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On the Hadamard Product of Hopf
Monoids
Dedicated to the memory of Jean-Louis Loday

Marcelo Aguiar and Swapneel Mahajan

Abstract. Combinatorial structures that compose and decompose give rise to Hopf monoids in Joyal’s
category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove
two main results regarding freeness of Hadamard products. The first one states that if one factor is
connected and the other is free as a monoid, their Hadamard product is free (and connected). The
second provides an explicit basis for the Hadamard product when both factors are free.

The first main result is obtained by showing the existence of a one-parameter deformation of the
comonoid structure and appealing to a rigidity result of Loday and Ronco that applies when the param-
eter is set to zero. To obtain the second result, we introduce an operation on species that is intertwined
by the free monoid functor with the Hadamard product. As an application of the first result, we deduce
that the Boolean transform of the dimension sequence of a connected Hopf monoid is nonnegative.
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Introduction

Combinatorial structures are often equipped with operations that allow us to com-
bine two structures of a given type into a third and vice versa. This leads to the
construction of algebraic structures, particularly that of graded Hopf algebras. When
the former are formalized through the notion of species, which keeps track of the
underlying ground set of the combinatorial structure, it is possible to construct finer
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algebraic structures than the latter. This leads to Hopf monoids in the category of
species. The basic theory of these objects is laid out in [4, Part II], along with the
discussion of several examples. Section 1 reviews basic material concerning species
and Hopf monoids.

Free monoids are the subject of Section 2. Just as the tensor algebra of a vector
space carries a canonical Hopf algebra structure, the free monoid on a positive species
carries a Hopf monoid structure. In fact, this structure admits a one parameter de-
formation, meaningful even when the parameter q is set to zero. The deformation
only concerns the comonoid structure; the monoid structure stays fixed throughout.
A rigidity result (Theorem 2.2) applies when q = 0 and makes this case of particular
importance. It states that a connected 0-Hopf monoid is necessarily free as a monoid.
This is a version of a result of Loday and Ronco for Hopf algebras [11, Theorem 2.6].

Section 3 contains our two main results, which concern freeness under Hadamard
products. The Hadamard product is a basic operation on species that mirrors the
familiar Hadamard product of power series. While there is also a version of this op-
eration for graded (co)algebras, the case of species is distinguished by the fact that the
Hadamard product of two Hopf monoids is another Hopf monoid (Proposition 3.1).
In fact, the Hadamard product of a p-Hopf monoid h and a q-Hopf monoid k is a
pq-Hopf monoid h × k. Combining this result with rigidity for connected 0-Hopf
monoids we obtain our first main result (Theorem 3.2). It states that if h is connected
and k is free as a monoid, then h×k is free as a monoid. A number of freeness results
in the literature (for certain Hopf monoids as well as Hopf algebras) are consequences
of this fact; see Sections 3.2 and 3.3. The second main result (Theorem 3.8) provides
an explicit basis for the Hadamard product when both factors are free monoids. To
this end, we introduce an operation on species that intertwines with the Hadamard
product via the free monoid functor.

The previous theorems entail enumerative results on the dimension sequence of a
Hopf monoid. These are explored in Section 4. They can be conveniently formulated
in terms of the Boolean transform of a sequence (or power series), since the type
generating function of a positive species p is the Boolean transform of that of the free
monoid on p. We deduce that the Boolean transform of the dimension sequence of a
connected Hopf monoid is nonnegative (Theorem 4.4). This turns out to be stronger
than several previously known conditions on the dimension sequence of a connected
Hopf monoid. We provide examples of sequences with nonnegative Boolean trans-
form that do not arise as the dimension sequence of any connected Hopf monoid,
showing that the converse of Theorem 4.4 does not hold (Proposition 4.9).

Appendix A contains additional information on Boolean transforms; in particu-
lar, Proposition A.3 provides an explicit formula for the Boolean transform of the
Hadamard product of two sequences (in terms of the transforms of the factors). This
implies that the set of real sequences with nonnegative Boolean transform is closed
under Hadamard products.

1 Species and Hopf Monoids

We briefly review Joyal’s notion of species [5, 9] and of Hopf monoid in the category
of species. For more details on the latter, see [4], particularly Chapters 1, 8, and 9.

https://doi.org/10.4153/CJM-2013-005-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-005-x


On the Hadamard Product of Hopf Monoids 483

1.1 Species and the Cauchy Product

Let set× denote the category whose objects are finite sets and whose morphisms are
bijections. Let k be a field and let Vec denote the category whose objects are vector
spaces over k and whose morphisms are linear maps.

