of z such that $y^*eyz'ez = y^*ey$ and $z'ezy^*ey = z'ez$. Since S is orthodox, we have $y'ey = y'(eyy^*ey)$. Therefore $x'exz'ez = x'exy'eyz'ez = x'ex(y'eyy^*ey) = x'exy'ey = x'ex$. Similarly, z'ezx'ex = z'ez. So $(x, z) \in \gamma$, and γ is an equivalence relation.

Let $a \in S$ and $a' \in V(a)$. Then since $(x, y) \in \gamma$, for all $e \in E$ we have x'(a'ea)xy'(a'ea)y = x'(a'ea)x and y'(a'ea)yx'(a'ea)x = y'(a'ea)y. Therefore $(ax, ay) \in \gamma$. Further a'x'exaa'y'eya = a'(x'exy'ey)aa'y'eya = a'x'exy'(eya)(a'y'e)(eya) = a'x'exy'(eya) = a'(x'exy'ey)a = a'x'exa. Similarly, a'y'eyaa'x'exa = a'y'eya. Thus $(xa, ya) \in \gamma$, and γ is a congruence on S.

As for the other part, if $(x, y) \in \gamma$, taking e = x'x we have x'xy'xx'y = x'x. So xy'xx'y = x and hence xy'y = x. Similarly yx'x = y. Therefore $(x, y) \in \mathcal{L}$ and $\gamma \subseteq \mathcal{L}$.

Now let η be a congruence on S such that $\eta \subseteq \mathcal{L}$. Let $(x, y) \in \eta$. Then, for all $e \in E$, we have $(ex, ey) \in \mathcal{L}$. So for all inverses p of ex and q of ey, we have pexqey = pex and qeypex = qey. Taking $p = x^*e$ and $q = y^*e$, where x^* and y^* are inverses of x and y respectively, we get that $(x, y) \in \gamma$ and hence that $\eta \subseteq \gamma$. This completes the proof of the theorem.

COROLLARY. If \mathscr{L} is a congruence on an orthodox semigroup, then $\gamma = \mathscr{L}$.

REMARK. Let S be an orthodox semigroup and let $x, y \in S$. Then, since $\gamma \subseteq \mathcal{L}$, we have $(x, y) \in \gamma$ if and only if x'exy'ey = x'ex and y'eyx'ex = y'ey for all $e \in E(S)$, $x' \in V(x)$ and $y' \in V(y)$.

REMARK. Let S be an orthodox semigroup and let E = E(S). Define the binary relations β and δ on S thus:

 $(x, y) \in \beta \Leftrightarrow xex' = yey'$ for all $e \in E$ and some $x' \in V(x)$, $y' \in V(y)$; $(x, y) \in \delta \Leftrightarrow xex'yey' = yey'$ and yey'xex' = xex' for all $e \in E$ and some $x' \in V(x)$, $y' \in V(y)$.

Then β and δ are congruences on S, and δ is the greatest congruence contained in \Re on S. Trivially $\beta \subseteq \delta(\alpha \subseteq \gamma)$, and it follows from the definitions of α , β , γ , δ and μ that $\mu = \alpha \cap \beta = \gamma \cap \delta$.

A semigroup is said to be fundamental if the only congruence on it contained in \mathcal{H} is the trivial congruence. Since μ is the greatest congruence on S contained in \mathcal{H} , it follows that S is fundamental if and only if μ is the trivial congruence on S. We omit the proof of the following result which is similar to the one known for inverse semigroups (Howie [4], Munn [8]).

LEMMA 1. Let S be an orthodox semigroup. Then S/μ is a fundamental orthodox semigroup and the band of idempotents of S/μ is isomorphic to E(S).

Theorem 2 below shows how certain homomorphic images of S are related.

THEOREM 2. Let S be an orthodox semigroup. Write $L = S/\mu$, $M = S/\alpha$, $N = S/\gamma$, $\alpha' = \alpha(L)$, $\gamma' = \gamma(L)$ and $\gamma'' = \gamma(M)$. Then

(1) L/α' is isomorphic to M,

(2) L/γ' and M/γ'' are isomorphic to N.

