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Well Ramified Extensions of Complete
Discrete Valuation Fields with Applications to
the Kato Conductor

Luca Spriano

Abstract. We study extensions L/K of complete discrete valuation fields K with residue field K of characteris-
tic p > 0, which we do not assume to be perfect. Our work concerns ramification theory for such extensions,
in particular we show that all classical properties which are true under the hypothesis “the residue field exten-
sion L/K is separable” are still valid under the more general hypothesis that the valuation ring extension is
monogenic. We also show that conversely, if classical ramification properties hold true for an extension L/K,
then the extension of valuation rings is monogenic. These are the “well ramified” extensions. We show that
there are only three possible types of well ramified extensions and we give examples. In the last part of the
paper we consider, for the three types, Kato’s generalization of the conductor, which we show how to bound
in certain cases.
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1270 Luca Spriano

Introduction

We consider complete discrete valuation fields which we shall call simply complete fields.
The notations we use are at the end of this introduction and are (fairly) standard. For
a finite extension L/K we mean by “classical case”, “classical theory” and so on, that the
residue field extension L/K is separable (this is the hypothesis in, e.g., [S1, ch. IV]).

Ramification theory for complete fields, is essentially a theory about invariants attached
to an extension L/K which measure the deviation of L/K from being unramified.

The interest in complete fields with imperfect residue field is not new; in the paper of
Epp [E], we find weakly unramified extensions (i.e., extensions with pKOL = pL). In Miki’s
paper [M], one finds a general study of complete fields with imperfect residue field. At the
end of the seventies Kato and Paršin, independently, were interested in n-dimensional local
fields in relation with generalized class field theory, see [K1] and [P]. For example, the field
K = k((t)), where k = Fp((X)), is a 2-dimensional local field and its residue field K is
Fp((X)), which is imperfect.

When the residue field K is not perfect, the situation is very complicated. Look at the
following example. Let K be a complete field with K = Fp(x, y) and suppose that the
characteristic of K is zero. Let A, B be two integral elements with their residue in K equal to
x and y respectively. Then consider the extension L = K(α, β) where αp = A and β p = B.
The situation is the following:

L ⊃ OL ⊃ pL = pKOL L = Fp( p
√

x, p
√

y)
| | | |
K ⊃ OK ⊃ pK K = Fp(x, y)

.

Here we have

eL/K = 1, fL/K = f ins
L/K = [L : K].

This extension is not unramified because L/K is not separable. The ramification index eL/K

equals 1, however other ramification invariants, like the different, are not trivial. Observe
that the extension of valuation rings is not monogenic. An extension L/K such that eL/K = 1
and [L : K] = f ins

L/K will be called ferociously ramified.

In Section 3 we verify, by examples, that, basically, all good properties of classical invari-
ants are lost when considering general extensions, see Theorem 3.1. So we cannot establish
a ramification theory, like in [S1], if we only use these invariants. We will show that a
natural limit for establishing such a theory, is given by the monogenity of OL/OK . More
precisely, one can define a filtration of G = Gal(L/K) by means of the classical function iG

(cf. Section 1). In the classical case if one considers a normal subgroup H of G, then one
can obtain information on the filtration of G/H in terms of that of G. In general this is not
possible. The reason is precisely that, in general, the valuation ring OL is not monogenic
over OK (see Examples 3.3, 3.4 and Theorem 5.1). So, before studying the general situation,
it is natural to analyze the extensions L/K which have OL/OK monogenic.

It turns out that there are only three types of well ramified extensions L/K which are
completely ramified, by this we mean that they do not contain tamely ramified subexten-
sions (see also the definition in the beginning of Section 1):
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Well Ramified Extensions 1271

I- totally ramified extensions;
II- ferociously ramified extensions such that L/K is generated by only one element (f.r-1);
III- towers of extensions of the above two types, more precisely: extensions L/K contain-

ing a totally ramified subextension T/K (non-trivial) such that L/T is f.r-1.

The characterization of case III is established in Section 6 and in particular in Theorem 6.1.
For well ramified extensions, we define a “modified” Hasse-Herbrand function ϕL/K (anal-
ogous to the classical function) and for it we show Herbrand’s theorem, cf. Section 7. In
case III above, the Hasse-Arf theorem (stated in terms of ϕL/K ) is shown by J. Borger (see
[B] and also Section 10.4.3). This is equivalent to the fact that the Artin function aG is a
character of Gal(L/K), see Section 8.

In Section 9 we give a new proof of a result of Miki [M], giving a necessary condition
for the existence of certain cyclic extensions of a complete field. We apply this result in
our study of Kato’s conductor, which we consider in Section 10 comparing it to the “naı̈ve”
conductor defined in terms of a variant of the classical function sG; in particular we will deal
with well ramified extensions in Section 10.4 and with cyclic extensions in Section 10.5.

Section 10 has undergone major changes after the first submission, and after we learnt
of the work of J. Borger. His ideas allowed us to improve the results in that section.

To conclude this introduction, we would like to thank I. Fesenko, M. Kurihara, I. Zhukov
and B. de Smit for the interest they have shown in my work. We are thankful to J. Borger
for communicating us his proof of the Hasse-Arf theorem. We are also deeply grateful to
Boas Erez for his help and constant encouragements.

The work presented here is part of the author’s thesis [Sp].

Notation The letter p always indicates a prime in Z. If G is a finite set, then |G| indicates
the number of elements of G.

If K is a field, ch(K) denotes the characteristic of K and Ks is a separable closure of K. A
complete field K is a field K complete with respect to a discrete valuation with residue field
K of characteristic p > 0. It is well-known that either ch(K) = 0 or ch(K) = ch(K). If K
is a complete field,

• K denotes the residue field of K;
• vK the normalized additive valuation of K, i.e., vK (K∗) = Z;
• OK = {x ∈ K : vK (x) ≥ 0} the valuation ring of K;
• pK = {x ∈ K : vK (x) > 0} the maximal ideal of OK ;
• π a prime element of OK ;
• UK = {x ∈ K : vK (x) = 0} the group of units and U i

K = 1 + πiOK , i ≥ 1;
• eK the absolute ramification index, i.e., eK = vK (p); throughout the paper we also use

the notation: e ′ = eK/(p − 1); if ch(K) = p, we put eK = +∞;
• x the residue class mod pK of x ∈ OK ;
• ζn a primitive n-th root of unity in a separable closure Ks;
• ℘ the map on K sending x to xp − x.

If L is a finite extension of the complete field K,

• eL/K denotes the ramification index of L/K;
• fL/K = [L : K] = f sep

L/K · f ins
L/K the residue degree;
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1272 Luca Spriano

• DL/K the different.

1 Definitions and Terminology

We rapidly recall some more notations and introduce definitions to be used below. Let K
be a complete field which, we recall, we assume to have residue field of characteristic p > 0.
If B is a ring, always assumed unitary, which contains a ring A, we say that B is monogenic
over A when there exists α in B such that B = A[α]. For an extension L/K of complete
fields we shall say that L/K is monogenic if the extension of valuation ring is.

Definition Let L/K be a finite extension of complete fields. Then we have the following
possibilities:

L/K f sep
L/K f ins

L/K eL/K

unramified arb. 1 1
tamely ram. arb. 1 p - eL/K

totally ram. 1 1 arb.
tot. wildly ram. 1 1 a power of p
weakly unram. arb. arb. 1
ferociously ram. 1 arb. 1
completely ram. 1 arb. a power of p

Furthermore, let L/K be a ferociously ramified extension. If the residue field extension
L/K is generated by x1, . . . , xn then we call L/K ferociously ramified of type n (f.r-n).

Remark 1.1 The definition of weakly unramified comes from [E]; in [Ku] there is the def-
inition of fiercely ramified, but already in [Wi] one can find a first definition of fiercely
ramified extension.1 We use the adjective “ferocious” for “fierce”. The classical definition of
wildly ramified extension is that p|eL/K , here we consider totally wildly ramified extensions:
they are p-extensions. The terminology “completely ramified” is new.

Let L/K be a finite Galois extension with Galois group G. We do not assume that the
residue field K is perfect. In [S1], the function iG : G→ Z ∪ {∞} is defined by iG(1) =∞
and by

iG(σ) = inf
x∈OL\{0}

vL

(
σ(x)− x

)
, σ 6= 1.

We also use the notation iL/K for iG. By definition, an automorphism σ belongs to Gi if and
only if iG(σ) ≥ i + 1. One can see that, if OL = OK [α], then iG(σ) = vL

(
σ(α)− α

)
. More

generally we have the following

Lemma 1.2 Let L/K be a Galois extension of complete fields and σ ∈ Gal(L/K). If OL =
OK [x1, . . . , xn], then iG(σ) = min1≤ j≤n{vL

(
σ(x j)− x j

)
}.

1Here is Williamson’s definition: The quotient field extension of an extension of discrete rank one valuation rings
is said to be ferociously ramified if the residue class field extension has nontrivial inseparable part. Clearly it is not the
definition which we use.
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Well Ramified Extensions 1273

Proof In fact, for α =
∑

I ai1,...,in xi1
1 · · · xin

n ∈ OL (the sum is taken over a finite set I ⊂ Nn)
we have σ(α)− α =

∑
I ai1,...,in [σ(xi1

1 · · · xin
n )− xi1

1 · · · xin
n ]. So we have to consider the case

vL

(
σ(αβ)− αβ

)
with α, β ∈ OL. We have

vL

(
σ(αβ)− αβ

)
= vL

(
σ(αβ)− αβ + βσ(α)− βσ(α)

)
= vL

(
σ(α)

(
σ(β)− β

)
+ β
(
σ(α)− α

))
≥ min{vL

(
σ(β)− β

)
, vL

(
σ(α)− α

)
},

because vL

(
σ(α)

)
≥ 0 and vL(β) ≥ 0.

One can also consider the function sG : G→ Z ∪ {∞} defined by sG(1) =∞ and by{
sG(σ) = infx∈OL\{0} vL( σ(x)

x − 1), σ 6= 1, σ ∈ G0

sG(σ) = 0 if σ /∈ G0.

In the classical case, if σ ∈ G0, then iG(σ) = sG(σ) + 1; in general we only have

sG(σ) ≤ iG(σ) ≤ sG(σ) + 1.

We have two intertwined filtrations of ramification groups (as indicated in [Z-S, ch. V]).
Given two integers n, i ≥ 0 one defines the (n, i)-ramification group Gn,i of L/K as

Gn,i = {σ ∈ G : vL

(
σ(x)− x

)
≥ n + i, for all x ∈ pi

L}.

Put Gn = Gn+1,0 and Hn = Gn,1, so that the classical ramification groups (see [S1, ch. IV])
are the Gn. We also define the ramification subgroup Gu (resp. Hu) for a positive real
number u as Gi (resp. Hi) where i is the smallest integer ≥ u. We have a filtration of G (cf.
Props. 2.2–2.3 in [BDS2]) G ⊇ G0 ⊇ H1 ⊇ G1 ⊇ H2 ⊇ · · · ⊇ {1}. We observe that if
L/K is separable, then Hi = Gi for i ≥ 1. Note that Gn,i is a normal subgroup of G, as it
is the kernel of the homomorphism G → Aut(pi

L/pn+i
L ). The group G0/H1 is cyclic and its

order is etame , H1 is a p-group of order ewild f ins
L/K . If we consider the sequence of ramification

subgroups G ⊃ G0 ⊃ H1 ⊃ {1}, we have the associated tower of subfields

K
f sep
L/K

⊆ L0

etame

⊆ L1

f ins
L/K ewild

⊆ L,

where L0/K is unramified, L1/L0 is tamely ramified and L/L1 is completely ramified. In-
deed, the ramification groups are normal and so all of the intermediate extensions are Ga-
lois. Note that there are extensions where f ins

L/K > 1 and eL/K > 1, but for which there does
not exist a subgroup which can “separate” ferocious from wild ramification.

The problems of ramification theory which we consider, come from the study of the
extension L/L1 which is completely ramified, so most of the time we will deal with the case
G = H1.
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1274 Luca Spriano

2 Review of Results of Ramification Theory

We keep the notation of the preceding section, in particular we consider a finite, Galois
extensions L/K; we do not make any assumptions on the residue field K. Here we collect
some more or less well known results; the proofs are in [S1, ch. IV] if L/K is separable, in
the general case see [BDS2].

Proposition 2.1 Let L/K be a finite extension of complete fields.

