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Abstract

A two-term Edgeworth expansion for the distribution of an M-estimator of a simple linear regression
parameter is obtained without assuming any Cram6r-type conditions. As an application, it is shown
that certain modification of the naive bootstrap procedure is second order correct even when the error
variables have a lattice distribution. This is in marked contrast with the results of Singh on the sample
mean of independent and identically distributed random variables.
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1. Introduction

The following simple regression model will be considered throughout this paper

(1.1) YJ=XJP+€J, 7 = l , 2 , . . . , n ,

where €\, e2, • • • ,€„ are independent and identically distributed (i.i.d.) random vari-

ables (r.v. 's) with a common distribution function (d.f.) F, ft is the unknown regres-

sion parameter to be estimated, and xi,x2, ... ,xn are known non-random constants.

In the sequel some restrictions will be imposed on these constants in order to obtain the

results of this paper. Let \j/ be a nondecreasing function on the real line R, satisfying

the assumption

(1.2)

The work of the first author done at Iowa State University.
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An M-estimator fin of fi corresponding to ^ is defined to be a solution of the
equation (cf. Huber [8])

7=1

In particular, ifr{x) = x yields the least square estimator (LSE) of 0. Consistency
and asymptotic normality of fin has been established by Huber [8] in a more general
setting. More accurate approximations for the distribution of /?„ can be obtained
using Edgeworth expansions. In recent years, there have been a number of studies on
Edgeworth expansion for fin, viz. Ringland [13], Navidi [11], Qumsiyeh [12], Tiro
[16] and Lahiri [10]. In all these works excepting Navidi [11], it is assumed that the
distribution of ^ (fi) satisfies some variant of the following smoothness condition,
known as the Cramer condition:

For every S > 0, there exists a 0 < q < 1 such that \E expO'f V(*i))l < a

for all |/1 > 8.

Navidi [11] uses a weaker condition, requiring only that V^i) be non-lattice. (A
r.v. W is called non-lattice if \E e\p(it W)\ ^ 1 for all / ^ 0; otherwise, it is called a
lattice r.v. See Feller [5] for more details.) Note that the non-lattice and the Crame'r
conditions both hold when the distribution of ^ (^ I ) has a density. However, there are
many important discrete error distributions for which \ff(e i) fails to satisfy either of
the two smoothness conditions. In this paper, we provide appropriate conditions on
the design points xt 's such that two-term Edgeworth expansions hold for standardized
M-estimators irrespective of such smoothness of f(€i). Consequently, one can use
our result to obtain a more accurate approximation to the distribution of standardized
M-estimators (including the LSE) without having to add separate continuity correction
terms when \/r (ei) is a lattice r.v.

Next, we consider bootstrapping fin under model (1.1). Let €*,... , e* denote a
random sample from the residuals

Then, the 'naive' bootstrap estimator f}* of fin is defined as a solution to the equation
(cf. Efron [4])

where Y*\ denote the bootstrap observations, defined by Y* = Xjf)n + ej, 1 < j < n.
This naive approach of bootstrapping M-estimators poses a serious problem under
model (1.1), which has been detected by Freedman [6] for the LSE, and by Shorack
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[14] and Lahiri [10] for general M-estimators. Unless the bootstrap resamples are
selected appropriately to ensure the bootstrap analogue of (1.2), viz.,

(1-4) En1r(€t) = 0,

the limit distribution of an(/S* — fin) incorporates a random bias term and fails to
approximate the distribution of an{fin — fl). (Here, a2

n = ]T"=1 xj, and En denotes
the conditional expectation given Yu • • • ,Yn.) Since (1.4) does not hold for the naive
bootstrap approach described above, it fails under model (1.1). Two modifications of
the naive bootstrap for M-estimators have been suggested by Shorack [14] and Lahiri
[10]; these can be described as 'centering the score function \fr' and 'changing the
resampling distribution' respectively. Here, we will employ the second one where one
draws i.i.d. bootstrap observations €*,... , e* from the weighted empirical distribution

(1-5) Fn(y) = p ;

putting mass \Xj\/pn at e} j = 1, 2, 3 , . . . , n, where pn = Yl"=i \XJ\- Note that when
this weighted empirical distribution has been employed and */s are all positive or all
negative, then the required assumption (1.4) is met.

