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Abstract

A ring R is called an /-ring (r-ring) in case R contains an indentity and every left (right) semigroup
ideal is a left (right) ring ideal. A number of structure theorems are obtained for /-rings when R
is left noetherian and left artiniar. It is shown that left noetherian /-rings are local left principal
ideal rings. When R is a finite dimensional algebra over a field, the property of being an /-ring is
equivalent to being an r-ring. However, examples are given to show that these two concepts are
in general not equivalent even in the artinian case.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 46, 16 A 48, 20 M 10.

Introduction

By definition any left ideal / in a ring ( / ? , + , . ) is a left ideal of the semigroup

(R,.). We shall call the former left ring ideals and the latter left semigroup ideals
of R. We consider the problem of determining when a left semigroup ideal of a ring
is a left ring ideal, and note that not even Z, the ring of integers, has this property.
Hence the problem is a nontrivial one and was first considered by Gluskin (1960).
He was able to show that R possesses a number of properties whenever every left
semigroup ideal is a left ring ideal. Among these properties are that R must be local.

Following the notation of Gluskin, we shall say that a ring R is an l-ring (r-ring)
in case R contains an identity and every left (right) semigroup ideal in R is a left
(right) ring ideal. The property of being an /-ring imposes strong constraints on the
left ideal structure of R. For example, /-rings have their principal left ideals linearly
ordered by set theoretic inclusion (in fact this property is equivalent to being an
/-ring).

In Section 1 we prove a number of general results on semigroup ideals in rings,
and consider the structure of noetherian /-rings. It is shown that left noetherian
/-rings are local left principal ideal rings.
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In Section 2 the structure of artinian /-rings is studied. For finite dimensional
algebras over fields, the property of being an /-ring and of being an r-ringare
equivalent. This means that for local finite dimensional algebras over fields left
generalized uniserial is the same as generalized uniserial. Section 3 is devoted to the
construction of an example of a non-noetherian /-ring.

We shall use the following notation throughout. The ring R is associative with
unity. We let J denote the Jacobson radical, and RM(MR) signifies that M is a left
(right) .R-module. All unspecified one-sided properties of a ring are presumed to
hold on both sides, for example, an artinian (noetherian) ring is both a left and
right artinian (noetherian) ring.

The author wishes to thank the referee for his kind advice and suggestions.

1. Semigroup ideals

Any set S is linearly ordered in case there is an order ^ on S such that for
a, P e S, a ^ /? or /? ̂  a. Consider the set of principal left ideals of R partially ordered
by inclusion. The following proposition is the key to most of the results which
follow. It shows that /-rings possess the characterizing property that their principal
left ideals are linearly ordered by inclusion. The proof is similar to that given by
Gluskin (1960).

1.1 PROPOSITION. Let Rbe a ring. The following statements are equivalent:
(1) R is an l-ring.
(2) R has the property that for any two elements x,yeR Rx^Ry or Ry^Rx,

that is, principal left ideals are linearly ordered by inclusion.

PROOF => Suppose R is an /-ring. Let x,yeR and consider S = RxuRy. Then
S is a left semigroup ideal. Since R is an /-ring 5 is a left ideal and so x+yeS.
So x+yeRx or x+yeRy. S u p p o s e x+yeRx; h e n c e x+y = otx. T h u s j> = (a — l)x

which implies Ry^Rx.
<= Let 5 be a left semigroup ideal. For x,yeS, we have Rx^Ry or Ry^Rx.

Suppose Rx ^ Ry. Then x = ay so that

x+y = <xy+y = (<x + l)yeS.

Thus S is a left ring ideal.
The following corollary is due to Gluskin (1960).

1.2 COROLLARY. Every l-ring is a local ring.

1.3 COROLLARY. Let R be an l-ring. Then every finitely generated left ideal is
principal.
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PROOF. Let / be a finitely generated left ideal generated by xu ...,xn. By 1.1, the
principal left ideals generated by each xt are linearly ordered say

Hence / = Rxx. Thus from Corollary 1.3 it can easily be seen that if R is a left
noetherian /-ring, all left ideals must be principal.

1.4 LEMMA. Suppose R is noetherian. If R is an l-ring then,
(1) n ^ i J" = 0 and J"=> J*+1 # 0 / o r all k> 1, or
(2) f|"= I J" = 0 a « ^ ^ » artinian with Jk = 0 /or some fc ̂  1.

PROOF. That fj^ lJn = 0 follows easily from 1.3 and Lemma 3.1 of Goldie (1962).
If R is artinian (2) follows from well-known properties of artinian rings, and
Nakayama's lemma. Otherwise (1) holds using another application of Nakayama's
lemma.

For noetherian /-rings it is now possible to determine their left ideals.