(i) Suppose that L/K is separable. Then there exists α ∈ OL such that OL = OK [α], i.e., OL

is monogenic as OK -algebra.
(ii) The quotient groups Hi/Hi+1 are Abelian groups annihilated by p;
(iii) If G is Abelian, then all i > 0 with Gi 6= Hi+1 are congruent mod p and if there exists

such an i, then all m with Hm 6= Gm are divisible by p. If L/K is separable, the jumps i
such that Gi 6= Gi+1 are congruent mod p for any group G.

(iv) If eL/K = 1, then Gi = Hi+1 for all i ≥ 1.

In the classical case there is a well-known connection between the different and the
ramification groups: the Hilbert formula for the valuation of the different, which amounts
to

vL(DL/K ) =
∑
σ 6=1

iG(σ) =
∑
i≥0

(|Gi | − 1) = vL

(
f ′(α)

)
,

where f (x) is the minimal polynomial of α over K and α is such that OL = OK [α], (for a
proof see [S1, ch. IV, Proposition 4]). We will note a formula due to de Smit generalizing
this and valid in the non monogenic case, cf. Remark 5.4.

Now let us look at the ramification of LH/K for H a normal subgroup of G. The follow-
ing theorem holds under the more general hypothesis that the extension of valuation rings
is monogenic. As can be seen by inspection, the same proof of [S1, ch. IV, Proposition 3]
applies.

Theorem 2.2 (Herbrand property) Let L/K be a monogenic extension; for all τ ∈ G/H we
have

(1) iG/H(τ ) =
1

eL/LH

∑
σ→τ

iG(σ),

where the sum is taken over all automorphisms σ ∈ G which equal τ mod H.

The image of a ramification subgroup Gu in G/H is given by the Herbrand theorem,
which amounts to the following equality

GuH/H = (G/H)v, v = φL/LH (u),

where the function φL/K is defined by φL/K (0) = 0 and

φL/K (u) =
1

g0

(
g1 + · · · + gm + (u−m)gm+1

)
, gi = |Gi |,
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Well Ramified Extensions 1275

for m ≤ u ≤ m + 1, m a nonnegative integer and u a real number. The function φL/K

is piecewise linear, increasing and convex and it is a homeomorphism of [0,+∞). It is
called Hasse-Herbrand function. At this point one can define an upper numbering of the
ramification groups by

GφL/K (i) = Gi or G j = GψL/K ( j),

whereψL/K is the inverse function of φL/K . We say that j is a jump if G j 6= G j+ε for all ε > 0.
Note that the upper jumps are not necessarily integers, see, e.g. [S1, exercise 2, p. 84] or see
the explicit computation in [S3, Section 4]; we recall that they are integers if the extension
L/K is Abelian, in fact we have (see a proof in [S1, ch. V, Section 7]):

Theorem 2.3 (Hasse-Arf) Suppose L/K is a finite, Abelian extension and suppose L/K sep-
arable. If Gi 6= Gi+1, then φL/K (i) is an integer. Equivalently, the jumps of the upper filtration
{Gν}ν≥0 are integers.

There is a generalization of the Hasse-Arf theorem for cyclic extensions: Sen’s theorem
which was conjectured by Grothendieck, cf. [Sen]. It goes as follows. Let L be a complete
field with perfect residue field L. We say that an automorphism σ of L is wildly ramified
if vL

(
σ(x) − x

)
> 1 for all x ∈ OL. Note that if σ is of finite order, which is always

the case if ch(L) = 0, and if σ is wildly ramified, then p divides the order of σ. Put
i(σ) = vL

(
σ(πL)− πL

)
.

Theorem 2.4 (Sen) Let L be a complete field with perfect residue field.2 Let σ be a wildly
ramified automorphism of L. Then, for all n > 0 we have

i(σpn−1

) ≡ i(σpn

)(mod pn).

Sen’s theorem has to be considered as a generalization of Hasse-Arf theorem because
infinite extensions are also permitted. Note that Sen’s theorem implies the Hasse-Arf the-
orem, see [S1, Proposition 11, Section 7, ch. V]. Of course, the Hasse-Arf theorem implies
the congruences in Sen’s theorem if σ is of finite order.

3 General Ramification Theory, Two Non Classical Examples

We now show that the properties, listed in the preceding paragraph, do not hold in general.

Theorem 3.1 There exist Galois extensions L/K for which

(1) the property about monogenic valuation rings is not true;
(2) the ramification jumps are not congruent mod p;
(3) the Hilbert formula does not hold;
(4) the function iG does not verify the Herbrand property;
(5) the Herbrand, Hasse-Arf and Sen theorems do not hold.

2As Sen observes, this hypothesis can be replaced with the weaker hypothesis: there exists a system of repre-
sentatives R for OL which is invariant under σ.
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1276 Luca Spriano

The proof is achieved by producing two examples, see Ex. 3.3 and Ex. 3.4. We must give
some explanations about Herbrand’s and Sen’s theorems when the residue field extension
L/K is not separable (note that Sen’s theorem is stated with perfect residue field). We check
whether the Hasse-Arf and Herbrand theorems hold true with the function φL/K which can
be defined when L/K is not separable formally in the same manner.

If we want an analog of Sen’s theorem in the general case, we have to redefine wildly
ramified automorphisms. If the extension L/K is cyclic with G = 〈σ〉, and ferociously
ramified we can have either

iG(σ) = 1, or iG(σ) > 1.

So, for a completely ramified extension, we define σ to be a wildly ramified automorphism if
iG(σ) ≥ 1. In what follows we need some results about Galois extensions of complete fields
of degree p; we collect them in the proposition below. We define the ramification number
of a cyclic extension L/K of degree p as the number sG(σ) (note that it does not depend on
the chosen generator σ of Gal(L/K)).

Proposition 3.2 I. Kummer theory. Suppose ch(K) = 0 and ζ = ζp ∈ K. Let e ′ =
eK/(p − 1). The cyclic extensions L/K of degree p are classified as follows

L = K(α) fL/K ramif. number

αp = 1 + v · (ζ − 1)p f sep
L/K = p 0

αp = wπ L = K e ′

αp = 1 + wπs, 1 ≤ s < e ′p, p - s L = K pe ′ − s

αp = u f ins
L/K = p e ′

αp = 1 + uπt p, 1 ≤ t < e ′ f ins
L/K = p e ′ − t

where v ∈ UK and v /∈ ℘ (K), w ∈ UK , u ∈ UK and u /∈ K
p
.

II. Artin-Schreier theory.

A) Let L/K be a cyclic extension of degree p and let σ a generator of G := Gal(L/K). Then
the ramification number s := sG(σ) is zero if and only if L/K is unramified. If L/K is
completely ramified we have the following possibilities for s:

(i) Let ch(K) = p > 0.

- If L/K is totally ramified, then s ≥ 1 and p - s.

- If L/K is ferociously ramified, then s ≥ 1.

(ii) Let ch(K) = 0.

- If L/K is totally ramified, then 1 ≤ s ≤ peK/(p − 1). If p|s, then a primitive
p-th root of unity belongs to K and s = peK/(p − 1).

- If L/K is ferociously ramified, then 1 ≤ s ≤ eK/(p − 1).

B) Let K be of characteristic zero. Suppose that xp − x − a, a ∈ K is irreducible. Let α be a
root of xp − x − a. Then L = K(α) is cyclic. If s is its ramification number, we have:
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https://doi.org/10.4153/CJM-2000-053-1


Well Ramified Extensions 1277

(i) If a ∈ UK , a /∈ ℘ (K), then L/K is unramified.

(ii) If a /∈ OK , p - vK (a) and vK (a) ≥ −peK/(p − 1), then L/K is totally ramified and
s = −vK (a).

(iii) If a = uπ−t , t > 0, p|t, u /∈ K
p

and t/p < eK/(p − 1), then L/K is ferociously
ramified and s = t/p.

If ch(K) = p > 0, then the same statements are true, the only difference being that if
a = uπ−t , u /∈ K

p
, then s = t/p is not bounded.

The proof of the first part is Lemma (2-16) in [H]. Part II is in ch. III of [F-V] (see also
[M-W]).

Example 3.3 We realize a Galois extension L/K with the following characteristics:

(1) [L : K] = 8, eL/K = 2, fL/K = f ins
L/K = 4;

(2) OL is not monogenic over OK ;
(3) The ramification jumps are not congruent mod 2 and Herbrand’s theorem doesn’t

hold.

Let K be a complete field of characteristic zero. Let K = F2(u, v) be the field of rational
functions in two variables over F2, and let A,B ∈ OK be such that A = u, B = v. Suppose
also eK = 2. Consider the irreducible polynomial

f (X) = X4 − AπX2 + B.

We define the field L as the splitting field of f (X). Let α be a root of f (X). Then K(α)/K
is ferociously ramified of degree 4. Let β be another root of f (X) such that β 6= ±α.
So, γ = α + β is such that L = K(γ, α)/K(α) is totally ramified, indeed the minimal
polynomial of γ over K(α) is

X2 − 2αX − π(A− 2α2/π),

which is an Eisenstein polynomial, thus eL/K = 2; this last argument also shows that
[L : K] = 8, in fact it suffices to consider the tower of field extensions L ⊃ K(α) ⊃ K. We
show the statement (2) about the non monogenity of OL below, by showing that the Hilbert
formula does not hold (cf. Theorem 5.1). However, by using Proposition 4.1 (A) below, we
can write OL = OK [α, γ]. In the calculations below, we use Lemma 1.2.

Now, define the K-automorphism σ : L→ L by{
σ(α) = −β σ2(α) = −α σ(β) = α

σ3(α) = β σ4(α) = α,

and τ : L→ L by τ (α) = α, τ (β) = −β. The group G is dihedral because τσ = σ3τ .
In order to show Herbrand’s theorem we have to compute iG(σ) for σ in G. After some

calculations one finds iG(σ) = 1, iG(τ ) = 4, iG(σ2) = 4 (indeed, vL := v; we have
iG(σ) : v(σα − α) = v(α + β) = 1, v(σγ − γ) = v(−2β) = 4; iG(τ ) : v(τα − α) = +∞,
v(τγ − γ) = 4; iG(σ2) : v(σ2α− α) = 4, iG(σ2) = 5).
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The different is computed by considering the tower of extensions L ⊃ K(α) ⊃ K. So we
have:

vL(DL/K ) = vL(DL/K(α)) + vL(DK(α)/K ) = 2eK + 2vL

(
f ′(α)

)
= 4 + 6 = 10.

Hilbert’s formula states that vL(DL/K ) =
∑

σ 6=1 iG(σ) = 16, so the extension OL/OK is not
monogenic (cf. Theorem 5.1).

We check Herbrand’s theorem for the normal subgroup H = 〈σ〉. It fixes the f.r-1
extension L ′ = K

(
(α2 − β2)αβ

)
/K. For G/H we have3

(G/H)1 ⊃ (G/H)2 = {1}.

For u = 3 we have
G3H/H = G/H 6= {1}.

We also have H0 ⊃ H1 = H2 = H3 ⊃ H4 = {1}, so φL/L ′(3) = 3/2, but (G/H)3/2 =
(G/H)2 = {1}, which means that

G3H/H 6= (G/H)3/2 = (G/H)2 = {1}.

Thus Herbrand’s theorem doesn’t hold.

Example 3.4 Let K be a complete field of characteristic zero. Here we construct a Kum-
mer extension L/K which is cyclic of degree p2 with the following characteristics:

(1) eL/K = 1, f ins
L/K = p2;

(2) OL is not monogenic over OK ; more precisely OL is generated by two elements over
OK ; thus L/K is f.r-2;

(3) The ramification jumps are not congruent mod p, so an analog of Sen’s theorem does
not hold;

(4) Hilbert’s formula is not verified.
(5) The Hasse-Arf theorem does not hold.

Suppose ζp2 ∈ K and let K = Fp(u, v) be the field of rational functions in two variables
over Fp. The extension L = K(x) is defined by

xp2

= (1 + Uπps)(1 + Vπpt )p,

where U ,V ∈ UK are such that U = u, V = v and p ≤ pt < s < e ′, e ′ = eK/(p − 1). Let
G = 〈σ〉 where σ(x) = ζp2 x. Put y = xp, then K(y)/K is f.r-1 with ramification number
equal e ′ − s. Now consider Y = y/(1 + Vπpt ) and α = (Y − 1)/πs, then

OK(y) = OK [α], K(y) = Fp( p
√

u, v).

3In fact the minimal polynomial of (α2 − β2)αβ is X2 = B(A2 − 4B), from which one deduces that the
ramification jump of L′/K is 1.
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Note that y = (1 + απs)(1 + Vπpt ), thus, as above, we see that L = K(x)/K(y) is f.r-1 with
ramification number e ′ − t . Put β = (x − 1)/πt , then

OL = OK(y)[β], L = Fp( p
√

u, p
√

v).

