PERFECT PELL POWERS

by J. H. E. COHN

(Received 9 May 1994)

In the thirty years since it was proved that 0, 1 and 144 were the only perfect squares in the Fibonacci sequence [1, 9], several generalisations have been proved, but many problems remain. Thus it has been shown that 0, 1 and 8 are the only Fibonacci cubes [6] but there seems to be no method available to prove the conjecture that 0, 1, 8 and 144 are the only perfect powers.

In a different direction, generalising the sequence to $P_n(a)$ defined by $P_0(a) = 0$, $P_1(a) = 1$, $P_{n+2}(a) = aP_{n+1}(a) + P_n(a)$ or to $p_n(a)$ defined by $p_0(a) = 0$, $p_1(a) = 1$, $p_{n+2}(a) = ap_{n+1}(a) - p_n(a)$, it has been shown that the problem of determining the squares in these sequences can be handled easily when a is odd, but only in exceptional cases when a is even [2, 3, 4]. In the case of the first of these with a = 2, we obtain the Pell sequence, $0, 1, 2, 5, \ldots, 169, \ldots$, to which we shall refer below simply as P_n . It has been shown by Ljunggren [5] that its only squares are 0, 1 and 169. However, the method of that paper was long and extremely complicated, involving relative units in a biquadratic field, and Mordell asked over 30 years ago [7] whether a simpler proof might not be available. There has indeed been another proof recently [8] which is quite different in conception, depending as it does on purely analytical ideas. Although that proof is a considerable achievement, whether it can be regarded as more *simple* is a matter of opinion, as it still seems to require tools and a mass of detail disproportionate to the apparent difficulty of the problem. Maybe what Mordell had in mind was a proof akin to that for Fibonacci squares, both short and technically elementary.

Despite this challenge, no such proof has appeared; it may therefore perhaps be of interest to present the following very simple proof of the fact that there are no *other* powers in the sequence, a result far exceeding the present state of knowledge of the corresponding problem for the Fibonacci sequence.

THEOREM. The only solutions of $P_n = x^k$ with k > 2 are given by n = 0, 1.

LEMMA. The Diophantine equation $y^2 - 2z^k = -1$ with k > 2 has only the solutions y = z = 1 and y = 239, z = 13, k = 4.

Proof of lemma. For k = 4 or a multiple of 4, the result is Ljunggren's. For other values, k must have an odd prime factor, and so without loss of generality may be taken to be odd, say k = 2K + 1. For any solution both y and z must be odd, and factorising in Q[i] gives $(y+i)(y-i) = (1+i)(1-i)z^{2K+1}$. Since (1+i) and (1-i) are associates we find that $y+i=(1+i)(a+ib)^{2K+1}$ and $z=a^2+b^2$ for some suitable rational integers a and b, since any units, i.e. powers of a, can be absorbed into the a+ib. Thus we find a if a if

$$1 + i = (a + ib)^{2K+1} + i(a - ib)^{2K+1}$$
$$= (a + ib)^{2K+1} + (-1)^{K} (ia + b)^{2K+1}.$$

Thus, if K is even, (1+i) is divisible by (a+ib) + (ia+b) = (1+i)(a+b) whence

Glasgow Math. J. 38 (1996) 19-20.

 $a+b=\pm 1$, and similarly, if K is odd, $a-b=\pm 1$. In either case we obtain $z=a^2+b^2=2a^2\pm 2a+1$, and so $2z=c^2+1$, where $c=|2a\pm 1|\geq 1$.

Our equation can now be rewritten in the form $y^2 - (c^2 + 1)(z^K)^2 = -1$, and since the general solution of the Pell equation $u^2 - (c^2 + 1)v^2 = -1$ is given by

$$u + v\sqrt{c^2 + 1} = (c + \sqrt{c^2 + 1})^{2m+1}$$

we find that

$$z^{K} = (\frac{1}{2}(c^{2}+1))^{K} = \sum_{r=0}^{m} {2m+1 \choose 2r+1} c^{2m-2r} (c^{2}+1)^{r}.$$
 (1)

Now suppose that p is any prime dividing $\frac{1}{2}(c^2+1)$. Then $p \ge 5$. Let $p^{\lambda} \| \frac{1}{2}(c^2+1)$. Then from (1) we see that $p \mid (2m+1)$ and so if $p^{\mu} \| (2m+1)$, we see that the first term on the right hand side of (1) is divisible by p^{μ} precisely, whereas all the other terms are divisible by higher powers. Thus $\lambda K = \mu$, and since this holds for every prime factor of $\frac{1}{2}(c^2+1)$, it follows that $(\frac{1}{2}(c^2+1))^K$ divides (2m+1) and so $2m+1 \ge (\frac{1}{2}(c^2+1))^K$. On the other hand from (1) we see that $(\frac{1}{2}(c^2+1))^K > 2m+1$ unless m=0 and c=1. Thus c=1.

Proof of theorem. For n odd, the result follows from the lemma and the identity $Q_n^2 - 2P_n^2 = (-1)^n$ where the sequence Q_n satisfies the same recurrence relation as P_n but with initial conditions $Q_0 = Q_1 = 1$. For n even, $n \neq 0$, let $n = 2^h m$, where m is odd. Then it is found without difficulty that $h \geq 2$ and that $P_n = 2^h P_m Q_m Q_{2m} X$, where the five factors on the right are pairwise coprime. It thus follows that if P_n is to be a perfect kth power, then each factor on the right must also be one. But by the lemma P_m can be a perfect kth power only if m = 1, and then $Q_{2m} = 3$ fails to be one, which concludes the proof.

REFERENCES

- 1. J. H. E. Cohn, On Square Fibonacci Numbers, J. London Math. Soc. 39 (1964) 537-540.
- 2. J. H. E. Cohn, Eight Diophantine Equations, Proc. London Math. Soc. (3) 16 (1966) 153-166.
 - 3. J. H. E. Cohn, Five Diophantine Equations, Math. Scand. 21 (1967) 61-70.
 - 4. J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972) 631-646.
- 5. W. Ljunggren, Zur Theorie de Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad., Oslo 1, No. 5 (1942).
- 6. Hymie London and Raphael Finkelstein, On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 5 (1969) 476-481.
- 7. L. J. Mordell, The diophantine equation $y^2 = Dx^4 + 1$, J. London Math. Soc. 39 (1964) 161-164.
- **8.** Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory, **37** (1991) 123-132.
 - 9. O. Wyler, Solution to Problem 5080, Amer. Math. Monthly 71 (1964) 220-222.

DEPARTMENT OF MATHEMATICS, ROYAL HOLLOWAY UNIVERSITY OF LONDON, EGHAM, SURREY TW20 0EX ENGLAND