1.5 LEMMA. Let R be a noetherian l-ring. Then the nonzero left ideals of R are the
J", n>0 (here J° = R).

PROOF. Let 1^0 be a left ideal in R. Hence / = Rx for some xeR. By 1.4,
xeJn~l, x$J" for some n>0. Hence by 1.1 Rx^> J" since J" is principal. Let
J"-1 = Ry. Hence J"-ljJn = RyjJy. Define a map y. RIJ-*J— lIJnvia (p(tx+J) =
<xy+Jy(aeR).

It is routine to check that q> in fact defines an isomorphism between J"~lIJn and
R/J. By the same argument Rx/Jn^R/J. This easily implies that J"~l = Rx = /.

The following theorem serves to characterize noetherian /-rings.

1.6 THEOREM. Let R be noetherian. The following statements are equivalent
(a) R is an l-ring.
(b) The nonzero left ideals of R are precisely the J", n > 0, where each J" is cyclic.
(c) R satisfies the following properties:
(1) R is local.
(2) JHIJn+x is simple as a left R-module for all n^O such that J"^0.

PROOF, (a) => (b). This follows from 1.3 and 1.5.
(b) => (c). R must be local for (b) implies that J is the unique maximal ideal. Now

since each RJ" is cyclic, J"^Jn+1 whenever J"¥=0. Thus JnjJn+1^RIJ as a left
.R-module, and hence is simple. Now n^= i -f" = °- F o r if O ^ A i c f ^ D J ' then by
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(b) Ra = Jk = C[^tJ", that is 7* = /* + 1 #0 for some k>0 which contradicts
Nakayama's lemma,

(c) =>(a). By 1.1 it suffices to show that for 0^x,yeR,

Rx^Ry or RysRx.

By (3), xeJ", x^Jn+1 for some «>0 . Using (1) and (2), Rx+Jn+1/Jn+1 is isomor-
phic to Jn/Jn+1. This forces Rx+Jn+1 = J".

As J" is finitely generated, Rx^J", and J is an ideal of R, we have as a conse-
quence of Nakayama's lemma that Rx+Jn+1 = Jn implies Rx = J". Using an
identical argument, we also have that Ry = Jm for some m > 0. Now depending on
whether n^m or m^n, Ry^Rx or Rx^Ry.

1.7 REMARK. Let K be a field. Consider the ring of power series in one variable
over K. Then the ideals of K(x) = R, are precisely the Rx",n = 0 ,1 , . . . , where each
Rx" = J",J= Rx. Hence by 1.6, R is an /-ring. This gives an example of a noetherian
/-ring which is not artinian.

2. Artinian /-rings

A principal indecomposable projective module in an artinian ring R is a projective
module of the form Re where e is a primitive idempotent. An artinian ring is
called left (right) generalized uniserial in case every principal indecomposable
projective left (right) module has a unique composition series. Using these defini-
tions we have the following proposition.

2.1 PROPOSITION. A ring R is an artinian l-ring if and only if it is a local left
generalized uniserial ring.

PROOF. <= Suppose R is a local left generalized uniserial ring. Since R is local,
this means that

is the unique composition series for RR. Hence R satisfies the conditions of 1.6(c)
which implies that R is an /-ring.

On the other hand, suppose that R is an artinian /-ring. By 1.6(b) the nonzero
left ideals are precisely the 7*#0, k^O. Since R is artinian, J" = 0 for some n>0.
Therefore, since each Jk/Jk+1 is simple by 1.6(c),

is the unique composition series for RR. This implies that R is left generalized
uniserial.

We investigate the conditions under which /-rings are /"-rings when R is an artinian
ring. In view of 2.1, this reduces to the question of when a local left generalized
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uniserial ring is right generalized uniserial. Rings which are both left and right
generalized uniserial are called generalized uniserial. Local artinian rings which
are generalized uniserial are precisely those artinian rings which are both an /-ring
and an r-ring. Generalized uniserial rings have been studied intensively by a number
of authors. They have the property that their modules can be represented as a
direct sum of cyclics. Left generalized uniserial rings in general do not possess this
property. It is therefore of interest to know when a left generalized uniserial ring
is generalized uniserial. First we give an example of an /-ring which is not an r-ring
by producing a left generalized uniserial local ring that is not generalized uniserial.
This answers a question posed by Gluskin (1960), p. 303.

2.2 EXAMPLE. LetF(f) be the field of rational functions over a field/1. Let R
be the ring of all pairs (f(t),g(t)) where f(t),g(t)eF(t) with respect to component-
wise addition and multiplication defined via

(A(0,*i(0)-tt2(0,f2(0) - (fl(t)f2(t),f1(t)g2(t)+gl(t)f2(t
2)).

It can easily be shown that the radical J = {(0,g(t))\g(t)eF(t)} and that J2 = 0.
Now note that for g(f)/O and h(t)eF{t)

Hence R(0,g(t)) = J. As (Q,g(t)) is an arbitrary nonzero element of J, we have that

RJ is simple. Thus R is left generalized uniserial. On the other hand, consider

(0, l)R = {(0,/(f2))}; (0,0/? = {(0,t.f(t2))}.