One can show that OL = OK [α, β] (see Proposition 4.1 (A) below). Now we compute iG(σ)
and iG(σp). We have to evaluate vL

(
σ(β)− β

)
(recall Lemma 1.2):

vL

(
σ(β)− β

)
= vL

(
σ(x)− 1

πt
− x − 1

πt

)
=

eK

p(p − 1)
− t.

The value of iG(σ) is the minimum between vL

(
σ(α) − α

)
= e ′ − s and vL

(
σ(β) − β

)
=

e ′/p − t . This minimum clearly depends on the values of s and t . Assume s − t > eK/p,
then iG(σ) = e ′ − s =: a and iG(σp) = e ′ − t =: b. Note that the Herbrand property is far
from being true, indeed iK(y)/K (σ|K(y)) = iG(σ).

Of course, one can choose s and t such that the ramification jumps are not congru-
ent mod p, so an analog of Sen’s theorem does not hold (note that σ is a wildly ramified
automorphism). The Hilbert formula is not verified, indeed

vL(DL/K ) = (p − 1)(a + b) 6=
∑
σ 6=1

iG(σ) = (p2 − p)a + (p − 1)b.

The last ramification jump is b− 1, the Hasse-Arf theorem would state that φL/K (b− 1) is
an integer, but

φL/K (b− 1) =
b−1∑
i=1

gi

p2
= a− 1 +

b− a

p
,

and we have just said that a, b can be chosen not congruent mod p.

4 Three Types of Monogenic Extensions

In this section we study the OK -module OL. It is well-known that OL is a free OK -module
(OL being a finitely generated module over a principal ring), but one can be more precise.

Proposition 4.1

(A) Let L/K be an extension of complete fields. Let vK , vL be discrete valuations of K and L
respectively. Let e = eL/K < +∞ and f = fL/K . Let πL be a prime with respect to vL

and let ϑ1, . . . , ϑ f be elements of OL such that their residues form a basis of L over K.

Then {ϑiπ
j
L}1≤i≤ f ,0≤ j≤e−1 form a basis of the K-space L and of the OK -module OL. If

f < +∞, then L/K is a finite extension of degree n = e f .
(B) In particular, OL is monogenic over OK in the following two cases:

(i) the extension L/K is of prime degree;

(ii) the extension L/K is ferociously ramified and L/K is generated by only one element
(f.r-1).
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Proof Part (A) is [F-V, ch. II, Proposition (2.4)]. For part (B) (i) we only have to consider
the ferociously ramified case (in the other case see Proposition 2.1). In this case we have
OL = OK [α], where α is a lifting of a such that L = K(a), by part (A). (B) (ii) immediately
follows from (A).

In order to study monogenic extensions L/K, we introduce the following terminology.

Definition We say that the extension L/K is in

• Case I: If L/K is separable.
• Case II: If L/K is ferociously ramified with L/K generated by one element (f.r-1).
• Case III: If OL/OK is monogenic and L/K is neither in case I nor in case II.

We recall that the extensions in case I (resp. case II) are monogenic by Proposition 2.1
(resp. Proposition 4.1 (B) (ii)).

4.0.1 The Case III

We show that case III is not empty. Let f (X) ∈ OK [X] be a monic, irreducible polynomial
of degree n and L = K[X]/

(
f (X)

)
. As always, pK denotes the maximal ideal of OK . We

consider the OK -algebra
B = OK [X]/

(
f (X)

)
= OK [α].

We want to see when B = OL. We denote f (X) the image of f (X) in K[X]. Let f (X) =∏
i∈I gi(X)ei be the decomposition of f (X) into irreducible factors in K[X] and choose a

polynomial Gi(X) ∈ OK [X] such that Gi = gi . We can determine the maximal ideals of B,
as in the following lemma (for a proof cf. [S1, Lemme 4, Section 6, ch. I]).

Lemma 4.2 Let pi = (pK ,Gi) be the ideal of B generated by pK and by the canonical image
of Gi . The ideals pi , i ∈ I are maximal and distinct ideals and every maximal ideal of B is
equal to some pi . The quotient B/pi equals the field ki = K[X]/

(
gi(X)

)
.

Now, we are ready to study the monogenity of OL/OK .

Proposition 4.3

(A) Let L/K be a completely ramified extension in case III of degree n = pr+s with r, s ≥ 1
and assume that both eL/K = ps and f ins

L/K = pr. Suppose that there exists α ∈ OL such
that OL = OK [α]. Then, the minimal polynomial f (X) of α over K is of the following
form

(∗) f (X) = Xn + an−1Xn−1 + · · · + a1X + b, ai ∈ pK , b ∈ UK

and it has the following properties:

(i) f (X) = (Xpr − A)ps

= g(X)ps

, b = Aps

, A /∈ K
p
.

(ii) For all liftings G(X) ∈ OK [X] of g(X) we have vL

(
G(α)

)
= 1.
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(B) Let f (X) ∈ OK [X] be the polynomial (∗) with n = pr+s, r, s ≥ 1. Let α be a root of f (X)
and suppose that

(i) f (X) is irreducible;

(ii) f (X) = (Xpr − A)ps

, b = Aps

and A /∈ K
p
.

(iii) There exists a lifting a ∈ OK of A such that vL(αpr − a) = 1.

If we let L = K[X]/
(

f (X)
)
, then L/K is in case III and

OL = OK [α], and eL/K = ps, f ins
L/K = pr.

Proof of Proposition 4.3 (A) By hypothesis, L/K is purely inseparable generated by α,
so L = K(α), which means αpr

= A for some A /∈ K
p

and for some r ≥ 1. The minimal
polynomial ofα is like in (∗) and property (i) is clear. We prove (ii). Let πL be a prime of OL.
Now, suppose by contradiction that there exists G a lifting of g such that vL

(
G(α)

)
= E > 1.

Then
(

pK ,G(α)
)

= (π
min{E,eL/K}
L ) which is not maximal. This contradicts Lemma 4.2 which

stated that the ideal
(

pK ,G(α)
)

is the maximal ideal of OL.

(B) The element αpr − a is a prime of L, hence (cf. Proposition 4.1 (A) above) OL =
OK [αpr − a, α] = OK [α]. The statements eL/K = ps, f ins

L/K = pr are clear.

The following example (see also Section 6) shows that the class of monogenic extensions
of valuation rings is wider than cases I, II.

Example 4.4 Here, we have an extension of monogenic valuation rings which is not in
case I or II. Let K be a complete field of characteristic zero. Let ζp2 ∈ K. Consider the cyclic
extension of degree p2 defined by L = K(x) where x a root of the polynomial

f (X) = Xp2

− (1 + uπ)Ap, A ∈ UK , A /∈ K
p
, u ∈ UK .

One sees that eL/K = p = f ins
L/K , so L/K is not of case I or II. We show that OL = OK [x].

The conditions of Proposition 4.3 (B) are clearly verified as we now show. Put Y = xp.

Now consider G(X) = Xp − A, clearly f (X) = G(X)
p

in K[X]. It is not difficult to see
that xp = A(1 + Uπ1), where U ∈ UK(Y ) and π1 is a prime of K(Y ). So vL

(
G(x)

)
= 1 and

OL = OK [x]. Below (Lemma 5.2) we will also see that the monogenity of valuation rings
can be established by using the Herbrand’s property, in particular for this example we have
iG(σ) = eK/(p − 1) and iG(σp) = peK/(p − 1).

5 Well Ramified Extensions

Here we show that monogenic extensions can be characterized by Herbrand’s property (1)
as well as other ramification properties.

Theorem 5.1 (Definition) Let L/K be a Galois completely ramified extension. If one of the
following equivalent conditions is satisfied, we say that L/K is well ramified.

(1) The extension OL/OK is monogenic.

https://doi.org/10.4153/CJM-2000-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-053-1


1282 Luca Spriano

(2) The Hilbert formula holds.
(3) The Herbrand property holds for all normal subgroups H of G.

Furthermore, for a well ramified extension the ramification jumps are not always congruent
mod p.

The implications (1) ⇒ (2) and (1) ⇒ (3) are classical and explained in the preceding
paragraphs. (1) ⇔ (2) by Remark 5.4 below. The implication (3) ⇒ (1) is given by the
following lemma.

Lemma 5.2 Let L/K be a Galois, completely ramified extension of complete fields of degree
pn. Then the following three conditions are equivalent:

(i) The valuation ring OL is monogenic over OK .
(ii) For every normal subgroup H of G we have iG/H(τ ) = 1

eL/LH

∑
σ→τ iG(σ), for all τ ∈

G/H, i.e., Herbrand’s property holds true for every normal subgroup H of G.
(iii) There exists a normal subgroup H of G such that OL/OLH and OLH/OK are monogenic

and iG/H(τ ) = 1
eL/LH

∑
σ→τ iG(σ), for all τ ∈ G/H.

The proof of Lemma 5.2 is based on some notation and results from [BDS1], which we
now recall. If L/K is Galois put aL(σ) = p

iG(σ)
L . Let B = OL and A = OK . The following

definition is due to de Smit.

Definition The monogenity conductor rB/A of B over A is the ideal pn
L where n is the smallest

integer for which there is an α ∈ B with pn
L ⊂ A[α]. We also write rL/K for rB/A.

Therefore rB/A = B if and only if B/A is monogenic. Let H be a subgroup of G (not
necessarily normal), one can show4 that for K ⊂ LH ⊂ L

aLH (τ )|
∏
σ→τ

aL(σ).

For all K-embeddings τ of LH in L that are not the inclusion, let d(τ ) be the ideal of OL

such that
d(τ )aLH (τ ) =

∏
σ→τ

aL(σ).

We have the following proposition (for a proof see Th. 2.2 and Proposition 3.2 in [BDS1]).

Proposition 5.3 Let L/K be a finite, Galois extension. Recall that DL/K denotes the different
of L/K.

(i) We have

DL/K · rL/K =
∏
σ 6=1

aL(σ).

4All the statements which follow are shown in [BDS1].
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(ii) We have
rL/LH · rLH/K

∏
τ 6=1

d(τ ) = rL/K ,

where τ runs over all K-embeddings of LH in L that are not the inclusion.

Remark 5.4 Proposition 5.3 (i) gives Hilbert’s formula in general. In fact if we take the
valuation (in L) we obtain

vL(DL/K ) + n =
∑
σ 6=1

iG(σ) =
∑
i≥0

(|Gi | − 1),

where n is the valuation (in L) of the monogenity conductor rL/K .

The above remark shows that (1) is equivalent to (2), in fact the number n in the formula
is zero if and only if L/K is monogenic.

Proof of Lemma 5.2 We use the above notations. The implications (i)⇒ (ii) and (i)⇒
(iii) are Herbrand’s property. We show (ii)⇒ (i) and (iii)⇒ (i).

(ii)⇒ (i). We have to show that{
∀H / G, iG/H(τ ) =

1

eL/LH

∑
σ→τ

iG(σ)

}
⇒ {OL/OK is monogenic}.

By induction on pn, the degree of L/K. For n = 1 it is verified. Now, let H be a normal
subgroup of G of order pn−1. Since iG/H(τ ) = 1/eL/LH

∑
σ→τ iG(σ) we have d(τ ) = 1 for

all τ 6= 1 in G/H, therefore

(∗) rL/LH · rLH/K = rL/K .

We know that rLH/K = (1), because LH/K is of degree p and now we show that rL/LH = (1).
The inductive hypothesis on H is{

∀T / H, iH/T(γ) =
1

eL/LT

∑
s∈H
s→γ

iH(s)

}
⇒ {OL/OLH is monogenic}.

We show that for any T / H, iH/T(γ) = 1
eL/LT

∑
iH(s). Let γ ∈ H/T and let s ∈ H be such

that s ≡ γ mod T, then

iH/T(γ) = inf
x∈OLT \{0}

vLT

(
γ(x)− x

)
= iG/T(γ).

By hypothesis we also have

iH/T(γ) = iG/T(γ) =
1

eL/LT

∑
s→γ
s∈G

iG(s) =
1

eL/LT

∑
s→γ
s∈H

iG(s) +
1

eL/LT

∑
s→γ

s∈G\H

iG(s)

=
1

eL/LT

∑
s→γ
s∈H

iH(s),
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because the sum over s ∈ G \ H is empty (in fact if x ∈ G such that x ≡ γ mod T, then
x ≡ s mod T which implies that x ∈ H). Hence the inductive hypothesis is verified and the
extension L/LH is well ramified which means that rL/LH = 1 and by (∗) we are done.