A (vector) species is a functor

set× −→ Vec.

Given a species p, its value on a finite set I is denoted by p[I]. A morphism between
species p and q is a natural transformation between the functors p and q. Let Sp
denote the category of species.

Given a set I and subsets S and T of I, the notation I = S t T indicates that

I = S ∪ T and S ∩ T = ∅.

We say in this case that the ordered pair (S,T) is a decomposition of I.
Given species p and q, their Cauchy product is the species p · q defined on a finite

set I by

(1.1) (p · q)[I] :=
⊕

I=StT
p[S]⊗ q[T].

The direct sum is over all decompositions (S,T) of I, or equivalently over all subsets
S of I. On a bijection σ : I → J, (p · q)[σ] is defined to be the direct sum of the maps

p[S]⊗ q[T]
p[σ|S]⊗q[σ|T ]
−−−−−−−−→ p[σ(S)]⊗ q[σ(T)]

over all decompositions (S,T) of I, where σ|S denotes the restriction of σ to S.
The operation (1.1) turns Sp into a monoidal category. The unit object is the

species 1 defined by

1[I] :=

{
k if I is empty,

0 otherwise.

Let q ∈ k be a fixed scalar, possibly zero. Consider the natural transformation

βq : p · q→ q · p,

which on a finite set I is the direct sum of the maps

p[S]⊗ q[T]→ q[T]⊗ p[S], x ⊗ y 7→ q|S||T|y ⊗ x

over all decompositions (S,T) of I. The notation |S| stands for the cardinality of the
set S.

If q is nonzero, then βq is a (strong) braiding for the monoidal category (Sp, ·). In
this case, the inverse braiding is βq−1 , and βq is a symmetry if and only if q = ±1.
The natural transformation β0 is a lax braiding for (Sp, ·).
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1.2 Hopf Monoids in Species

We consider monoids and comonoids in the monoidal category (Sp, ·) and bimon-
oids and Hopf monoids in the braided monoidal category (Sp, ·, βq). We refer to the
latter as q-bimonoids and q-Hopf monoids. When q = 1, we speak simply of bimonoids
and Hopf monoids.

The structure of a monoid p consists of morphisms of species µ : p · p → p and
ι : 1 → p subject to the familiar associative and unital axioms. In view of (1.1), the
product µ consists of a collection of linear maps

µS,T : p[S]⊗ p[T]→ p[I],

one for each finite set I and each decomposition (S,T) of I. The unit ι reduces to a
linear map

ι∅ : k→ p[∅].

Similarly, the structure of a comonoid q consists of linear maps

∆S,T : q[I]→ q[S]⊗ q[T] and ε∅ : q[∅]→ k.

Let I = S t T = S ′ t T ′ be two decompositions of a finite set. The compatibility
axiom for q-Hopf monoids states that the diagram

(1.2)

h[A]⊗ h[B]⊗ h[C]⊗ h[D]
id⊗βq⊗id

// h[A]⊗ h[C]⊗ h[B]⊗ h[D]

µA,C⊗µB,D

��
h[S]⊗ h[T]

µS,T

//

∆A,B⊗∆C,D

OO

h[I]
∆S ′ ,T ′

// h[S ′]⊗ h[T ′]

commutes, where A = S∩ S ′, B = S∩T ′, C = T ∩ S ′, D = T ∩T ′. For more details,
see [4, Sections 8.2 and 8.3].

1.3 Connected Species and Hopf Monoids

A species p is connected if dimk p[∅] = 1. In a connected monoid, the map ι∅ is an
isomorphism, k ∼= p[∅], and the resulting maps

p[I] ∼= p[I]⊗ p[∅]
µI,∅
−−→ p[I] and p[I] ∼= p[∅]⊗ p[I]

µ∅,I

−−→ p[I]

are identities. Thus, to provide a monoid structure on a connected species, it suffices
to specify the maps µS,T when S and T are nonempty. A similar remark applies to
connected comonoids.
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Choosing S = S ′ and T = T ′ in (1.2) one obtains that for a connected q-bimon-
oid h, the composite

h[S]⊗ h[T]
µS,T

−−→ h[I]
∆S,T

−−→ h[S]⊗ h[T]

is the identity.
A connected q-bimonoid is automatically a q-Hopf monoid; see [4, Sections 8.4

and 9.1]. The antipode of a Hopf monoid will not concern us in this paper.