Asymptotic validity of the modified bootstrap procedures have been established by
Freedman [6] and Shorack [14], and the issue of second order superiority have been
investigated by Navidi [11], Qumsiyeh [12], Tiro [16] and Lahiri [10] under different
sets of regularity conditions on the design constants xt 's, the score function \jr and
the unknown error distribution F. As in the case of deriving Edgeworth expansions,
all these works on the second order accuracy of the bootstrap require the 'non-lattice'
condition on the r.v. ir{ex). From the seminal work of Singh [15] it is well known that
for the sample mean of iid r.v. s, (which is a special case of our model with xt = 1
and yjr(x) = x), the bootstrap approximation is second order correct if and only if
the underlying distribution F is non-lattice. In contrast, we show that this is not a
necessary condition for the second order correctness of the bootstrap under the full
generality of model (1.1). This is particularly important from an application point of
view, since most of the standard discrete distributions are lattice distributions.

The rest of the paper is organized as follows. In Section 2, we state the assumptions
and the main results. In Section 3, we give the proofs.

2. Assumptions and results

Before stating the results, we set up the notation. Define a2 = Yl"=i *2> an<^
Mn = max{|x;| : 1 < j < n}. Forx e IR,write/x(x) = Erj/{€i—x), V{x) = o2{x) —
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The first three derivatives of a function g defined on K will be denoted by g', g",
and g'", respectively. Furthermore, define A = —/X'(0)/CT(0), dln — YL"=\ x]lal'
d3n = E"=i \Xj?/al, d2n = J2"=i xVat a n d l e t b" = lo8a«> whenever it is defined.
For the moment deferring the specification of the rn 's, let Cn be the set of integers
given by

Cn = {1 <j <n : \xj\ <dinan/rn).

We are now ready to list the assumptions in addition to the ones given heretofore.
We have two groups of assumptions. The first group of assumptions are required
for both Edgeworth expansion and bootstrap approximation. They are labelled (A.I)
through (A.4). The second group of assumptions are labelled as (R.I) and (R.2). The
assumption (R.2) is used in Theorem 2.2, in the context of the bootstrap approxima-
tion.

(A. 1) an —> oo as n —> oo.
(A.2) There exist a sequence [rn] such that rn —*• oo as n -*• oo and

(A.3) A > 0 whenever it exists.
(A.4) Mnbn = o(an) as n —> oo.

REMARK 2.1. Conditions (A. 1) and (A.3) are required for the asymptotic normality
of the M-estimator fin (cf. Huber [8])). Typically an is of the order sfn. Condition
(A.4) is used here to express the Edgeworth expansion for fin in a simple form
(cf. Theorem 2.1). Note that under (A.4), Mn/an = o(l) as n -> oo. In this
study, Condition (A.2) has a distinctive position and, it is this assumption that makes
possible the Edgeworth expansion and the bootstrap approximation without requiring
any Cramer-type conditions. Note that, since X!,ec

 xj/^nal) —*• ooasn —>• oo, any
choice of rn must satisfy rn/\Cn\Mn —>• 0 as n —> oo, where \Cn\ denotes the number
of elements in the set Cn. For instance, if x, are given by Xj = j , then the assumption
is viable. For this example, rn may be taken as n1/4.

Next we list the other assumptions.

(R.I) (i) The function ju.,00 has 3 - / continuous derivatives in a neighbor-
hood N of zero, i = 0 ,1 ,2 , and /x3 is continuously differentiable in
the neighborhood N.

(ii) There exists an a > 0 such that E\xj/(ei + a ) | 3 < oo.
(R.2) y has uniformly continuous bounded derivatives f{k) for k = 0, 1, 2.

The results of this paper are given below.

THEOREM 2.1. Assume that Conditions (A. 1) - (A.4) and (R. 1) are satisfied. Then,

sup \P(anA0n -p)<y)- £,,(301 = o(din).
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Here %-$n(y), the Edgeworth expansion for the distribution function ofanA(/3n — fi) is
given by

cr(O) cr3(0) 2 A2 6CT 3 (0)

where /^(y) = y2 — 1 is the second order Hermite polynomial, and <$>, </> denote the
standard normal distribution function and density function, respectively.

Next we state the result on bootstrapping f}n under model (1.1). Assume that
X\,... ,xn are all positive or all negative. As indicated above, we will denote the
bootstrap version of /?„ by fi*. Also, we will write Pn and En respectively for the
conditional probability and the conditional expectation, given the data Yx,... ,Yn.