Now consider (iii)⇒ (i). Let H be a subgroup like in the hypothesis. Since iG/H(τ ) =
1/eL/LH

∑
σ→τ iG(σ) we have d(τ ) = 1 for all τ 6= 1 in G/H, therefore

rL/LH · rLH/K = rL/K .

But, by hypothesis, we have rL/LH = B and rLH/K = OLH involving rL/K = (1), i.e., B/A is
monogenic. So we are done.

The proof of Theorem 5.1 will be achieved by explaining the remark about ramification
jumps. Naturally we should not consider a classical extension, because we know that in
this case the ramification jumps are congruent mod p (Proposition 2.1 (iii)). Take K with
eK = p(p − 1)m, and m prime to p. For example take K ′ with eK ′ = m and adjoin a p2

root of unity. Consider xp2

= 1 + uπp2s, u /∈ K
p

and s < eK/p2 (this last condition implies
that the first ramification number is > eK/

(
p(p − 1)

)
). Let L = K(x). The extension L/K

is clearly f.r-1 so well ramified. We find iG(σp) = e ′ − s and iG(σ) = e ′/p − s (recall
e ′ = eK/(p − 1)) hence we have iG(σp)− iG(σ) = m(p − 1) 6≡ 0 (mod p).

Remark 5.5 The analog of the Herbrand property for the function sG is not true. Let L/K
be a completely and well ramified extension. We show that for a normal subgroup H of G
we might have

sG/H(τ ) 6= 1

eL/LH

∑
σ→τ

sG(σ).

This is seen by considering Example 4.4 (case III), where we have sG(σ) = e ′ and sG/H(σ) =
pe ′ − 1. For this reason, below, we will only consider the function iG.

6 Extensions in Case III

The example 4.4 shows that case III is not empty. For extensions in case III we can give a
structure theorem.

Theorem 6.1 Let L/K be a Galois, completely ramified extension in case III. Then there
exists a Galois, totally ramified subextension T/K with T 6= K and T 6= L, such that L/T is
f.r-1.

We need some lemmas. First of all we recall that a subextension of a well ramified ex-
tension is well ramified (see [BDS1, Corollary (4.3)]).

Lemma 6.2 Let K ⊆ L ⊆ M be finite separable extensions of complete fields. Then the
number of elements needed to generate OL as a OK -algebra is at most the number of elements
needed to generate OM over OK .

The key lemma is the following.
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Lemma 6.3 Let L/K be a Galois and completely ramified extension. Assume that there exists
a Galois subextension T/K, T 6= K and T 6= L such that L/T is totally ramified and T/K is
f.r-1. Then L/K cannot be well ramified.

Proof Let π1 be a prime of L such that OL = OT[π1]. Let α ∈ T be such that OT = OK [α].
By Proposition 4.1 we have OL = OK [α, π1]. Let σ be an automorphism of T and denote
σ̃ a lifting of σ to G. By Lemma 1.2 we have iG(σ̃) = min{vL(σ̃π1 − π1), vL(σα− α)}. We
show that iG(σ̃) = vL(σ̃π1 − π1). Suppose we had iG(σ̃) = vL(σα− α), then

(∗) iG(σ̃)

eL/T
= vT(σα− α) = iT/K (σ).

But, by Herband’s property we have

(∗∗) iT/K (σ) =
1

eL/T

∑
s→σ

iG(s) =
iG(σ̃)

eL/T
+

1

eL/T

∑
s→σ
s6=σ̃

iG(s).

So from (∗) and (∗∗) we deduce that

1

eL/T

∑
s→σ
s6=σ̃

iG(s) = 0,

but this is not possible because iG(s) ≥ 1 for all s ∈ G. We have shown that

(2) iG(s) = vL(sπ1 − π1), for all s ∈ G.

Now, note that α /∈ OK [π1]. Indeed, we should have α =
∑

i≥0 aiπ
i
1, ai ∈ OK (the sum∑

i≥0 is finite), but passing modπ1, we find α ≡ a0(modπ1) which is impossible.
By (2) and by Hilbert’s formula we have

(3) vL(DL/K ) =
∑
s∈G
s 6=1

iG(s) =
∑
s∈G
s 6=1

vL(sπ1 − π1) = vL

(
f ′(π1)

)
,

where f (X) denotes the minimal polynomial of π1 over K.
Now we define (cf. [S1, ch. III, Section 6]) the ideal rπ1 = {x ∈ OL : xOL ⊆ OK [π1]}

(note that rπ1 is the largest ideal of OL which is contained in OK [π1]). We have (again [S1,
ch. III, Section 6])

DL/K = f ′(π1) · rπ1 ,

but (3) implies rπ1 = (1), which implies OL = OK [π1], but we have shown that this is not
possible because α /∈ OK [π1]. So we are done.

Proof of Theorem 6.1 By induction on [L : K]. Let M/K be a Galois subextension of
L/K such that [L : M] = p. Let T/K be a Galois subextension of M/K such that T/K is
totally ramified and M/T in case II. Applying Lemma 6.3 to L/T we deduce that L/M is
ferociously ramified, hence in case II.
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6.1 p-Elementary Extensions in Case III

We have seen cyclic extensions in case III (cf. Ex. 4.4). Here we explain how to construct ex-
amples of p-elementary extensions. This construction is independent of the characteristic
of the field K. Let us consider two Galois, totally ramified extensions K1/K and K2/K of de-
gree p. We study the compositum L = K1K2/K. We want to find conditions on K1/K and
K2/K such that L/K is in case III. The notation is the following: L = K(x, y), K1 = K(x),
K2 = K(y), 〈σ〉 = Gal(K1/K), 〈τ〉 = Gal(K2/K) where K1/K and K2/K. We choose the
minimal polynomial of x and y as an Artin-Schreier polynomial, so let

Xp − X − π−(p−1)A, A ∈ K
p

be the minimal polynomial of x over K. For simplicity we choose A := αp, α ∈ UK . The
ramification number of K1/K is p − 1, so iK1/K (σ) = p. Let σ̃, τ̃ be liftings of σ, τ to G.
Now let f (Y ) = Y p − Y − π−(p−1)B be the minimal polynomial of y over K. Note that by
Herbrand’s property we have iG(σ̃) = iG(τ̃ ) = 1. In fact iK1/K (σ) = p =

∑
s7→σ iG(s) and

the sum is taken over p elements which are all ≥ 1. We want to impose conditions on the
unit B in order to have L/K in case III. So we consider f (Y ) over K1.

The element π1 = πx is a prime of K1 (as one can see immediately) and we have

π
p
1 = πpxp = πp(x + π−(p−1)A) = πAΩ,

where Ω ∈ U (p−1)2

K1
, so π = A−1Ω−1 · πp

1 . So the polynomial f (Y ) over K1 becomes

f (Y ) = Y p − Y − Ap−1Ωp−1Bπ−p(p−1)
1 .

Now consider the element z = yπp−1
1 , we have:

(4) zp − π(p−1)2

1 z = Ap−1BΩp−1.

Which properties must the unit B have in order to have L/K1 f.r-1 and L/K in case III?
Suppose that B /∈ K

p
. Then L/K1 is f.r-1 with ramification number equal to p − 1,

because we have chosen A = αp. Is it possible that L/K is in case III? We compute the value
of the different of L/K in two different ways:

(1) by using the Hilbert formula (it holds because we are supposing that L/K is in case III,
i.e., well ramified!);

(2) by using the tower product formula for the different.

(1) From iG(σ̃) = iG(τ̃ ) = 1, Hilbert formula implies

vL(DL/K ) = (p2 − 1).

(2) The explicit calculation shows that

vL(DL/K ) = vL(DL/K1
) + vL(DK1/K ) = (p − 1)2 + p(p − 1).
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(Note that vL(DL/K1
) = (p − 1)2 is computed by using the polynomial (4).) So the two

values are equal (i.e., p2 − 1 = (p − 1)2 + p(p − 1)) if and only if p = 1 or p = 2. So in
the case of the prime 2 the extension L/K is well ramified.

Now we continue the discussion in case p 6= 2. We have to consider a unit B such that
B ∈ K

p
. Take

B = β p + πp−2γ

where β ∈ UK \ U 1
K and γ ∈ UK such that γ /∈ K

p
. We consider the element ω =

(z − βα)/(πp−2
1 ), the condition on B (in particular γ /∈ K

p
) shows that OL = OK1 [ω]. By

computing the minimal polynomial of ω over K1 we find

vL(DL/K1
) = (p − 1)2 − (p − 2)(p − 1) = p − 1.

Now we compute the different of L/K.

vL(DL/K ) = vL(DL/K1
) + vL(DK1/K ) = (p − 1) + p(p − 1) = p2 − 1,

which is the value given by Hilbert formula, so by Theorem 5.1 the extension L/K is well
ramified.

7 Ramification Theory for Well Ramified Extensions

Here, we assume that L/K is completely, well ramified and Galois. In the well ramified case
one can show that the double filtration defined in Section 1 is reduced to a single filtration,
i.e.,

• case I: Gi = Hi , i ≥ 1.
• case II: Gi = Hi+1, i ≥ 1 (cf. Proposition 2.1 (iv)).
• case III: Gi = Hi+1, i ≥ 1.

We don’t show the above statement in case III because we consider another filtration which
allows us to simultaneously deal with cases I, II and III.

Definition Let L/K be a finite Galois extension. The modified i-th ramification group G[i]
for i ≥ 1 is defined by

G[i] = {σ ∈ Gal(L/K) : iL/K (σ) ≥ i}.

We also define a modified upper numbering for ramification groups by G
(
ϕL/K (u)

)
=

G[u].

7.1 The Modified Hasse-Herbrand Function

Definition The modified Hasse-Herbrand function ϕL/K (u), u ∈ R≥0 is defined as follows

ϕL/K (u) =
∫ u

0

|G[t]|
eL/K

dt.
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If m ≤ u ≤ m + 1, where m is a nonnegative integer, we have

ϕL/K (u) =
1

eL/K

(
g1 + · · · + gm + gm+1(u−m)

)
, gi = |G[i]|

and clearly ϕL/K (m) =
∑m

i=1 gi/eL/K for m ≥ 1. We drop the index L/K in ϕL/K if there is
no risk of confusion. Note that in case I we have ϕL/K (u) = 1 + φL/K (u− 1), where φL/K is
the classical Hasse-Herbrand function.

Proposition 7.1

(a) The function ϕ is continuous, piecewise linear, increasing and convex.
(b) ϕ(0) = 0.
(c) If ϕ ′r and ϕ ′l denote the right and the left derivatives then:

ϕ ′r (u) = ϕ ′l (u) = gu/eL/K ,

if u /∈ N;

ϕ ′l (u) = gu/eL/K and ϕ ′r (u) = gu+1/eL/K if u ∈ N.

(d) The map ϕ is a homeomorphism of [0,+∞) onto [0,+∞).
(e) The preceding properties (a)–(d) characterize the function ϕ.

The inverse map of ϕ is denoted by ψ. There is an analog of the above proposition
for the map ψ, see [S1, Prop. 13]. The next goal is to show Herbrand’s theorem for well
ramified extensions. We need some lemmas.

Lemma 7.2 ϕL/K (u) = 1
eL/K

∑
σ∈G inf

(
iG(σ), u

)
.

Proof Let ϑ(u) be the function defined by the right hand. It is a continuous and piecewise
linear function and ϑ(0) = 0. If m < u < m + 1, m ∈ N, then the derivative ϑ ′(u)
equals the number of σ ∈ G such that iG(σ) ≥ m + 1 multiplies by 1/eL/K ; so we have
ϑ ′(u) = gm+1/eL/K which is ϕ ′(u); so by Proposition 7.1 ϕ and ϑ coincide.

Now let T be a normal subgroup of G.

Lemma 7.3 Let σ ∈ G/T and put j(σ) = sup{iG(s) : s ∈ G and s ≡ σmod T}. Then

iG/T(σ) = ϕL/LT

(
j(σ)

)
.

Proof Let s ∈ G be an element such that s ≡ σmod T and iG(s) = j(σ). Put m = iG(σ).
If t ∈ T belongs to T[m] we have iG(t) ≥ m, hence iG(st) ≥ m and iG(st) = m. On the
other hand, if t does not belong to T[m], then iG(t) < m and iG(st) = iG(t). In both cases
we have iG(st) = inf

(
iG(t),m

)
. By Herbrand’s property we have

iG/T(σ) =
1

eL/LT

∑
t∈T

inf
(
iG(t),m

)
and by applying the preceding lemma to the group T, we have iG/T(σ) = ϕL/LT (m).

