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SUMMARY

The spring of 2009 witnessed the emergence of a novel influenza A(H1N1) virus resulting in the

first influenza pandemic since 1968. In autumn of 2010, the 2009 novel H1N1 influenza strain

re-emerged. We performed a retrospective time-series analysis of all patients with laboratory-

confirmed H1N1 influenza who presented to our institution during 2009. Cases of influenza were

assembled into 3-day aggregates and forecasting models of H1N1 influenza incidence were

created. Forecasting estimates of H1N1 incidence for the 2010–2011 season were compared to

actual values for our institution to assess model performance. Ninety-five percent confidence

intervals calculated around our model’s forecasts were accurate to ¡3.6 cases per 3-day period

for our institution. Our results suggest that time-series models may be useful tools in forecasting

the incidence of H1N1 influenza, helping institutions to optimize distribution of resources based

on the changing burden of illness.
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INTRODUCTION

In the USA, influenza is a common cause of illness

and hospitalization in children. Children with chronic

medical conditions are at increased risk of morbidity

and mortality [1]. A multistate population-based

surveillance for influenza-associated hospitalization

demonstrated that up to 11% of hospitalized children

with laboratory-confirmed influenza required treat-

ment in the intensive care unit with 3% requiring

mechanical ventilation [2]. Caring for children with

moderate to severe influenza can have a substantial

impact on resource utilization in the hospital.

The spring of 2009 witnessed the emergence of

a novel influenza A(H1N1) virus of swine origin

that resulted in the first influenza pandemic since

1968 with circulation outside the usual influenza

season in the Northern Hemisphere [3]. In the USA,

the pandemic demonstrated two discrete waves;

the first in spring 2009 and a second in late summer

and early autumn 2009. Most of the illness of the

2009 pandemic was acute and self-limiting; however,

the highest attack rates were reported in children

and young adults [3]. As with seasonal influenza,

children with chronic medical conditions were at

increased risk of complications from H1N1 influenza

[4]. In late autumn 2010, the United States Centers

for Disease Control and Prevention reported that

the 2009 novel H1N1 influenza strain had re-

emerged [5].
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The application of time-series analysis in the

creation of models for infectious disease surveillance

[6–8] and resource utilization [9–12] has increased

in recent years. The emergence of the H1N1 influenza

virus in 2009 and the re-emergence of the same virus

in 2010 provided a unique opportunity to investigate

the application of time-series analysis techniques in

the creation of forecasting models [13]. Accurate sur-

veillance and forecasting of the presentation of H1N1

influenza could have a significant impact on resource

utilization and planning for future pandemics and

seasonal epidemics.

We hypothesized that a mathematical model

could be designed based on analysis of data from

our institution, that would effectively capture the

periodicity of H1N1 influenza and forecast the inci-

dence of H1N1 influenza presentation to our insti-

tution.

METHODS

The Institutional Review Board of the Children’s

National Medical Center approved this study. We

performed a retrospective cohort study identifying all

patients with laboratory-confirmed H1N1 influenza

infection who presented to the Children’s National

Medical Center, a 283-bed urban academic tertiary-

care children’s hospital, between May 2009 and April

2011. Laboratory-confirmed viral infection was

defined as identification of H1N1 influenza from a

nasopharyngeal or endotracheal specimen by poly-

merase chain reaction-based techniques. Multiple

positive specimens from an individual patient col-

lected within 14 days of one another were considered

a unique case [14].

Cases of H1N1 influenza were assembled into 3-day

aggregates based on the date of specimen collection.

Cases from the 2009 H1N1 influenza pandemic

(31 May 2009 to 26 December 2009) were designated

as the experimental dataset. Cases from the 2010–

2011 H1N1 influenza season (16 December 2010 to

20 April 2011) were designated as the validation

dataset.

The experimental dataset was plotted as a time-

series and assessed for stationarity using the

augmented Dickey–Fuller test for unit roots. Differ-

encing operations were taken in the event that

augmented Dickey–Fuller testing suggested the pres-

ence of unit roots. Type I error was set at 0.05. The

autocorrelation and partial autocorrelation functions

were calculated and plotted to aid in the initial

identification of a base Box–Jenkins model. Follow-

ing identification of a base model, non-significant

parameters were systematically removed based on the

minimization of Akaike’s Information Criterion

(AIC) to establish our optimal model [15]. To exam-

ine the impact that climatological factors have on

model performance, we constructed models based

on our optimal model that included 3-day averages

of maximal and minimal temperature, and precipi-

tation as recorded by the National Climate Data

Center for Washington, DC. Maximum-likelihood

testing was employed to determine inclusion or ex-

clusion of specific model parameters at a significance

level of 0.10. Maximum-likelihood estimation was

used to calculate model parameter coefficients.