Proof. By [2, Theorem 1.6], the mappings $\theta: L \to M$, $\phi: L \to N$ and $\psi: M \to N$ defined by $(a\mu)\theta = a\alpha$, $(a\mu)\phi = a\gamma$ and $(x\alpha)\psi = x\gamma(a, x \in S)$, are surjective homomorphisms. Let $a, b \in S$. Then, since every idempotent of M is the image of an idempotent of L[6], we have $(a, b) \in \alpha$ if and only if $(a\mu, b\mu) \in \alpha'$. So $\theta \circ \theta^{-1} = \alpha'$, proving (1). Since $(a, b) \in \gamma$ if and only if $(a\mu, b\mu) \in \gamma'$, we get the first part of (2). If $x, y \in S$, then $(x, y) \in \gamma$ if and only if $(x\alpha, y\alpha) \in \gamma''$, proving the other part of (2).

REMARK. Write $T = S/\beta$, $\beta' = \beta(L)$ and $\delta' = \delta(T)$. Then proceeding as above we get L/β' isomorphic to T, and T/δ' isomorphic to S/δ .

2. Right unipotent semigroups. Let A be an orthodox semigroup and let E = E(A). The finest inverse semigroup congruence σ on A (Hall [3], Yamada [14]) is given by the rule: $(x, y) \in \sigma$ if and only if V(x) = V(y).

A is said to be a right (left) unipotent semigroup if every principal right (left) ideal of A has a unique idempotent generator. Let S be a right unipotent semigroup and let $a \in S$. Then (i) fef = fe for any two idempotents e, f of S, and (ii) $aa' = aa^*$ for any a', a^* in V(a) [11]. Further, β is the greatest idempotent-separating congruence on S [12]. Since $\beta = \delta$ follows from the definition of S, we have $\mu = \beta = \delta$ on S. That $\mu = \alpha = \beta$ on an inverse semigroup is well known (Howie [4]).

THEOREM 3. Let S be an orthodox semigroup and let E = E(S). Then the following statements are equivalent:

- (A) S is a right unipotent semigroup;
- (B) S/α is an inverse semigroup;
- (C) S/γ is an inverse semigroup.

Proof. Assume (A). Let $g, h \in E$. Then, for all $e \in E$, we have ghehg = ghe = ghegh[11]. This, since V(gh) = V(hg), implies that $(hg, gh) \in \alpha$. Since every idempotent of S/α is the image of an idempotent of S [6], we get (B).

(B) implies (C) since S/γ is a homomorphic image of S/α [2, p. 17]. That (C) implies (A) follows from [13]. For a direct proof, assume (C). Let $g, h \in E$. Then, since γ is contained in \mathcal{L} , we have $(gh, hg) \in \mathcal{L}$. Therefore ghg = gh, proving (A) [11].

THEOREM 4. Let S be a right unipotent semigroup and let E = E(S). Write $P = S/\sigma$ and $\mu' = \mu(P)$. Then

(1) P/μ' is isomorphic to S/γ ,

(2) γ is the finest fundamental inverse semigroup congruence on S.

Proof. By Theorem 3 we have $\sigma \subseteq \gamma$. So, proceeding on the lines of the proof of Theorem 2, we get (1). From this result and Lemma 1 it follows that S/γ is a fundamental inverse semigroup. Let ρ be a congruence on S such that S/ρ is a fundamental inverse

P. S. VENKATESAN

semigroup. Let $x, y \in S$ be such that $(x, y) \in \gamma$. Then, since S/ρ is inverse, we have $(x\rho, y\rho) \in \mu$ on S/ρ . This, since S/ρ is fundamental, implies that $(x, y) \in \rho$ and hence that $\gamma \subseteq \rho$.

COROLLARY (to the proof of (1)). The semilattice $E(S/\sigma)$ is isomorphic to the semilattice $E(S/\gamma)$.

3. Unions of groups. In this section we consider right unipotent semigroups which are unions of groups.

Let S be a right unipotent semigroup, let E = E(S) and let $x \in S$. Let the symbols (Px) and (Qx) denote statements as follows:

(Px) exe = ex and ex'e = ex' for all $e \in E$ and for some $x' \in V(x)$.