Finally we can state and prove the analog of Herbrand theorem.
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Theorem 7.4 Let L/K be a well ramified extension. The ramification for a quotient G/T is
given by

Lower numbering: G[u]T/T = (G/T)[v], v = ϕL/LT (u).
Upper numbering: G(ν)T/T = (G/T)(ν), for all ν ≥ 0.

Proof For the lower numbering we have

σ ∈ G[u]T/T ⇔ j(σ) ≥ u⇔ ϕL/LT

(
j(σ)

)
≥ ϕL/LT (u)

⇔ iG/T(σ) ≥ ϕL/LT (u)⇔ σ ∈ (G/T)[v].

For the modified upper numbering one can show an analog of the multiplicativity in tower
for the functions ϕ and ψ (the proof goes exactly as in [S1, ch. IV, Prop. 15]).

Proposition 7.5 We have

ϕL/K = ϕLT/K ◦ ϕL/LT , ψL/K = ψL/LT ◦ ψLT/K .

Now we proceed as in the proof of Prop. 14 in loc. cit.

The Hasse-Arf theorem with respect to the modified upper numbering was shown by
J. Borger. For the reader’s convenience, we reproduce his proof in Section 10.4.3.

Theorem 7.6 (Borger) The modified upper ramification jumps of abelian well ramified ex-
tensions are integers.

As we have already noted, a general ramification theory does not exist yet. In [Zh],
Zhukov gives a good ramification theory under the hypothesis [K : K

p
] = p. This hy-

pothesis is, however, quite restrictive; in fact, in some sense, it reduces to the theory of
well ramified extensions. Roughly speaking, Zhukov, by “eliminating wild ramification” à
la Epp (cf. [E]) can reduce, in a canonical way, the study of a completely ramified exten-
sion to a ferociously ramified one. For a ferociously ramified extension the hypothesis on
[K : K

p
] imply that the extension to consider is in fact f.r-1 and for this there exists a good

ramification theory as we have seen.

Note that under the hypothesis [K : K
p
] = p, case III can always be reduced to case

II by “eliminating wild ramification”; by this we mean that there exists a finite extension
K1/K such that LK1/K1 is f.r-1. But in general this is not possible. For instance take Ex. 4.4

with the following additional hypotheses: (i) u /∈ K
p
, (ii) [K( p

√
u,

p
√

A) : K] = p2.
Now consider the extension K1 = K( p

√
π). Then LK1/K1 is ferociously ramified (we have

eliminated the wild ramification), and in particular it is f.r-2, i.e., not in case II.
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8 Artin Character, Representation and Conductor

Let L/K be a finite Galois extension. The Artin function aG and the Swan function SwG are
defined as follows

Artin function:

{
aG(σ) = − fL/K iG(σ) σ 6= 1

aG(1) = −
∑

σ 6=1 aG(σ)

Swan function:


SwG(σ) = − fL/K sG(σ) σ 6= 1, σ ∈ G0,

SwG(1) = −
∑

σ 6=1 SwG(σ)

SwG(σ) = 0, if σ /∈ G0.

In [K3], Kato considers the function SG = 1/ fL/K SwG instead of the function SwG (see
Remark (6.7), loc. cit.). In what follows we will use both functions, SG and SwG.

Clearly aG and SwG are class functions (because iG and sG are) so they are sums with
complex coefficients of irreducible characters of G. It is a fundamental theorem of Artin
that aG is an actual character of G (i.e., sum with nonnegative integers as coefficients), see
[S1, ch. VI]. From this one can deduce that SwG is also a character. The representation
(defined up to isomorphism) affording the character aG (resp. SwG) is called the Artin
(resp. Swan) representation of group G attached to the extension L/K.

The Artin conductor AG(χ) (resp. the Swan conductor SWG(χ)) of a character χ of G is
the integer

(5)

AG(χ) = (aG, χ) =
1

|G|
∑
σ∈G

aG(σ)χ(σ)

(resp. SWG(χ) = (SwG, χ) =
1

|G|
∑
σ∈G

SwG(σ)χ(σ)).

We show that in general (5) is not (neither for SwG nor for aG) an integer, cf. Example 8.1
below. In [K3], Kato gives a definition of a Swan conductor for characters of degree 1,
without assuming L/K separable. In case I and II he shows that his conductor equals the
formula (5) for SwG.

One can ask whether the Artin function aG is a character of G in the well ramified case.
We will see that (as in the classical case) this is equivalent to show the Hasse-Arf theorem
for cyclic extensions. Note that in order to show that aG is not a character we show that for
an irreducible character χ of G, the Schur product (aG, χ) is not a nonnegative integer.

Example 8.1 We consider a Galois extension L/K which is not well ramified, having the
following properties:

(1) [L : K] = 8, eL/K = 4, fL/K = f ins
L/K = 2;

(2) the functions SwG and aG are not characters of G.

Assume that eK = 2 and K = F2(u, v) as in ex. 3.3. Let L be the splitting field of the
following polynomial

f (X) = X4 − Aπ2X2 + πB, A,B ∈ UK , A = u, B = v.
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Let α and β be two distinct roots of f (X) and α 6= −β. Then K(α)/K is totally ramified
and the element γ = (α + β)/π proves that f ins

L/K = 2, in fact we have

γ2 =
α2 + β2 + 2αβ

π2
= A +

2

π2
αβ,

and if we see this polynomial mod pK(α), we obtain that L = K(γ, α)/K(α) is ferociously
ramified. So, eL/K = 4 and f ins

L/K = 2. For a description of the Galois group Gal(L/K) see

Ex. 3.3. A lengthy calculation5 gives the following values of sG and iG

sG(σ) = 3, sG(τ ) = 5, sG(σ2) = 8,

iG(σ) = 4, iG(τ ) = 5, iG(σ2) = 8.

We show that neither aG nor SwG are characters. In fact consider the character (of degree 1)
ψ : G→ C∗ defined byψ(σ) = i, ψ(τ ) = 1. We find (aG, ψ) = 21/2 and (SwG, ψ) = 19/2,
we only compute (aG, ψ) the other being similar.

(aG, ψ) =
1

8

[
aG(1) +

∑
σ 6=1

aG(σ)ψ(σ)
]

=
1

4

[∑
σ 6=1

iG(σ)
(
1− ψ(σ)

)]
=

1

4
[4(1− i) + 2 · 8 + 4(1 + i) + 4(1− i) + 2 · 5 + 4(1 + i)] =

21

2
.

Note that L/K is not well ramified because the Hilbert formula does not hold for such an
extension, see Theorem 5.1.

8.1 Artin Character in the Well Ramified Case

We show that in the well ramified case aG is an actual character of G by using Borger’s
theorem (cf. Theorem 7.6). As in the classical case, we have to show congruences satisfied
by the differences of ramification jumps for cyclic extensions (like Sen’s theorem).

Proposition 8.2 Let L/K be a cyclic, well ramified extension. The following are equivalent:

(i) (Hasse-Arf) The upper modified ramification jumps are integers.
(ii) The function aG is an actual character of G.

Proof The implication (ii)⇒ (i) is clear. For the implication (i)⇒ (ii), at first we observe
that if H is a normal subgroup of G, then for σ ∈ G/H we have

(∗) aG/H = #(aG),

this comes from the Herbrand property, indeed

#aG(σ) =
1

|H|
∑
s→σ

aG(s) = − 1

eL/LH

∑
s→σ

iG(s) = aG/H(σ).

5It is similar to that in Ex. 3.3, by considering OL = OK [γ, α].
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Lemma 8.3 Let H be a subgroup of G. Then we have6

aG|H = λrH + fLH/K aH , λ = fLH/K vLH (DLH/K )

where rH is the character of the regular representation of H.

Proof If σ ∈ H, σ 6= 1, we have

aG(σ) = − fL/K iG(σ), aH(σ) = − fL/LH iH(σ), rH(σ) = 0,

so, by iH(σ) = iG(σ), we have aG(σ) = λrH(σ) + fLH/K aH(σ).
Take σ = 1. We have aG(1) = fL/K vL(DL/K ) because L/K is well ramified, similarly we

have aH(1) = fL/LH vL(DL/LH ), so

aG(1) = λrH(1) + aH(1) = fL/K vL(DLH/K ) + fL/K vL(DL/LH ) = fL/K vL(DL/K ).

So we are done.

Corollary 8.4 Let ψ be a character of H, then(
aG, IndG

H(ψ)
)

= λψ(1) + fLH/K (aH , ψ).

Proof It suffices to observe that (aG, ψ
∗) = (aG|H , ψ).

We come back to the proof of Proposition 8.2. We have to show that (aG, χ) is a nonneg-
ative integer for any irreducible characterχ. A theorem of Brauer states that every character
of a finite group G is a linear combination with coefficients in Z of characters χ∗i induced
by characters χi of degree 1 of subgroups Hi of G, see [S2, ch. 10, Th. 19]. So χ =

∑
niχ
∗
i ,

where χi are characters of degree 1 of subgroups Hi of G and ni ∈ Z. Thus, by the above
corollary, we have to show that (aG, χ

∗) is a nonnegative integer if χ is a character of de-
gree 1. Let χ be a character of a cyclic group G and suppose |G| = pn. Denote i j the
modified ramification jumps of G so that G = G[i1] ⊃ G[i2] ⊃ · · · ⊃ G[in] 6= {1} are the
modified ramification groups and let iχ be the biggest integer such that the restriction of χ
to the ramification group G[iχ] is not the trivial character. We have (put gi = |G[i]|)

(aG, χ) =
1

pn

∑
σ∈G

aG(σ)χ(σ) =
aG(1)−

∑
σ 6=1 iG(σ)χ(σ)

eL/K

=
1

eL/K

n∑
j=1

∑
σ∈G[i j ]\G[i j +1]

(
1− χ(σ)

)
=

gi1

eL/K
+

(i2 − i1)gi2

eL/K
+ · · · +

(iχ − iχ−1)giχ

eL/K
= ϕL/K (iχ),

(6)

because
∑

σ∈G[i j ]\G[i j +1]

(
1−χ(σ)

)
= 0 for j > iχ; the number ϕL/K (iχ) is integer because

we suppose Hasse-Arf ’s theorem holds, so we are done.
6With aG|H we denote the restriction of aG to H, i.e., if α : H → G is the canonical injection, then aG|H =

aG ◦ α.
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9 A New Proof of a Result of Miki

We show how to deduce a result of Miki (cf. [M, Prop. 10]) by using [H] and [Wy]. We will
need this result in Section 10. It can be read as saying that for small absolute ramification
index the cyclic completely ramified extensions are always totally ramified. We introduce
the genoma of a cyclic extension.

Definition (Genoma) Let L/K be a cyclic extension of degree pn. The genoma of L/K is the
n-tuple (A1, . . . ,An) where a letter Ai is associated to the extension Ki/Ki−1, i = 1, . . . , n
and Ai = U (resp. Ai = T or Ai = F) if Ki/Ki−1 is unramified (resp. totally or ferociously
ramified). We will write gen(L/K) to denote the genoma of L/K.

For instance, in Ex. 3.4 we have gen(L/K) = (F, F) and in Ex. 4.4 gen(L/K) = (T, F).

Theorem 9.1 (Miki) Let L/K be a cyclic extension of degree pn and let K be of characteristic
zero. Suppose that eK < p − 1. Then L/K is separable.

Proof We can suppose without loss of generality that L/K is completely ramified. If
[L : K] = p, then the extension is totally ramified by Proposition 3.2, II. Suppose [L :
K] = p2, then we can suppose that the subextension K1/K of degree p is totally ramified.
Let t0 (resp. t1) be the ramification numbers of K1/K (resp. of L/K1). Now we use Hyodo’s
inequalities to have relations between t0 and t1.

Lemma 9.2 Let L/K be a cyclic and completely ramified extension of degree p2. Let t0 (resp.
t1) the ramification number of K1/K (resp. L/K1).

(i) Assume gen(L/K) = (F, F).

- If t0 ≥ eK/[p(p − 1)], then (t0 + eK )/p ≤ t1 ≤ eK/(p − 1).

- If t0 ≤ eK/[p(p − 1)], then t1 ≥ t0

(
(p2 − p + 1)/p

)
.

(ii) Assume gen(L/K) = (F,T).

- If t0 ≥ eK/[p(p − 1)], then t0 + eK ≤ t1 ≤ peK/(p − 1).

- If t0 ≤ eK/[p(p − 1)], then t1 ≥ t0(p2 − p + 1).

