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In the thirty years since it was proved that 0, 1 and 144 were the only perfect squares
in the Fibonacci sequence [1,9], several generalisations have been proved, but many
problems remain. Thus it has been shown that 0, 1 and 8 are the only Fibonacci cubes [6]
but there seems to be no method available to prove the conjecture that 0, 1, 8 and 144 are
the only perfect powers.

In a different direction, generalising the sequence to Pn{a) defined by P0(a) = 0,
/»,(*) = 1, P,,+2(a) = aPn+i(a) + Pn(a) or to Pn(a) defined by po(a) = 0, p,(fl) = l,
pn+2{a) = apn+\(a)-pn(a), it has been shown that the problem of determining the
squares in these sequences can be handled easily when a is odd, but only in exceptional
cases when a is even [2,3,4]. In the case of the first of these with a = 2, we obtain the Pell
sequence, 0 ,1 ,2 ,5 , . . . , 169,. . . , to which we shall refer below simply as Pn. It has been
shown by Ljunggren [5] that its only squares are 0, 1 and 169. However, the method of
that paper was long and extremely complicated, involving relative units in a biquadratic
field, and Mordell asked over 30 years ago [7] whether a simpler proof might not be
available. There has indeed been another proof recently [8] which is quite different in
conception, depending as it does on purely analytical ideas. Although that proof is a
considerable achievement, whether it can be regarded as more simple is a matter of
opinion, as it still seems to require tools and a mass of detail disproportionate to the
apparent difficulty of the problem. Maybe what Mordell had in mind was a proof akin to
that for Fibonacci squares, both short and technically elementary.

Despite this challenge, no such proof has appeared; it may therefore perhaps be of
interest to present the following very simple proof of the fact that there are no other
powers in the sequence, a result far exceeding the present state of knowledge of the
corresponding problem for the Fibonacci sequence.

THEOREM. The only solutions of Pn = xk with k > 2 are given by « = 0,1.

LEMMA. The Diophantine equation y2-2zk - - 1 with k>2 has only the solutions
y = z = \andy = 239, z = 13, k = 4.

Proof of lemma. For k = 4 or a multiple of 4, the result is Ljunggren's. For other
values, k must have an odd prime factor, and so without loss of generality may be taken
to be odd, say k = 2K + 1. For any solution both y and z must be odd, and factorising in
Q[i] gives (y + i)(y - i) = (1 + 0(1 ~ i)z2K+\ Since (1 + 0 and (1 - i) are associates we
find that y + i = (1 + i)(a + ib)2K+) and z = a2 + b2 for some suitable rational integers a
and b, since any units, i.e. powers of i, can be absorbed into the a + ib. Thus we find
2i = (1 + 0(a + ib)2K+l - ( 1 " 0(fl - ib)2K+l and so

l + i = (a + ib)2K+'i+i(a-ib)2K+'i

= (a + ib)2K+1 + (-l)K(ia + b)2K+\

Thus, if K is even, (1 + /) is divisible by (a + ib) + (ia + b) = (1 + i)(a + b) whence
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a + b = ± 1 , and similarly, if K is odd, a-b = ±1 . In either case we obtain z = a2 + b2 =
2a2 ±2a + 1, and so 2z = c2 + 1, where c = \2a ± 1| > 1.

Our equation can now be rewritten in the form y2 - (c2 + l)(zK)2 = - 1 , and since the
general solution of the Pell equation u2 - (c2 + l )v2 = - 1 is given by

we find that

Now suppose that p is any prime dividing \(c2 +1). Then /> > 5 . Let / / || \(c2 + 1).
Then from (1) we see that p | (2/n + 1) and so if pM || (2m + 1), we see that the first term
on the right hand side of (1) is divisible by p^ precisely, whereas all the other terms are
divisible by higher powers. Thus \K = /x, and since this holds for every prime factor of
\(c2 + 1), it follows that (\(c2 + 1))* divides (2m + 1) and so 2m + 1 > (\(c2 + l))K. On
the other hand from (1) we see that (s(c2 + 1))* >2m + 1 unless m = 0 and c = 1. Thus
Z = l.

Proof of theorem. For n odd, the result follows from the lemma and the identity
Ql - 2P\ = (-1)" where the sequence Qn satisfies the same recurrence relation as Pn but
with initial conditions Qo= Q\ = 1- For n even, n ^ 0 , let n = 2hm, where m is odd. Then
it is found without difficulty that h 5*2 and that Pn = 2hPmQmQ2mX, where the five factors
on the right are pairwise coprime. It thus follows that if Pn is to be a perfect kth power,
then each factor on the right must also be one. But by the lemma Pm can be a perfect /cth
power only if m = 1, and then Q^ = 3 fails to be one, which concludes the proof.
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