It is a straightforward computation to check that (0,1) R and (0, t) R are simple and
that

JR = (0,1) R®(0, t)R = F(t)®F(t).

Thus R is not right generalized uniserial. Hence R is not an r-ring. The
above example is a ring of the form Q = R/J commutative with J2 = 0 and
dim((QJ).dim(JQ) = 2. This type of ring provides examples of /-rings (r-rings)
which are not r-rings (/-rings) and has been studied extensively. For example, see
Dlab and Ringel (1972).

We shall need the following observations which will be used in subsequent
developments. For a ring R to be generalized uniserial it suffices to show that
RjJ2 is generalized uniserial (Nakayama (1940)). It can easily be shown that factor
rings of r-rings are r-rings. The above remarks yield:

2.3 LEMMA. Let R be an artinian r-ring. Then R is an l-ring if and only if R/J2 is an
l-ring.

We are now ready to prove the following theorem which gives sufficient condi-
tions for an /-ring to be an r-ring.
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2.4 THEOREM. Let R be a finite dimensional algebra over a field K. The following
conditions are equivalent:

(a) R is an l-ring.
(b) R is a left generalized uniserial local ring.
(c) R is an r-ring.
(d) R is a right generalized uniserial local ring.
Hence R is a generalized uniserial algebra if any one of the above conditions hold.

PROOF, ( a )o (b ) and (c )o (d ) by 2.1. We prove that (c) implies (a). That (a)
implies (c) will follow by symmetry. We will assume that P — 0, since by 2.3 it
suffices to prove the theorem under those assumptions. Since K is contained in the
centre of R, the left and right dimensions of R = RjJ over K are the same. Set
n = dimx (R). Likewise,

Suppose „ / = Rs®Iwhere O^seJand / is a left ideal such that / s J. By hypothesis
JK = R as R modules and therefore as K modules. Hence

n = 6\mK (Rs) + dimK (/) = « + dimK (/).

Thus, dimK (/) = 0 which implies that 7 = 0. Thus R is left generalized uniserial,
hence generalized uniserial.

3. A non-noetherian /-ring

In this section we shall give an example of an /-ring which is not noetherian.
Consider the abelian group Z£, consisting of all p"th roots of unity where p is a
prime and n varies over all positive integers. Let Z^.Z™ be the group algebra of
Z * over the field Zp. We will show that ZP.Z™ is a non-noetherian /-ring. This will
be done by showing that the principal ideals are linearly ordered. Hence ZP.Z™
will be an /-ring by 1.1. We begin by establishing a number of basic facts about

Let t\ = (£„)* where 1 ^k^p" and £„ denotes exp(2ni/p"), a primitive p"th root
of unity for each AJ^O. Let xeZp. Zp

x. Then if x # 0 , there exists / > 0 such that
x can be expressed as a sum of t nonzero terms,

x = £sl + • • • + Es',

where Si ^ s2 < . •. =S s, and the /c('s and s/s are not necessarily distinct.
Using the fact that for n ̂  s (ej)** = £j_s and that pek

n = 0, we have

xp" = (£*,')"" + • • • + « ' ) "" = 1 + . . • +1 = /

where 5j ^ s2 ^ ... =% s, ^ n. So x is a non-unit or a unit depending on whether x
is a sum of a multiple of /» nonzero terms when expressed in the above form.
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Also the principal ideals generated by the elements

l+(p-l)en for n=l,2,...

form an increasing chain of ideals. For let x = l+(p— l)em, y = 1 + (/>— l)en where
. Thusn = m + t. So ypt = l+(p-l)en_, = l+(p-l)em = x.

Using the above results, we have

3.1 LEMMA. ZP.ZP
X is a commutative non-noetherian ring whose maximal ideal

consists of those elements which are a sum of t nonzero terms of the form

x = <'+ •••+<•

where t = np, n ̂  0 and JX ̂  s2 ^ • • • ^ st.

Now consider the group algebra Zp.Z(p") where Z(jf) is the group of/»"th roots
of unity, p is a prime and n is a positive integer. It is easily checked that J(Zp.Z{p"))
is a principal ideal generated by \+{p-\)en. Thus Zp.Z(pn)/J2(Zp.Z(pn)) is a
generalized uniserial local ring. So by 2.1 it is an /-ring. Now using the remark
preceding 2.3, we have that Zp.Z(p") is an /-ring. This fact will be used in the
proof of the following theorem.

3.2 THEOREM. Let R = ZP.ZP
C where p>0 is a prime. Then R is an l-ring.

PROOF. Let x,yeZp.Z^. Consider the following expressions for x and y:

v = P*1 -I- 4-p*»
• * b s i ' ••• ^ b s v >

y = e// + . ..+e/™,

where ^ x ^ . . . ^ ^ , tl^...^tm. Let n = max(tm,sv). Then x,yeZp.Z(jf). By the
previous remarks Zp.Z(p") is an /-ring. Hence either

or
Zp.Z(p»)y<=Zp.Z(p")x.

Thus it follows that Rx^Ry or .RyS
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