 $(Qx) xex' = xx'e \text{ for all } e \in E \text{ and } x' \in V(x).$

Then (i) (Qx) implies (Px) for any x in S, (ii) S is a union of groups if and only if (Px) is satisfied for all x in S and (iii) S/β is isomorphic to E if and only if (Qx) is satisfied for all x in S [12].

Let S be a right unipotent semigroup which is a union of groups. Then Green's relations on S are related thus: $\mathcal{J} = \mathcal{D} = \mathcal{L}$ and $\mathcal{R} = \mathcal{H}$ [10].

THEOREM 5. Let S be a right unipotent semigroup and let E = E(S). Then the following statements are equivalent:

(A) S is a union of groups;

- (B) S/σ is a semilattice Y of groups, where Y is isomorphic to $E(S/\sigma)$;
- (C) S/γ is a semilattice;
- (D) $\gamma = \mathcal{L}$ (equivalently, \mathcal{L} is a congruence on S);

(E) S is a semilattice Z of left groups, where Z is isomorphic to S/γ .

Proof. That (A) implies (B) is well known [2, pp. 126-129]. Assume (B). Let $x \in S$, $x' \in V(x)$ and $e \in E$. Since the idempotents of S/σ are in the centre of S/σ [2, p. 127], we have $(ex)\sigma = (xe)\sigma$; that is, V(ex) = V(xe). Now both x'e and ex' are inverses of ex. This, since S is right unipotent, implies that exex' = exx'. Similarly ex'ex = ex'x. Therefore

and

$$(x'ex)(x'xex'x) = x'(exex')x = x'(exx')x = x'ex$$

(x'xex'x)(x'ex) = x'x(ex'ex) = x'xex'x.

So $(x, x'x) \in \gamma$ and hence, by Theorem 3, S/γ is a semilattice, proving (C).

Assume (C). We first prove that (Px) is satisfied for all $x \in S$. Let $x \in S$, $x' \in V(x)$ and $e \in E$. Then $(x'e, ex') \in \gamma$. This, since $\gamma \subseteq \mathcal{L}$, implies that (exx'e)(xex') = exx'e. Therefore, since S is right unipotent, we have exex' = exx' and hence

$$exe = ex(x'xe) = ex(x'xex'x) = (exex')x = (exx')x = ex.$$

Similarly ex'e = ex'. So (Px) is satisfied for all $x \in S$.

Now let $(x, y) \in \mathcal{L}$. If $x' \in V(x)$ and $y' \in V(y)$ then xy'y = x and yx'x = y. So, for all $e \in E$, using (Pxy'), we have x'exy'ey = x'(exy'e)y = x'exy'y = x'ex and, similarly, y'eyx'ex = y'ey. Therefore $(x, y) \in \gamma$ and $\mathcal{L} \subseteq \gamma$. Since $\gamma \subseteq \mathcal{L}$, we get (D).

Assume (D). Let $x \in S$ and $x' \in V(x)$. Then $(x, x'x) \in \mathcal{L}$. Since \mathcal{L} is a congruence, for

all $e \in E$ we have $(ex, ex'x) \in \mathscr{L}$ and hence exex'x = ex. Therefore ex = ex(x'xex'x) = ex(x'xe) = exe. Similarly ex' = ex'e and so (Px) is satisfied for all $x \in S$. Thus S is a union of groups. Now (E) follows from [2, Theorem 4.6] and [10]. Clearly (E) implies (A), proving the theorem.

REMARK. By the corollary to Theorem 4, the semilattices Y and Z that occur in Theorem 5 are isomorphic.

In the proof of Theorem 6 below, for any $x \in S$, x^{-1} denotes the inverse of x in the group H_x .

THEOREM 6. Let S be a right unipotent semigroup and let E = E(S). Then the following statements are equivalent:

(A) S is a band of groups;

(B) (Qx) is satisfied for all x in S;

(C) $\alpha = \gamma = \mathcal{L};$

(D) $\beta = \mathcal{H} = \mathcal{R}$ (equivalently, \mathcal{R} is a congruence on S);

(E) S is a band E of groups.