THEOREM 2.2. Assume that the Conditions (A. 1) - (A.4) and (R.2) hold and that for
every c > 0, YlT=i exP(~cPn/an) < °°- U the bootstrapped estimator p* is defined
by (1.3) and Fn by (1.5), then

(i) supysR \Pn(anAn(P*n - Jn) < y) - |3n(v)| - o(d3n) a.s.
and

(ii) supy€R\Pn(anAn(P*n-Pn)<y)-P(anA0n-P)<y)\=o(d3n) a.s.

where f3M (y) is given by

/ m « ( 0 )

* ^ A r/
= *(y)-dln[(

with mn(x) = Enf(e* - x), V*(x) = s2
n(x) = En(f(€* - x) - mn{x))\ An =

-m'n(0)/sn(0), andm3n(x) = En{f(€*x - x) - mn(x))\ x e 01.

3. Proofs

Some more notation will be introduced first. For x, y, and t in R, let

anA

Vn(y) = x2
n{y) = Var \Sn{fi + —

\ anA

anA
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K3n(y,x) = ^ \

Qn(y, t/xn{y)) = £exp (it(SH(P + - ^ - ) - M-
V anA

v»(y, t/rm(y)) = log QH(y, t/rH{y)) + t2/2,

wj(y, t) = E expiitxjdrie! - y) - fi(y)).

PROOF OF THEOREM 2.1. Notice that by the non-decreasing property of \js and the
definition of /}„,

P(Sn(t) < 0) < Pfo < t) < P(Sn(t) < 0),
(3.1) P(Sn(f) > 0) < P ( ^ > t) < P(Sn(/) > 0).

Consequently, for any y € R,

i - ^| > y) < P (sH(fi + ^~)> (P r ) <anA

Next note that by (R.I) and (A.3), there exist constants cx > 0, r){ > 0 such that
\fi(x)\ > Ci|jc|faraU |JC| < rji-

Now using Lemma 4.2 of Fuk and Nagaev [7], one can show that for all n with
Mnbn < r)xan, and for any c > 0,

(3.2) P (anA\pn - , 1.-3

where D is a constant depending only on c. By (3.1) and (3.2), it follows that
an Edgeworth expansion for P(anA(fin — fi) < y) can be obtained by finding an
expansion for P(Sn(/5 + y/anA) < 0), \y\ < cbn, and then appraising

sup{/>(Sn(0 + y/anA) = 0) : \y\ = cbn),

for some c > 0. To that end, we use Esse'en's lemma. By (R.I), for a given
constant r\ > 0, there exists a constant b > 0, such that for all n > b and \y\ < bn,
24 |^ n (y ,x) | < br). Fix y e R with |y| < bn. Then, by Ess6en's Lemma (cf. [5,
Lemma 16.3.2]) with a = b/din,

(3.3)
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The integral on the right hand side will be estimated in two parts; one ranging over
|/| < 8an/Mn and the other ranging over San/Mn < \t\ < a, where the constant 8 > 0
will be specified later. We claim that over the region \t\ < 8an/Mn, the integral on the
right hand side of (3.3) can be bounded by

(3.4) / £>((!'|Xan
4/rn

4(y)) + \t\5(dlna
3

n/r
3

n(y))2)e-'2/2dt = o(d3n)

where D is a positive constant.
To prove this, note that by Conditions (R.I) and (A.4), and by inequality 26.4 of

Billingsley [3], we can find 8 > 0 and nt > 1 such that for all n > n\,Xjy/{aHA) e N
and

sup{\Wj(Xjy/(anA),t/rn(y)) - 1| : \t\ < 8an/Mn] < 1,

uniformly in j e{ l , . . . , n). Therefore, Taylor'sexpansionoflog^(x;v/ani4, t/rn(yj)
around t = 0, inequality 16.2.8 of Feller [8], and the facts d\n = 0(d2

n) and
d^ = o(d2

n) yield (3.4) after some simplifications.
Next we estimate the integral (3.3) over 8an/Mn < |f| < a. Obviously the integral

on the right hand side is smaller than

/ \Qn(y,t/Tn(y))\\t\-ldt+ [ \Y3n(y,t)\\t\-ldt.
San/Mn<\t\<a J5an/Mn<\tl«3

Using [2, Theorem 8.9], and the fact that for n large, rn(y) > c2a2 for some c > 0
uniformly in \y\ < bn, we get

(3.5) IG»(3'.'A»(y))l<c-'l'|2/3

for all |?| < D/d3n, where D > 0 is a constant, not depending on y and n.
Next define