1.4 The Hopf Monoid of Linear Orders

The q-Hopf monoid Lq is defined as follows. The vector space Lq[I] has for basis
the set of linear orders on the finite set I. The product and coproduct are defined by
concatenation and restriction, respectively:

µS,T : Lq[S]⊗ Lq[T]→ Lq[I] ∆S,T : Lq[I]→ Lq[S]⊗ Lq[T]

l1 ⊗ l2 7→ l1 · l2 l 7→ qschS,T (l) l|S ⊗ l|T .

Here l1 · l2 is the linear order on I whose restrictions to S and T are l1 and l2 and in
which the elements of S precede the elements of T, and l|S is the restriction of the
linear order l on I to the subset S. The Schubert cocycle is

(1.3) schS,T(l) :=
∣∣{(i, j) ∈ S× T | i > j according to l}

∣∣ .
We write L instead of L1. Note that the monoid structure of Lq is independent of

q. Thus, L = Lq as monoids. The comonoid L is cocommutative, but, for q 6= 1, Lq

is not.

2 The Free Monoid on a Positive Species

We review the explicit construction of the free monoid on a positive species, fol-
lowing [4, Section 11.2]. The free monoid carries a canonical structure of q-Hopf
monoid. The case q = 0 is of particular interest for our purposes, in view of the fact
that any connected 0-Hopf monoid is free (Theorem 2.2).

2.1 Set Compositions

A composition of a finite set I is an ordered sequence F = (I1, . . . , Ik) of disjoint
nonempty subsets of I such that

I =
k⋃

i=1
Ii .

The subsets Ii are the blocks of F. We write F � I to indicate that F is a composition
of I. There is only one composition of the empty set (with no blocks).
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Given I = S t T and compositions F = (S1, . . . , S j) of S and G = (T1, . . . ,Tk) of
T, their concatenation

F · G := (S1, . . . , S j ,T1, . . . ,Tk)

is a composition of I.
Given S ⊆ I and a composition F = (I1, . . . , Ik) of I, we say that S is F-admissible

if for each i = 1, . . . , k, either

Ii ⊆ S or Ii ∩ S = ∅.

In this case, we let i1 < · · · < i j be the subsequence of 1 < · · · < k consisting of
those indices i for which Ii ⊆ S, and define the restriction of F to S by

F|S = (Ii1 , . . . , Ii j ).

It is a composition of S.
Given I = S t T and a composition F = (I1, . . . , Ik) of I, let

(2.1) schS,T(F) :=
∣∣{(i, j) ∈ S×T | i appears in a strictly later block of F than j}

∣∣ .
Alternatively,

schS,T(F) =
∑

1≤i< j≤k

|Ii ∩ T| |I j ∩ S|.

Still in the preceding situation, note that S is F-admissible if and only if T is. Thus
F|S and F|T are defined simultaneously.

If the blocks of F � I are singletons, then F amounts to a linear order on I. Con-
catenation and restriction of set compositions reduce in this case to the correspond-
ing operations for linear orders (Section 1.4). In addition, (2.1) reduces to (1.3).

The set of compositions of I is a partial order under refinement: we set F ≤ G
if each block of F is obtained by merging a number of adjacent blocks of G. The
composition (I) is the unique minimum element, and linear orders are the maximal
elements.

Set compositions of I are in bijection with flags of subsets of I via

(I1, . . . , Ik) 7→ (∅ ⊂ I1 ⊂ I1 ∪ I2 ⊂ · · · ⊂ I1 ∪ · · · ∪ Ik = I).

Refinement of compositions corresponds to inclusion of flags. In this manner the
poset of set compositions is a lower set of the Boolean poset 22I

, and hence a meet-
semilattice. The meet operation and concatenation interact as follows:

(2.2) (F · F ′) ∧ (G · G ′) = (F ∧ G) · (F ′ ∧ G ′),

where F,G � S and F ′,G ′ � T, I = S t T.

Remark Set compositions of I are in bijection with faces of the braid arrangement
in RI . Refinement of compositions corresponds to inclusion of faces, meet to inter-
section, linear orders to chambers, and (I) to the central face. When S and T are
nonempty, the statistic schS,T(F) counts the number of hyperplanes that separate the
face (S,T) from F. For more details, see [4, Chapter 10].
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2.2 The Free Monoid

A species q is positive if q[∅] = 0.
Given a positive species q and a composition F = (I1, . . . , Ik) of I, write

(2.3) q(F) := q[I1]⊗ · · · ⊗ q[Ik].

We define a new species T(q) by

T(q)[I] :=
⊕
F�I

q(F).