To assess the performance of our model at fore-

casting, model estimates were derived and plotted

against the validation dataset, forecasting 3, 6 and

15 days into the future. Root mean squared errors

(RMSEs) of the forecasts were calculated to derive

95% confidence intervals about the forecasts.

We examined the impact of model updating by re-

calculating model parameters for our model using

data through two time points (29 January 2011 and

28 February 2011). For each update of the model,

forecasts were recalculated and compared to the

validation datasets. RMSEs of the updated forecasts

were calculated to derive 95% confidence intervals

about the updated forecasts. All calculations were

performed using Stata/IC 10.1 (Stata Corporation,

USA).

RESULTS

A total of 462 cases of laboratory-confirmed

H1N1 influenza infection in children at the Children’s

National Medical Center were included in the analy-

sis. Cases of H1N1 influenza infection were assembled

into 3-day aggregates and partitioned into exper-

imental (355 cases) and validation (107 cases) data-

sets. Augmented Dickey–Fuller testing on the

experimental datasets demonstrated the presence of

unit roots and non-stationarity. First-order differ-

encing of the 3-day aggregates was performed and

the resulting differenced series was stationary by

augmented Dickey–Fuller testing (P<0.01).

The plot of the autocorrelation function resembled

a dampened sine wave while the partial autocorre-

lation function had significant cut-offs at lags 1 and 6,

suggesting an autoregressive process of order 6 with
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first-order differencing as the base model :

Zt=Ztx1+w1(Ztx1xZtx2)+w2(Ztx2xZtx3)

+w3(Ztx3xZtx4)+w4(Ztx4xZtx5)

+w5(Ztx5xZtx6)+w6(Ztx6xZtx7)+at,

whereZt=H1N1 cases for time period t,Ztxi=H1N1

cases for time period txi, wtxi=weighted coefficient

for H1N1 case difference between time periods txi

and tx(i+1), and at=white-noise term for time

period t.

Parameters were removed systematically to mini-

mize AIC, including only those parameters significant

by maximum-likelihood testing, leading to an auto-

regressive model with first-order differencing, with

significant lags at lag 1 (P=0.001), lag 3 (P=0.039),

and lag 6 (P=0.011). We designated this as our opti-

mal model :

Zt=Ztx1x0�29457(Ztx1xZtx2)

+0�22336(Ztx3xZtx4)

x0�25641(Ztx6xZtx7)+at,

whereZt=H1N1 cases for time period t,Ztxi=H1N1

cases for time period txi, and at=white-noise term

for time period t.

The addition of 3-day averages of maximal and

minimal temperature and precipitation variables

to our optimal model did not significantly help to

explain the incidence of H1N1 influenza infection by

maximum-likelihood testing.

Forecasts were derived for our optimal model and

plotted against the validation dataset (Fig. 1). The

RMSE was 1.78, 2.02 and 1.92 for the 3-day, 6-day,

and 15-day forecasts of the model, respectively.

Ninety-five percent confidence intervals calculated

around the model’s forecasts were accurate to ¡3.6,

¡4.0 and ¡3.8 cases per 3-day time period forecast-

ing 3 days, 6 days and 15 days into the future, re-

spectively. On average for the validation time period,

the true H1N1 influenza activity was overestimated by

<0.01 cases per 3-day period.

We assessed the value of updating our optimal

model at two time periods during the validation

time frame (29 January 2011 and 28 February 2011).

Updating model parameters with data up to

29 January 2011 reduced the RMSE to 1.62 for the

3-day forecasts for the remaining time points.

Updating model parameters with data up to

28 February 2011 reduced the RMSE further to 1.07

for the 3-day forecasts for the remaining time points.

Ninety-five percent confidence intervals calculated

around the updated models’ forecasts were accurate

to ¡3.3 and ¡2.1 cases per 3-day time period for the

January and February updates, respectively.