(iii) Assume gen(L/K) = (T, F).

- If t0 ≥ eK/(p − 1), then t0/p + eK ≤ t1 ≤ peK/(p − 1).

- If t0 ≤ eK/(p − 1), then t1 ≥ t0

(
(p2 − p + 1)/p

)
.

(iv) Assume gen(L/K) = (T,T).

- If t0 ≥ eK/(p − 1), then t0 + peK ≤ t1 ≤ p2eK/(p − 1).

- If t0 ≤ eK/(p − 1), then t1 ≥ t0(p2 − p + 1).

Proof In [H, Lemma (4.1)], Hyodo gives these inequalities for the depth of ramification7

dK (L/K). We only have to rewrite those inequalities with dK (K1/K) = (p− 1)t0/eK1/K and
dK (L/K1) = (p − 1)t1/eL/K .

7The depth of ramification is defined in [H], but see also Section 10.4.1.
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By (iii) of the above lemma, we have

t0

p
+ eK ≤ t1 ≤ eK +

eK

p − 1
,

but 1 ≤ t0 ≤ p − 1, so eK + 1 ≤ t1 ≤ eK which is impossible, so eL/K = p2.
Now consider an extension of degree pn, n ≥ 3 with f ins

L/Kn−1
= p and eKn−1/K = pn−1.

Consider the subextension L/Kn−2 where Ki/K is the subextension of degree pi and let ti−1

be the ramification number of Ki/Ki−1 for i = 1, . . . , n (here K0 = K and Kn = L). By
using again the same Hyodo’s inequalities for the extension L/Kn−2, we obtain

(∗) tn−2

p
+ eKn−2 ≤ tn−1 ≤

peKn−2

p − 1
.

Now we give an explicit computation of the ramification number tn−2. In [Wy] we find
many results about ramification jumps of cyclic totally wildly ramified extensions under
the assumption that K is perfect. One can verify that the following result is true even if K
is not perfect.

Lemma 9.3 Let L/K be a cyclic wildly ramified extension of degree pn. Let t0 be the first ram-
ification jump and assume that t0 ≥ eK/(p− 1). Then the ramification jumps t1, t2, . . . , tn−1

are given by

ti = t0 + peK + p2eK + · · · + pieK , i = 1, . . . , n− 1.

Proof Take [Wy] and see Prop. 25, Corollary 26, Th. 28, Corollary 29 and Th. 33; every-
thing works even if K is imperfect.

Note that Lemma 9.3 gives the exact values of ramification jumps of a totally ramified
extension; here we need the ramification number of Kn−1/Kn−2. In particular the (n−1)-th
ramification jumps of Kn−1/K coincides with its (n− 1)-th ramification number, i.e., with
the ramification number of Kn−1/Kn−2. So we apply Lemma 9.3 to the totally ramified
extension Kn−1/K and we have tn−2 = t0 + peK + · · · + pn−2eK , so (∗) becomes

t0

p
+ eK + · · · + pn−3eK + eKn−2 ≤ tn−1 ≤

pn−1eK

p − 1
,

or equivalently

t0

p
+ eK (1 + p + · · · + pn−2) ≤ tn−1 ≤ (pn−2 + · · · + p + 1)eK ,

which is clearly impossible, so eL/K = pn and we are done.
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10 On the Kato Conductor

In the important works of Kato [K2]–[K3] there is a thorough discussion of the Swan con-
ductor, see also [B-C-S] and [Sn]. In particular in [K2], Kato defines a conductor for well
ramified extensions in cases I and II. In [K3], he succeeds in defining an integer valued
conductor KswGK (χ) for characters χ of degree one in the general case. In the next section
we give an upper bound for this conductor in special cases.

Theorem 10.1 Let χ be a character of degree one of GK = Gal(Ks/K) and suppose that
L = KKer(χ)

s /K is a completely ramified extension. Put G = Gal(L/K).

(A) Suppose that L/K is well ramified. Then the Kato conductor of L/K is given by

(7) KswGK (χ) =

[
1

eL/K

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)]
,

where ML/K is a certain “normalized monogenic conductor” defined below in Sec-
tion 10.4.1 and the function SG was defined in Section 8. Here [x] is the largest inte-
ger not exceeding x. We also have

KswGK (χ) =

{
ϕL/K (in)− 1 cases I and III

ϕL/K (in) case II

where in is the last modified ramification jump of Gal(L/K).
(B) If L/K is of degree pn, then we have

KswGK (χ) ≤

[
1

eL/K

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)]
.

10.1 The Norm Map

Let K be a complete field and let L/K be a Galois extension. The norm map NL/K is denoted

by N when there is no risk of confusion. Throughout this chapter we assume that [K : K
p
]

is finite. We recall some results about the norm map.

Proposition 10.2 Let K be a complete field.

(A) Let L/K be a cyclic, totally ramified extension of degree p and let s := sG(σ) be the
ramification number. Then we have

(i) NU i
L ⊆ U i

K , for 0 ≤ i ≤ s.

(ii) NU s+pi
L = U s+i

K , for i > 0.

(iii) NU s+i
L = NU s+i+1

L , for i > 0, p - i.

In particular U s
K 6⊂ NL∗ and U s+1

K ⊂ NL∗.
(B) Let L/K be a cyclic, ferociously ramified extension of degree p and let s = sG(σ). Then we

have
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(i) NU i
L ⊆ U i p

K , for 0 ≤ i ≤ s.

(ii) NU s+i
L = U sp+i

K , for i > 0.

In particular U ps
K 6⊂ NL∗ and U ps+1

K ⊂ NL∗.

The case (A) is solved in Prop. 5, ch. V of [S1] or in Prop. (1.5), ch. III of [F-V]. For the
ferociously ramified case see [K2, p. 332].

10.2 Definition of the Kato Conductor

In this section we want to give the definition of the Kato conductor, without introducing
too much machinery. We only recall some notation and definitions.

Let (Z/nZ)(1) be the GK -module of n-th roots of unity in Ks and for r > 1, let (Z/nZ)(r)
be the r-th Tate twist of (Z/nZ)(1), i.e., (Z/nZ)(r) = [(Z/nZ)(1)]⊗r (with diagonal GK

action). Also, (Z/nZ)(0) is the GK -module Z/nZ with trivial action.
If K is a field of characteristic zero, for n 6= 0, Kato considers the following cohomology

groups:
Hq

n(K) := Hq
(
K, (Z/nZ)(q− 1)

)
.

By passing to the inductive limit with respect to the canonical transition maps Z/nZ(r)
m→

Z/nmZ(r), we have

Hq(K) := Hq
(
K, (Q/Z)(q− 1)

)
= lim
→

Hq
n(K).

If K is a field of characteristic p > 0, Kato defines again cohomology groups Hq
n(K)

by using more complicated objects related to the logarithmic part of the De Rham-Witt
complex, but it is not important for understanding what follows, in fact we only consider
H1 and H2 and in this case one can show (see [K1, II, p. 659])

H1(K) ∼= Homc

(
Gal(Kab/K),Q/Z

)
H2(K) ∼= Br(K)

(Kab denotes the maximal abelian extension of K and Homc means continuous homomor-
phism with respect to the Krull topology on Gal(Kab/K) and the discrete topology on Q/Z;
Br(K) is the Brauer group of K).

For χ ∈ Hq and a1, . . . , ar ∈ K∗, Kato defines a symbol {·, ·} in Hq+r. This will be used
to define a pairing between Hq and the Milnor K-group KM

r (K) of K.
We recall the definition of the Kato’s pairing for field of characteristic zero, in character-

istic p > 0 see [K3, (1.3)]. For a ∈ K∗ and a fixed n ≥ 0, let {a} ∈ H1
(
K, (Z/nZ)(1)

)
be

the image under the connecting homomorphism K∗ → H1
(
K, (Z/nZ)(1)

)
induced by the

exact sequence of GK -modules

(8) 1 −→ (Z/nZ)(1) −→ K∗s
n−→ K∗s −→ 1.

For a1, . . . , ar ∈ K∗ the symbol

{a1, . . . , ar} ∈ Hr
(
K, (Z/nZ)(r)

)
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is the cup-product {a1} ∪ {a2} ∪ · · · ∪ {ar}. For χ ∈ Hq(K) and a1, . . . , ar ∈ K∗

{χ, a1, . . . , ar} ∈ Hq+r
n (K)

is the cup-product {χ} ∪ {a1} ∪ · · · ∪ {ar} By passage to the limit, we have for χ ∈ Hq(K)
the element {χ, a1, . . . , ar} ∈ Hq+r(K).

The q-th Milnor K-group KM
q (K) of K is defined for q = 0, 1 as KM

0 (K) = Z, KM
1 (K) =

K∗ and for q > 1 as

KM
q (K) :=

q times︷ ︸︸ ︷
(K∗ ⊗ · · · ⊗ K∗) / J

where J is the subgroup generated by the elements of the form a1 ⊗ · · · ⊗ aq such that
ai + a j = 1 for some i 6= j. The class of a1 ⊗ · · · ⊗ aq is also denoted by {a1, . . . , aq}. All
this defines the pairing

(9)
Hq(K)⊗ KM

r (K) −→ Hq+r(K)

χ⊗ {a1, . . . , ar} −→ {χ, a1, . . . , ar}.

We denote χL the image χ ∈ Hq(K) in Hq(L). The definition of the Kato conductor is
given by the following proposition (the proof is given in [K3, Prop. (6.3)]).

Proposition 10.3 (Definition) For χ ∈ Hq(K) the Kato conductor KswGK (χ) is the small-
est integer n ≥ 0 such that one of the following equivalent conditions (i)–(iii) holds.

(i) {χL, 1 + πnpL} = 0 in Hq+1(L) for all complete fields L over K such that OK ⊂ OL and
pK ⊂ pL.

(ii) {χL, 1 + πn+1OL} = 0 in Hq+1(L) for all complete fields L over K such that OK ⊂ OL

and pL = pKOL.
(iii) {χK, 1 + πn+1T} = 0 in Hq+1(K) where K is the fraction field of the henselisation of

OK [T](π).

The characters with Kato conductor zero are given in the following proposition (see [K3,
Prop. (6.1)]).

Proposition 10.4 Let K be a complete field. Then the subgroup of Hq(K) composed by
characters with Kato conductor equals zero is

Hq(K)(non-p)⊕ Ker
(
Hq(K){p} → Hq(Knr){p}

)
,

where Knr denotes the maximal unramified extension of K, (non-p) means the part prime to
p and Hq(K){p} denotes the p-primary part.
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10.3 The Kato Conductor of a Character

Here, we consider the case q = 1. In this case we show that the symbol defined by (9)
coincides with the symbol (·, ·) defined in [S1, ch. XIV]; this allows to reduce the computa-
tion of the Kato conductor to a norm computation. Consider the exact sequence of trivial
GK -modules

0 −→ Z −→ Q −→ Q/Z −→ 0

and let δ be the connecting homomorphism δ : H1(GK ,Q/Z) → H2(GK ,Z). If b ∈ K∗ =
H0(GK ,K∗s ) and χ ∈ H1(GK ,Q/Z), then the cup-product b ∪ δχ is an element of the
Brauer group H2(GK ,K∗s ) = Br(K). The element b ∪ δχ is denoted by (b, χ) and we now
show that {b, χ} = (b, χ).

Lemma 10.5 With the above notation we have {χ, b} = (b, χ).

Proof Put GK = G and let χ ∈ H1(K,Z/n). Consider the following commutative diagram
(see [Po p. 122])

H0(G,K∗s )×H1(G,Z/n)
(δ,1)−−−−→ H1

(
G,Z/n(1)

)
×H1(G,Z/n)

∪
y ∪

y
H1(G,K∗s ⊗ Z/n)

δ−−−−→ H2
(
G,Z/n(1)⊗ Z/n

)
(the δ in (δ, 1) is induced by the exact sequence (8)). From this we obtain δ(b∪χ) = δb∪χ.
Now consider the commutative diagram

H0(G,K∗s )×H1(G,Z/n)
(1,δ)−−−−→ H0(G,K∗s )×H2(G,Z)

∪
y ∪

y
H1(G,K∗s ⊗ Z/n)

δ−−−−→ H2(G,K∗s )

its commutativity gives δ(b ∪ χ) = b ∪ δχ. Finally

{b, χ} = {b} ∪ χ = δb ∪ χ = δ(b ∪ χ) = b ∪ δχ = (b, χ).

One of the fundamental properties of (χ, b) is stated in the following proposition (see
[S1, ch. XIV, Section 1, Corollaire 1]).