A bijection σ : I → J transports a composition F = (I1, . . . , Ik) of I into a composi-
tion σ(F) :=

(
σ(I1), . . . , σ(Ik)

)
of J. The map

T(q)[σ] : T(q)[I]→ T(q)[ J]

is the direct sum of the maps

q(F) = q[I1]⊗ · · · ⊗ q[Ik]
q[σ|I1 ]⊗···⊗q[σ|Ik ]

−−−−−−−−−−−→ q[σ(I1)]⊗ · · · ⊗ q[σ(Ik)] = q
(
σ(F)

)
.

When F is the unique composition of ∅, we have q(F) = k. Thus, the species
T(q) is connected.

Every nonempty I admits a unique composition with one block; namely, F = (I).
In this case, q(F) = q[I]. This yields an embedding q[I] ↪→ T(q)[I] and thus an
embedding of species

ηq : q ↪→ T(q).

On the empty set, ηq is (necessarily) zero.
Given I = S t T and compositions F � S and G � T, we have a canonical

isomorphism,
q(F)⊗ q(G) ∼= q(F · G),

obtained by concatenating the factors in (2.3). The sum of these over all F � S and
G � T yields a map

µS,T : T(q)[S]⊗ T(q)[T]→ T(q)[I].

This turns T(q) into a monoid. In fact, T(q) is the free monoid on the positive species
q, in view of the following result (a slight reformulation of [4, Theorem 11.4]).

Theorem 2.1 Let p be a monoid, q a positive species, and ζ : q → p a morphism of

species. Then there exists a unique morphism of monoids ζ̂ : T(q)→ p such that

T(q)
ζ̂

// p

q

ζ

99

ηq

OO

commutes.
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The map ζ̂ is as follows. On the empty set, it is the unit map of p:

T(q)[∅] = k
ι∅
−→ p[∅].

On a nonempty set I, it is the sum of the maps

q(F) = q[I1]⊗ · · · ⊗ q[Ik]
ζI1⊗···⊗ζIk

−−−−−−→ p[I1]⊗ · · · ⊗ p[Ik]
µI1 ,...,Ik

−−−−→ p[I],

where µI1,...,Ik denotes an iteration of the product of p (well-defined by associativity).

When there is given an isomorphism of monoids, p ∼= T(q), we say that the posi-
tive species q is a basis of the (free) monoid p.

Remark The free monoid T(q) on an arbitrary species q exists [4, Example B.29].
One has that T(q)[∅] is the free associative unital algebra on the vector space q[∅].
Thus, T(q) is connected if and only if q is positive. We consider only this case in this
paper.

2.3 The Free Monoid as a Hopf Monoid

Let q ∈ k and q a positive species. The species T(q) admits a canonical q-Hopf
monoid structure, which we denote by Tq(q), as follows.

As monoids, Tq(q) = T(q). In particular, Tq(q) and T(q) are the same species.
The comonoid structure depends on q. Given I = S t T, the coproduct

∆S,T : Tq(q)[I]→ Tq(q)[S]⊗ Tq(q)[T]

is the sum of the maps

q(F)→ q(F|S)⊗ q(F|T)

x1 ⊗ · · · ⊗ xk 7→

{
qschS,T (F)(xi1 ⊗ · · · ⊗ xi j )⊗ (xi ′1

⊗ · · · ⊗ xi ′k
) if S is F-admissible,

0 otherwise.

Here F = (I1, . . . , Ik) and xi ∈ q[Ii] for each i. In the admissible case, we have written
F|S = (Ii1 , . . . , Ii j ) and F|T = (Ii ′1

, . . . , Ii ′k
).

The preceding turns Tq(q) into a q-bimonoid. Since it is connected, it is a q-Hopf
monoid.

2.4 Freeness of the Hopf Monoid of Linear Orders

Let X be the species defined by

X[I] :=

{
k if I is a singleton,

0 otherwise.
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It is positive. Note that

(2.4) X(F) ∼=

{
k if all blocks of F are singletons,

0 otherwise.

Since a set composition of I into singletons amounts to a linear order on I, we have
T(X)[I] ∼= L[I] for all finite sets I. This gives rise to a canonical isomorphism of
species, T(X) ∼= L. Moreover, the discussion in Section 2.1 implies that this is an
isomorphism of q-Hopf monoids, Tq(X) ∼= Lq. In particular, L is the free monoid on
the species X.

2.5 Loday–Ronco Freeness for 0-Hopf Monoids

The 0-Hopf monoid T0(q) has the same underlying species and the same product as
the Hopf monoid T(q) (Section 2.2). We now discuss the coproduct, by setting q = 0
in the description of Section 2.3. Fix a decomposition I = S t T. The compositions
F � I that contribute to ∆S,T are those for which S is F-admissible and in addition
schS,T(F) = 0. This happens if and only if F = F|S · F|T . When S,T 6= ∅, the
preceding is in turn equivalent to

(2.5) (S,T) ≤ F.