Proof. Assume (A). Then $abS = a^2bS$ for all a, b in S [1], [2, p. 129]. Let $x \in S$ and $e \in E$. Put a = x and $b = x^{-1}e$. Since $ex^{-1} \in V(xe)$ and $xx^{-1} = x^{-1}x$, from $abS = a^2bS$ we get that $(xx^{-1}e, xex^{-1}) \in \mathcal{R}$. Therefore $xx^{-1}e = xex^{-1}$, giving (B).

Assume (B). Let $x, y \in S$, $x' \in V(x)$ and $y' \in V(y)$. Suppose that $(x, y) \in \mathcal{L}$. Then xy'y = x and yx'x = y. Write a = y'yx'. Since $a \in V(x)$ and $xy' \in V(yx')$, for all $e \in E$, using (Qyx'), we have aex = y'(yx'exy')y = y'(yx'xy'e)y = y'ey. Therefore $(x, y) \in \alpha$, proving that $\mathcal{L} \subseteq \alpha$. So we get (C).

Assume (C). We first prove that (Qx) is satisfied for all $x \in S$. Let $x \in S$, $x' \in V(x)$ and $e \in E$. Since $(x', xx') \in \mathcal{L}$, by hypothesis we have $(x', xx') \in \alpha$; that is, pex' = qexx' for some $p \in V(x')$ and $q \in V(xx')$. Premultiplying the equation by xx', we get xx'pex' = xx'qexx'. Since S is right unipotent, x'p = x'x and xx'q = xx'. Therefore xex' = xx'exx' = xx'e, and (Qx) is satisfied for all $x \in S$. This implies that S is a union of groups and $(x, xx^{-1}) \in \beta$ for all $x \in S$ [12]. Hence

$$(\mathbf{x}, \mathbf{y}) \in \beta \Leftrightarrow (\mathbf{x}\mathbf{x}^{-1}, \mathbf{y}\mathbf{y}^{-1}) \in \beta$$
$$\Leftrightarrow \mathbf{x}\mathbf{x}^{-1} = \mathbf{y}\mathbf{y}^{-1}$$
$$\Leftrightarrow (\mathbf{x}, \mathbf{y}) \in \mathcal{R}.$$

Since $\beta = \mu \subseteq \mathcal{H}$, we get (D).

Assume (D). Let $x \in S$, $x' \in V(x)$ and $e \in E$. Then, since $(x, xx') \in \Re$, we have $(xe, xx'e) \in \Re$. This implies that xex' = xx'e. So (Qx) is satisfied for all $x \in S$ and hence S is a union of groups. Now by [7, Theorem 4.3] we have $H_f H_g \subseteq H_{fg}$ for all $f, g \in E$, giving (E). Trivially (E) implies (A). Hence the theorem.

Note added in proof. Statement (2) of Theorem 1 is known. See Tôru Saitô, Note on quasi-inverse semigroups, Semigroup Forum 6 (1973), 129–132.

P. S. VENKATESAN

REFERENCES

1. A. H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504.

2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys of the Amer. Math. Soc. 7 (Providence R.I., 1961 (Vol. 1) and 1967 (Vol. 2)).

3. T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. (1969), 195-208.

4. J. M. Howie, The maximum idempotent-separating congruence on an inverse semigroup, *Proc. Edinburgh Math. Soc.* (2) 14 (1964), 71-79.

5. J. M. Howie, Introduction to semigroup theory (Academic Press, 1976).

6. G. Lallement, Congruences et équivalences de Green sur un demi-groupe régulier, C.R. Acad. Sci. Paris Sér. A. 262 (1966), 613-616.

7. J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), 323-341.

8. W. D. Munn, Fundamental inverse semigroups, Quart. J. Math. Oxford (2) 21 (1970), 157-170.

9. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.

10. P. S. Venkatesan, On decomposition of semigroups with zero, Math. Z. 92 (1966), 164-174.

11. P. S. Venkatesan, Right (left) inverse semigroups, J. Algebra 31 (1974), 209-217.

12. P. S. Venkatesan, On right unipotent semigroups, Pacific J. Math. 63 (1976), 555-561.

13. R. J. Warne, L-unipotent semigroups, Nigerian J. Sci. (2) 5 (1972), 245-248.

14. M. Yamada, On a regular semigroup in which the idempotents form a band. Pacific J. Math. 33 (1970), 261-272.

UNIVERSITY OF IBADAN Ibadan, Nigeria