Proposition 10.6 The element (b, χ) = {χ, b} vanishes if and only if b is a norm of the
extension Lχ/K, where Lχ is the field fixed by Ker(χ).

Thus, by definition, in order to calculate KswGK (χ) we have to compute the minimal
integer n such that U n+1

L is in the norm of the cyclic extension corresponding χ|L when
L runs through all complete fields satisfying pL = pKOL. Note that the minimal integer n
such that U n+1

K is contained in the norm is not, in general, the Kato conductor (e.g. consider
a field K with algebraically closed residue field).

Kato gives another characterization of Ksw(χ) which does not involve extensions L/K
as in the definition, cf. [K3, Proposition (6.5)].
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Proposition 10.7 Let K be a complete discrete valuation field and assume that [K : K
p
] =

pc <∞, and Hc+1
p (K) 6= 0. Then, for χ ∈ H1(K) and n ≥ 0 the Kato conductor Ksw(χ) is n

if and only if n is the smallest integer such that

{χ,U n+1KM
c+1(K)} = 0 in Hc+1(K),

where U iKM
r (K) is the subgroup of KM

r (K) generated by the elements {x, y1, . . . , yr−1} such
that x ∈ U i

K and y1, . . . , yr−1 ∈ K∗.

In the following we will only consider characters χ such that the corresponding cyclic
extensions L/K are p-extensions, because for tame characters χ we have Ksw(χ) = 0, cf.
Proposition 10.4. We can compute the Kato conductor in the following manner.

Corollary 10.8 Let K be as in Proposition 10.7. Let χ ∈ H1(K) and assume that the corre-
sponding cyclic extension L/K is a p-extension. Then the minimal integer n such that

U n+1
K ⊂ NL/K L∗

is the Kato conductor of χ.

Proof We can assume that K is imperfect, otherwise we have only totally ramified charac-
ters for which the Kato conductor is the Swan conductor SWG(χ). Let [K : K

p
] = pc <∞.

By hypothesis (i.e., U n+1
K ⊂ NL/K L∗) we have Ksw(χ) ≥ n. Now U n+1

K ⊂ NL/K L∗, im-
plies that U n+1Kc+1(K) is contained in the norm groups NL/K Kc+1(L). By Corollary p. 659
in [K1, II] we have that {χ,U n+1Kc+1(K)} = 0 in Hc+2(K) and so, by Proposition 10.7,
Ksw(χ) ≤ n.

10.4 The Kato Conductor in the Well Ramified Case

As stated in [K3, Prop. (6.8)], if L/K is in case I or II and χ is a character of degree 1 of G,
then

(10) KswG(χ) =
1

|G|
∑
σ∈G

SwG(σ)χ(σ) =
1

eL/K

∑
σ∈G

SG(σ)χ(σ).

Note that if t is the maximal modified ramification jump of L/K then we have

(11) Ksw(χ) =

{
ϕL/K (t)− 1 case I

ϕL/K (t) case II.

The proof of the above formula is an easy computation left to the reader. These formulas
do not work in general, as we have seen in Ex. 8.1, but see also Section 10.5.3.
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10.4.1 The Normalized Monogenic Conductor ML/K

For complete fields the depth of ramification is defined by

dK (M/L) = vK (DM/L)−
(
vK (πL)− vK (πM)

)
,

for algebraic extensions K ⊂ L ⊂ M. See [H] for more information. If L/K is separa-
ble, dL(L/K) =

∑
σ 6=1 sG(σ). We define the integer ML/K , called normalized monogenic

conductor attached to an extension L/K by the formula:

dL(L/K) + ML/K =
∑
σ 6=1

sG(σ).

Note that in cases I, II we have ML/K = 0, but in case III we have ML/K = eL/K − 1.

10.4.2 Case III: Degree p2

We can suppose, without loss of generality, that Hc+1
p (K) 6= 0, where pc = [K : K

p
],

otherwise we consider the extension M =
⋃

i≥0 K(T p−i

) of the residue field K preserving

p-bases for which Hc+1
p (M) 6= 0 (see [K2, Lemma (3.9)]). Let L/K be a cyclic extension of

degree p2 in case III, then gen(L/K) = (T, F) by Th. 6.1. We use the following notation:

- K1/K is the subextension of degree p in L/K; the norm map NK1/K is denoted by N1;
- G = 〈σ〉 and a := sK1/K (σ), b := sG(σp).

By Herbrand’s property we have a + 1 = piG(σ), i.e., iG(σ) = (a + 1)/p. We put a =
−1 + pa ′. The computation of the Kato conductor is as follows.

1. We show that U b+(p−1)a ′

K ⊂ NL∗;

2. We show that U b+(p−1)a ′−1
K 6⊂ NL∗, so the Kato conductor is b + (p − 1)a ′ − 1 by

Corollary 10.8;
3. We express the obtained value in terms of the function SG and the normalized mono-

genity conductor.

1. A direct computation by using Proposition 10.2 gives:

NL/K1
U b+1

L = U pb+1
K1
⊆ NL/K1

L∗

N1U a+(pb+1−a)
K1

= N1U a+pb+p−pa ′

K1
⊆ N1K∗1 ,

which implies U a+b+1−a ′

K ⊂ NL∗.
2. The norm map induces

U b−1
L /U b

L

NL/K1−−−−→ U pb−p
K1

/U pb−p+1
K1

N1−−−−→ U n
K/U

n+1
K .

Now we calculate the number n and we show that it is the Kato conductor. The first step is
to show that pb− p > a.

Proof of pb− p > a Consider Lemma 9.2, with our notation we have t0 = a and t1 = b.
So we have:
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(i) If a ≥ eK/(p − 1), then b ≥ a/p + eK .
(ii) If a ≤ eK/(p − 1), then b ≥ a(p2 − p + 1)/p.

If (ii) holds, then pb− p > a is clear. In the first case, observe that a is not divisible by p, so
b > a/p +eK . Or, note that L/K is cyclic of degree p2 and by Miki’s theorem (Theorem 9.1)
we have that eK ≥ p. This shows pb− p > a.

Now we can write pb − p = a + i with i ≥ 1 and by Proposition 10.2 (A) (ii)–(iii) we
have

N1(U pb−p
K1

) = N1(U a+pb−a−p+(p−1)
K1

) = U a+[pb−a−1]/p
K .

So we have n = a + [pb − a − 1]/p = a + b − a ′ = b + (p − 1)a ′ − 1. Now, we show

that n is exactly the Kato conductor. The norm map N1 : U pb−p
K1

/U pb−p+1
K1

→ U n
K/U

n+1
K ,

is bijective (because pb − p > a and K1/K is totally ramified), but NL/K1
: U b−1

L /U b
L →

U pb−p
K1

/U pb−p+1
K1

is not surjective, so the composition N1 ◦ NL/K1
is not surjective, so U n

K *

NL/K L∗. On the other hand we have U n+1
K ⊆ NL/K L∗, which, by Corollary 10.8, means that

the Kato conductor is n.
3. Recall that the function SG is defined for a completely ramified extension by SG(σ) =

−sG(σ) if σ 6= 1 and by SG(1) = −
∑

σ 6=1 SG(σ). If we try to use the classical formula seen
in (10) we find

1

p

∑
σ∈G

SG(σ)χ(σ) =
(p − 1)(a + 1)

p
+ b = (p − 1)a ′ + b,

which is not (p−1)a ′+b−1, the Kato conductor. We try to use the normalized monogenity
conductor:

1

p

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)
=

(p − 1)a

p
+ b,

which is not the Kato conductor, but we observe that the integer part of this value is in fact
the Kato conductor, so we have

KswGK (χ) =
[

1

eL/K

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)]
.

10.4.3 Proof of the Theorem 10.1 (A)

Let L/K be a cyclic extension in case III and let χ ∈ H1(K) be the corresponding character.
As in the beginning of the preceding section we can suppose that Hc+1

p (K) 6= 0. So by
Corollary 10.8 we have to compute the minimal integer n such that U n+1

K ⊂ NL/K L∗.
Let T/K be the totally ramified extension defined by Theorem 6.1 (here T/K is uniquely

determined because L/K is cyclic). Denote U v
L for v ∈ R, v ≥ 0 the group U n

L where n is
the smallest integer≥ v.

If t is the maximal modified ramification jump of L/K, then

(12) U
ϕL/T (t)+1
T ⊂ NL/TL∗
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because L/T is in case II and its Kato conductor is ϕL/T(t) by formula (11). Now consider
the totally ramified extension T/K. By [S1, Ch. V, Cor. 3, Section 6] we have

(13) NT/K (U s
T) = U

ϕT/K (s+1)−1
K if Gal(T/K)[s + 1] = {1}.

Let t ′ = iT/K (τ ) be the maximal modified ramification jumps of T/K. Let r be the maxi-
mum of iL/K (σ) for σ ≡ τ mod Gal(L/T). By Lemma 7.3 we have t ′ = ϕL/T(r). Note that
r < t (we explain this in the next paragraph), so

(14) t ′ = ϕL/T(r) < ϕL/T(t).

To show r < t note that G[i] = Hi+1 (see beginning of Section 7) and Hi/Hi+1 are abelian
groups annihilated by p (cf. Proposition 2.1) so G[r] ⊃ G[t] and G[r] 6= G[t] because L/K
is cyclic.

Now we use the fact that the number ϕL/K (t) is an integer (by Borger’s Theorem 7.6).

We shall show that U
ϕL/K (t)
K ⊂ NL/K L∗.

By (14) we have Gal(T/K)[ϕL/T(t)] = {1} and so we can apply (13). By applying the
norm map NT/K to (12) we have

NT/K (U
ϕL/T (t)+1
T ) = U

ϕT/K (ϕL/T (t)+2)−1
K ⊂ NL/K L∗.

Thus it suffices to show that the smallest integer≥ ϕT/K

(
ϕL/T(t)+2

)
−1 is ϕL/K (t). Indeed

we have

ϕT/K

(
ϕL/T(t) + 2

)
− 1 = ϕT/K

(
ϕL/T(t)

)
+

2

[T : K]
− 1 = ϕL/K (t)− 1 +

2

[T : K]
,

where we have used Proposition 7.5. By Borger’s theorem ϕL/K (t) is an integer and thus we
have shown that Ksw(χ) ≤ ϕL/K (t)− 1.

Now we need a lemma which is a key tool to deduce Borger’s theorem.

Lemma 10.9 Let L/K be a Galois extension in case II. If L = K(a1/ f ), then a ∈ K \ K
p

where f = [L : K] = f ins
L/K . Let α be a lifting of a in K and let M = K(β) where β f = α. If

σ ∈ Gal(L/K) and σ ′ ∈ Gal(LM/M) is such that σ ′|L = σ, then

iLM/M(σ ′) = eLM/LiL/K (σ).

Proof (after J. Borger) Note that the extension M/K is in case II and LM/M is in case I,
in particular it is totally ramified. Let x ∈ OL such that OL = OK [x]. One can check that
x f − α ∈ pL \ p2

L. Let g(X) be the minimal polynomial of β over K. Then g(X + x) is an
Eisenstein polynomial over L (because g(X + x) ≡ X f + x f −α ≡ X f mod pL) and β − x is
a root of g(X + x). So β − x is a prime of LM and we have

iLM/M(σ ′) = vLM

(
σ ′(β − x)− (β − x)

)
= vLM

(
σ ′(x)− x

)
= eLM/LiL/K (σ).

End of the Proof of Theorem 10.1 (A) and Proof of Borger’s Theorem Now we simul-
taneously deduce the formula for the Kato conductor in case III and Borger’s theorem.
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We compute the classical Artin’s conductor A(χ|M) for M as in the above lemma. By the
preceding lemma we have

A(χ|M) =
1

eLM/M

∑
σ ′∈Gal(LM/M)

χ|M(σ ′)iLM/M(σ ′)

=
eLM/L

eLM/M

∑
σ ′∈Gal(LM/M)

χ|M(σ ′)iL/K (σ) =
1

eL/K

∑
σ∈G

χ(σ)iL/K (σ).

Since A(χ|M) is an integer by Artin’s theorem we deduce that the latter expression is an
integer. Now by Proposition 8.2 one deduces the Hasse-Arf theorem for L/K.

The above argument also shows that the Swan conductor (= Kato conductor) of LM/M
is equal to A(χ|M)− 1 which shows that Ksw(χ) ≥ ϕL/K (t)− 1, so Ksw(χ) = ϕL/K (t)− 1
and Theorem 10.1 (A) follows.