DISCUSSION

The impact of H1N1 on resource utilization during

the 2009 pandemic and 2010–2011 seasonal epidemic

was substantial in both the outpatient and inpatient
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Fig. 1. Plot of actual 3-day incidence of H1N1 influenza cases vs. model estimates and forecasts with 95% confidence intervals
for the Children’s National Medical Center, forecasting 3 days into the future for 2009–2011. Note : January 2010 to

November 2010 not included as H1N1 influenza incidence during this time was zero.
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settings. Bed utilization, isolation procedures, avail-

ability of resources (physicians, nurses, respiratory

therapists) and medical equipment (ventilators, neb-

ulization systems) are just a few of the factors inherent

to resource utilization affected by the influx of

patients with H1N1 influenza. Our identified models,

derived from historical data from our institution pro-

duced accurate 3-, 6- and 15-day forecasts of H1N1

influenza incidence in our hospital. We believe this

model can be used prospectively to anticipate and

adjust, in real-time, resource allocation.

During the 2009 pandemic, 20% of patients

admitted to our institution required admission to the

intensive care unit. One published series of children

with H1N1 influenza requiring admission to the

intensive care unit reported that 46% of those

children required mechanical ventilation [4]. The

management of mechanical ventilation in neonates,

infants and small children is complex and requires

specialized equipment and trained paediatric respir-

atory therapy personnel.

There has been considerable interest in the possible

links between climatological and environmental fac-

tors and the incidence of influenza. The inclusion

of variables, such as solar radiation, land surface tem-

perature, relative humidity and maximum atmos-

pheric pressure, have contributed to the explanation

of seasonal influenza incidence in previously reported

models, although often for very specific locations

[16, 17].

In our study, we did not demonstrate any as-

sociation between H1N1 influenza incidence and

certain climatological variables. The reasons for

this observation are most likely multi-factorial but

probably relate to the nature of a virulent novel agent

in a largely susceptible population overriding any cli-

matic factors that might affect viral transmission.

Our study focused on the use of time-series

analysis, specifically Box–Jenkins modelling, to model

and forecast H1N1 incidence for our institution. A

number of other modelling approaches have been

developed to characterize and quantify the trans-

mission of seasonal and pandemic influenza. Complex

mechanistic models exist that incorporate a number

of epidemiological variables in an attempt to quantify

the transmission potential of pandemic influenza

[18, 19].

Our study has a number of limitations. Our model

is specific to a single institution and we have no evi-

dence to suggest that it can be generalized to other

institutions or communities. Despite the specificity of

the model, our objective was to design a model par-

ticular to our own institution. While further work is

required to assess if similar models can be constructed

for institutions in other locations, our experience

suggests that these models work well at the local and

institutional levels for short-term forecasts of H1N1

influenza incidence.

During the 2009 pandemic it was the policy at our

institution, as well as most other institutions, to test

for H1N1 influenza in patients who presented with a

febrile illness which warranted antiviral treatment

and/or hospitalization. This practice, endorsed by

the United States Centers for Disease Control and

Prevention, most likely led to an increased recog-

nition of cases during the 2009 time period compared

to other non-pandemic years like 2010–2011. As such,

it is possible that some patients with H1N1 influenza

who presented to our institution during the

2010–2011 season with only mild symptoms may have

gone unrecognized.

The practical aspects of predicting 3 days into the

future are limited and most likely vary among in-

stitutions. Our model lost little accuracy when fore-

casts were derived 6 days and 15 days into the future.

Short-term forecasting can help hospital leadership

prepare for changes in resource needs brought on

by the demands of a surge in viral respiratory ad-

missions.

Using time-series analysis, specifically Box–Jenkins

modelling, to create a univariate model of H1N1

influenza incidence allows for the relatively easy

creation of an institution-specific forecasting model.

As the 2010–2011 resurgence of 2009 novel H1N1

influenza did not follow a similar seasonal incidence

as that of 2009, the addition of seasonal components

to the model did not help predict incidence as

might be expected in seasonal influenza or other

respiratory viruses such as respiratory syncytial virus.

The lack of a seasonal component limits our model’s

ability to predict the onset and offset of H1N1 inci-

dence at our institution. A multi-tiered modelling

system whereby incidence at the regional or com-

munity levels is a component of an institution-specific

model like ours may be a solution to this limitation

[20].

Our results suggest that time-series models may

be useful tools in forecasting the burden of H1N1

influenza infection at the institutional level, helping

institutions to optimize distribution of resources based

on the changing burden and severity of illness in their

respective communities.
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