Then as in the proof of [2, Theorem 8.9], we have

(3.6) \Ee^ < exp (^f- \o>&) -
WOO L t^A

for all t e R. Since Qn(y, t/xn{y)) = J~["=1 Eexp(itZj), applying Condition (A.2)
together with the bound (3.6) over the region D/din < \t\ < b/d3n, and using (3.5)
over 8an/Mn < \t\ < D/d3n, we get

f
JSa,

\Qn(y,t/rn(y))\\t\-ldt = o
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Also, note that by the Mill 's ratio, f]l>SaJM \yin(y, t)\\t\~ldt = o(d3n). Therefore,

we have shown that

sup sup \P«Sn(ft + - ^ - ) - Hn(y))/r(y) < JC) - K3n(y, x)\ = o(d3n).
\y\sK xeW. anA

Now replacing x by -fin(y)/rn(y), we get

sup \P(anA0n - /?) < y) - K3n(y, -fin(y)/rn(y))\ = o(d3n).
\y\<b»

Next using Taylor's expansion, together with the inequality: for k > 0, D > 0,
\9\< D, and \y\ < bn, (p

(k)(y + 0y2d3n) < D(l + \y\k)<p(y), one can show that

r
cr(O) cr3(O)

, y2 ^ n3(0) „ , ,1 . , , ^
) — - + ,H2{y) </>(y) + o(d3n)

2A2 6CT 3 (0) J

uniformly over \y\ < bn. This gives the expansion for P(anA(fin — ft) < y) for
| v| < bn. In view of (3.2), it follows that

SUp \P(anA(Pn -P)<y)- i;3n(y)\ = o{d3n),
y€«.

which completes the proof of Theorem 2.1.

Next we give a proof of Theorem 2.2. The notation will be the same as in the proof
of Theorem 2.1 with the convention that we will put an asterix over a letter to denote
its bootstrap counterpart. The following lemma will be used repeatedly.

LEMMA 3.1. Suppose that the conditions of Theorem 2.2 are satisfied. Let Fn be
the resampling distribution defined as in (1.5). Then:

(i) For any M > 0,

sup{K(y, f)| : \t\ < M, \y\ < M} = o(l) a.s.

where w(y, t) = En[exp{itf{e\ - v))].

(ii) For h a function with a bounded first derivative, and for any M > 0,

f - y) ~ Eh{ex - v)| : |v| < M} = o(l) a.s.

Lemma 3.1 can be proved using assumption (R.2), [7, Lemma 4.2] and a discretizing
argument as in the proof of [1, Lemma 4.2]. We omit the details.
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PROOF OF THEOREM 2.2. The first part of the theorem can be proved by tracking
the proof of Theorem 2.1; nevertheless, it must be considered in the almost sure sense.
Note that by (A.3), (R.2), the monotonicity of if (cf. (3.1)), and Lemma 3.1, there
exist constants c > 0, r]{ > 0 such that for all large n,

\mn(x)\ > c\x\ for all a.s.

and

PniWt - Pn\ > u) < exp(-c«2an
2) a.s.

for any u > 0. Consequently,

(3.7) Pn(\anAn(P*n - 0n)\ > bn) < a;3 a.s.

Given any r\ > 0, by Lemma 3.1, there exists b* > 0 (possibly random) such that for
all n > b*, |v| < bn, and x e IR, 24\K;n(y, x)\ < b* a.s. Hence writing a = b*/d3n,
by Esseen's Lemma,

Pn((S*n0n + - ^ - ) - mn(y))/z;(y) < x) - K;n(y,x
anAn

\Ql(y, t/Kiy)) - y;n(y, O\\t\-ldt + nd3n.

Now, using Lemma 3.1, Conditions (A.2) and (R.2), and retracing the proof of The-
orem 2.1, it can be shown (see Karabulut [9]) for details) that

J\t\:
> t)\\t\~xdt = o(d3n) a.s.

Hence, we have

sup sup Pn((' < x) - , x) — o(d3n) a.s.

Next using bootstrap analogs of inequality (3.1) and setting x = —^*n{y)/t*{y)
in K^n(y,x), and then expanding the coefficients in Taylor's series, the last result
becomes

sup \Pn(anAn(P*n - Jn) < v) - | 3 n (y ) | = o(d3n) a.s.
\y\<bn

Finally, because of inequality (3.6), the first part of Theorem 2.2 is proved.
To prove the second part of the theorem, note that by the first part and Theorem

2.1, it is enough to show that

sup | |n(v) - §nO0| = o(d3n) a.s..

Repeated use of Lemma 1 proves this. Therefore, the proof of Theorem 2.2 is
complete.
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