10.5 An Upper Bound for the Kato Conductor

In this section we give a formula for the maximal value of the Kato conductor depending on
SG and ML/K . In Section 10.5.3 we shall produce an example for which the Kato conductor
is strictly smaller than the maximal value. Let L/K be a cyclic extension of degree pn. We
use the following notations:

- K j is the subextension of degree p j and Kn = L, K0 = K.
- G = 〈σ〉, and t j are the ramification numbers of L/K, i.e., the ramification numbers of

Gal(K j+1/K j), for 0 ≤ j ≤ n− 1.

Lemma 10.10 Let L/K be a cyclic, completely ramified extension of degree pn, n ≥ 2 with
the above notations. Then

ML/K = (p − 1)
(n−1∑

i=1

pn−isG(σpi−1

)− eL/Ki
ti−1

)
.

Let χ ∈ H1(K,Q/Z) be a character of the Galois group GK , the quasi-conductor
K̃sw(χ) = K̃sw(L/K) (L = KKer(χ)

s ), is defined as the number given by the formula

K̃sw(χ) := K̃sw(L/K) :=
1

eL/K

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)
.

As we have already seen for extensions of degree p2, this is not always an integer, it is a
rational number and we show that the Kato conductor is at most the integer part of the
quasi conductor, see Section 10.5.2.

10.5.1 Cyclic Extensions of Degree p2

Now we consider cyclic, completely ramified extensions of degree p2. We assume that
Hc+1

p (K) 6= 0 as in the beginning of Section 10.4.2. We have to consider three cases, de-
pending on the ferocious and wild ramification of L/K:
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A) gen(L/K) = (F, F);
B) gen(L/K) = (F,T);
C) gen(L/K) = (T, F).

Recall that the totally ramified case is classical and we know by Section 10.4 the formula
of Ksw(L/K). Here we show how it is possible to calculate the maximal value of the Kato
conductor by means of the function sG and the normalized monogenity conductor.

Notation: a, b are the ramification numbers of the subextensions of L/K, i.e., a :=
sK1/K (σ), b := sG(σp).

A) Let L/K be a ferociously extension, either f.r-1 or f.r-2. We have Ksw(L/K) ≤
pb + pa− a. In fact (by Proposition 10.2)

NL/K1
U b+1

K1
= U pb+1

K1
⊆ NL/K1

L∗

N1U a+i
K1

= U pa+i
K ⊆ N1K∗1 , i > 0

so, for pb + 1 = a + i, i.e., i = pb− a + 1, we have

U pa+pb−a+1
K ⊆ NL/K L∗.

If we use the formula for the Kato conductor in the well ramified case, i.e., the formula (10),
we see that

∑
σ∈G SG(σ)χ(σ) = (p2 − p)sG(σ) + pb 6= pb + pa− a. Now, the normalized

monogenity conductor of L/K is ML/K = (p − 1)
(

piG(σ)− a
)

(by using Lemma 10.10).

We can see that Ksw(L/K) ≤ K̃sw(L/K), indeed

Ksw(L/K) ≤
∑
σ∈G

SG(σ)χ(σ)−ML/K = pb + pa− a.

B) In this case we have Ksw(L/K) ≤ pa + b − a. The norm calculation gives (cf.
Proposition 10.2)

NL/K1
U b+p

L = U b+1
K1
⊆ NL/K1

L∗

N1U a+i
K1

= U pa+i
K ⊆ N1K∗1 , i > 0

so if we take i = b + 1 − a, we obtain U pa+b−a+1
K ⊂ NL/K L∗. Now we want to relate this

value with the function SG and ML/K . Similarly to the preceding case we could consider the
formula

(15) Ksw(L/K) ≤ K̃sw(L/K).

Let us verify this formula (recall that b := sG(σp)).

1

p

(∑
σ∈G

SG(σ)χ(σ)−ML/K

)
=

(p2 − p)sG(σ) + psG(σp)− (p − 1)
(

psG(σ)− pa
)

p

= pa− a + b.
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C) We have: (cf. Proposition 10.2)

NL/K1
U b+1

L = U pb+1
K1
⊆ NL/K1

L∗

N1U a+i
K1

= N1U a+i+1
K1

⊆ N1K∗1 , for i > 0 and p - i.

For i = pb− a + RK1/K , where RK1/K is the smallest nonnegative integer such that pb− a +
RK1/K is divisible by p, we have

N1U a+i
K1

= N1U
a+(pb−a+RK1/K )
K1

= U
a+(pb+RK1/K−a)/p
K ⊂ NL∗.

So we have

Ksw(L/K) ≤ a +
pb + RK1/K − a

p
− 1 = a +

[
pb− a

p

]
.

The Kato conductor is exactly a + [(pb− a)/p] because the composition of the norm maps

U b
L/U

b+1
L −→ U pb

K1
/U pb+1

K1
−→ U a+[(pb−a)/p]

K /U a+[(pb−a)/p]+1
K

is not surjective, so Ksw(L/K) ≤ [K̃sw(L/K)].

10.5.2 Proof of Theorem 10.1 (B)

We prove Theorem 10.1 part (B); this is equivalent to show that the Kato conductor of χ is
at most the integer part of the “quasi-conductor” K̃sw(χ). Let L/K be the cyclic extension
of degree pn, corresponding to χ ∈ H1(K) and K1 the subextension of degree p. We
relate the Kato conductor of L/K with the Kato conductor of L/K1, hence by induction we
conclude. Put X = Ksw(L/K1), G = 〈σ〉, and H = Gal(L/K1).

At first we relate ML/K with ML/K1
, then we calculate K̃sw(L/K). Here ti indicates the

ramification numbers of Ki/Ki−1, 1 ≤ i ≤ n. By Lemma 10.10 we have

ML/K = (p − 1)
n−1∑
i=1

(
pn−isG(σpi−1

)− eL/Ki
ti−1

)
= (p − 1)

(
pn−1sG(σ)− eL/K1

t0

)
+ (p − 1)

n−1∑
i=2

(
pn−isG(σpn−i

)− eL/Ki
ti−1

)
,

now a simple change of index in the last sum shows that

(16) ML/K = (p − 1)
(

pn−1sG(σ)− eL/K1
t0

)
+ ML/K1

.
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Replacing the formula (16) in K̃sw(L/K), we have

K̃sw(L/K) =
1

eK1/K

(
1

eL/K1

∑
τ∈H

SH(τ )χ(τ ) +
(pn − pn−1)sG(σ)

eL/K1

)

−
ML/K1

eL/K
−

(p − 1)(pn−1sG(σ)− eL/Kt0)

eL/K

=
1

eK1/K

(
K̃sw(L/K1) +

(p − 1)eL/K1
t0

eL/K1

)
=

1

eK1/K
K̃sw(L/K1) +

(p − 1)t0

eK1/K
.

Now we have to consider two cases.

1. The extension K1/K is ferociously ramified. A direct calculation gives

U X+1
K1
⊂ NL/K1

L∗, (by def. of X)

NK1/KU t0+(X+1−t0)
K1

= U pt0−t0+X+1
K ⊂ NL/K L∗,

so Ksw(L/K) ≤ pt0 − t0 + X. But the calculation just done gives:

[K̃sw(L/K)] = [K̃sw(L/K1) + pt0 − t0] = X + pt0 − t0,

so in this case we are done.

2. The extension K1/K is wildly ramified. A direct calculation gives

U X+1
K1
⊂ NL/K1

L∗, (by def. of X)

NK1/KU
t0+(X+1−t0+RK1/K )
K1

= U
t0+(X+1−t0+RK1/K )/p
K ⊂ NL/K L∗,

where RK1/K is the smallest non negative integer such that X + 1− t0 + RK1/K is divisible by
p. So Ksw(L/K) ≤ t0 + [(X − t0)/p]. To conclude we need of the following lemma.

Lemma 10.11 Let a = t/pb ∈ Q with b ≥ 1, t ∈ N and let s be a positive integer such that
[a] ≥ s. Then [

[a]− s

p

]
=
[

a− s

p

]
.

Proof Let t = [a]pb + r, 0 ≤ r < pb. Replacing the value of a in the statement, we put
X := [(t − spb)/(pb+1)]. So t − pbs = X pb+1 + r0, 0 ≤ r0 < pb+1, and we have[

[a]− s

p

]
=
[

X pb+1 + r0 − r

pb+1

]
.
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We show that r0 − r ≥ 0. Indeed, r0 − r = pb([a]− s− X p), but

a− s− X p = r/pb ≥ 0, and [a] ≥ s,

hence ([a]− s− X p) ≥ 0. Finally [(r0 − r)/pb+1] = 0. So the lemma is proved.

We return to proof of the proposition. By the above lemma (with a = K̃sw(L/K1)) we
have

[K̃sw(L/K)] = t0 +

[
K̃sw(L/K1)− t0

p

]
= t0 +

[
X − t0

p

]
and the proposition is proved.

10.5.3 Example of Computation of the Kato Conductor

Here we show that the Kato conductor can be smaller than [K̃sw(L/K)]. Let F be a complete
field of characteristic zero with residue field Fp(y), (p 6= 2) the field of rational function
in one variable over Fp and assume eF = 1. We study a particular cyclic extension over
K = F(ζp2 ). We choose as a prime element in K the element π = ζp2 − 1. Note that
eK = p(p − 1). Consider the cyclic extension L = K(x) defined by

(∗) xp2

= (1 + Aπp)πp, A = y.

Let G = 〈σ〉. We clearly have f ins
K1/K = p = eL/K1

; note that L/K is not well ramified (cf.

Theorem 6.1). In fact putting xp = z, we find that the subextension K1 = K(z)/K is f.r-1
with iK1/K (σ) = p − 1 := a and L/K1 is totally ramified with iG(σ) = p2 + 1, by using the
notation as in the preceding section we have b = p2. The situation is like this:

L L = K1 OL = OK1 [x]
| |

K1 K( p
√

y) OK1 = OK [α]
| |
K K

where the extension of valuation rings is OL = OK [α, x], with α = (z/π− 1)/π. Note that
x is a prime of OL. By the preceding section we know that the Kato conductor Ksw(L/K) is
less than pa + b− a, we will show that in fact it is strictly smallest than this value.

Let us look at the norm map NL/K .

U b
L/U

b+1
L

NL/K1−−−−→ U b
K1
/U b+1

K1

N1−−−−→ U pa+b−a
K /U pa+b−a+1

K

∼=
y ∼=

y ∼=
y

L = Fp( p
√

y) −−−−→ K1 = Fp( p
√

y) −−−−→ K = Fp(y)

.

We investigate these maps and we show that the composition N1 ◦NL/K1
is surjective, so we

deduce that U pa+b−a
K ⊂ NL/K L∗ which implies Ksw(L/K) < pa + b− a.
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Let us consider NL/K1
: U b

L/U
b+1
L −→ U b

K1
/U b+1

K1
. It suffices to compute the norm of the

elements of the form 1 + uxb with u ∈ OK1 (recall that x is the prime chosen in OL and see
[S1, ch. V]).

NL/K1
(1 + uxb) ≡ 1 + NL/K1

u · NL/K1
xb + TrL/K1

(uxb) mod pb+1
K1

≡ 1 +
(
up(1 + Aπp)pπp2

− u(1 + Aπp)pπp
)

mod pb+1
K1
.

Hence, the norm map on the residue fields induces the following homomorphism

(17)
NL/K1

: L −→ K1

u 7→ up − u.

This map is clearly not surjective.

Now we make explicit the norm map N1 = NK1/K : U b
K1
/U b+1

K1
−→ U pa+b−a

K /U pa+b−a+1
K

(recall that a is the ramification number of K1/K). The induced map

U b
K1
/U b+1

K1

N1−→ U b+(p−1)a
K /U b+(p−1)a+1

K

is surjective (Proposition 10.2) and we explicitly determine it. For v =
∑p−1

i=0 aiα
i ∈ OK1

we have
N1(1 + vπb) ≡ 1 + Tr(vπb) mod p

b+(p−1)a+1
K ,

and we have Tr(v) =
∑

ai Tr(αi). A direct computation gives

Tr(αi) ≡ 0 modπ(p−1)a+1, for i = 1, 2, . . . , p − 2

Tr(αp−1) ≡ π(p−1)a modπ(p−1)a+1,

Tr(a0) ≡ 0 modπ(p−1)a+1.

So the induced norm map on residue fields is given by

(18)
K1

N1−→ K

v −→ ap−1.

Now we consider the image of an element γ =
∑p−1

i=0 bi( p
√

y)i , bi ∈ Fp(y). By composing
maps (17) and (18) we see that γ 7→ bp−1, which means that the composition is surjective
and the Kato conductor is strictly smaller than pa + b− a.
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