Therefore, the coproduct ∆S,T of T0(q) is the direct sum over all F � I of the above
form of the maps

q(F)→ q(F|S)⊗ q(F|T)

x1 ⊗ · · · ⊗ xk 7→ (x1 ⊗ · · · ⊗ x j)⊗ (x j+1 ⊗ · · · ⊗ xk).

Here F = (I1, . . . , Ik), S = I1 ∪ · · · ∪ I j , and T = I j+1 ∪ · · · ∪ Ik.

Theorem 2.2 Let h be a connected 0-Hopf monoid. Then there exist a positive species
q and an isomorphism of 0-Hopf monoids, h ∼= T0(q).

The species q can be obtained as the primitive part of h. The key observation
that leads to Theorem 2.2 is that in a product of primitive elements of h, the factors
can be recovered by applying the coproduct. The complete details are given in [4,
Theorem 11.49]. There is a parallel result for connected graded 0-Hopf algebras that
is due to Loday and Ronco [11, Theorem 2.6]. An adaptation of their proof yields the
result for connected 0-Hopf monoids.

Remark Theorem 2.2 states that any connected 0-Hopf monoid is free as a monoid.
It is also true that it is cofree as a comonoid; in addition, if q is finite-dimensional,
then the 0-Hopf monoid T0(q) is self-dual. See [4, Section 11.10.3] for more details.

We mention in passing a result of Foissy [8]: a connected graded Hopf algebra
that is free as an algebra and cofree as a connected coalgebra is always self-dual as a
graded Hopf algebra. We do not know if this continues to hold for q-Hopf algebras.
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3 Freeness under Hadamard Products

The Hadamard product of two Hopf monoids is another Hopf monoid. We review
this construction and prove in Theorem 3.2 that if one of the Hopf monoids is free
as a monoid, then the Hadamard product is also free as a monoid (provided the
other Hopf monoid is connected). We introduce an operation on positive species
that allows us to describe a basis for the Hadamard product of two free monoids in
terms of bases of the factors (Theorem 3.8).

3.1 The Hadamard Product of Hopf Monoids

The Hadamard product of two species p and q is the species p× q defined on a finite
set I by

(p× q)[I] := p[I]⊗ q[I],

and on bijections similarly. If p and q are connected, then so is p× q.

Proposition 3.1 Let p, q ∈ k be arbitrary scalars. If h is a p-bimonoid and k is a
q-bimonoid, then h× k is a pq-bimonoid.

The proof is given in [4, Corollary 9.6]. The corresponding statement for Hopf
monoids holds as well.

The product of h× k is defined by

(h × k)[S] ⊗ (h × k)[T]
µS,T

// (h × k)[I]

(h[S] ⊗ k[S]) ⊗ (h[T] ⊗ k[T])
∼=
// (h[S] ⊗ h[T]) ⊗ (k[S] ⊗ k[T])

µS,T⊗µS,T

// h[I] ⊗ k[I],

where the first map on the bottom simply switches the middle tensor factors. The
coproduct is defined similarly.

In particular, if h and k are bimonoids (p = q = 1), then so is h× k.

Remark There is a parallel between the notions of species on the one hand, and of
graded vector spaces on the other. This extends to a parallel between Hopf monoids
in species and graded Hopf algebras. These topics are studied in detail in [4, Part III].

The Hadamard product of graded vector spaces can be defined but does not enjoy
the same formal properties of that for species. In particular, the Hadamard product
of two graded bialgebras carries natural algebra and coalgebra structures, but these
are not compatible in general; see [4, Remark 8.65]. For this reason, our main result
(Theorem 3.2) does not possess an analogue for graded bialgebras.

3.2 Freeness under Hadamard Products

The following is our main result. Let p and q ∈ k be arbitrary scalars.
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Theorem 3.2 Let h be a connected p-Hopf monoid. Let k be a q-Hopf monoid that is
free as a monoid. Then h× k is a connected pq-Hopf monoid that is free as a monoid.

Proof Since h and k are connected (the latter by freeness), so is h×k. We then know
from Proposition 3.1 that h × k is a connected pq-Hopf monoid. Now, as monoids,
we have

k ∼= Tq(q) = T0(q)

for some positive species q. Hence, as monoids,

h× k ∼= h× T0(q).

But the latter is a 0-Hopf monoid by Proposition 3.1, and hence free as a monoid by
Theorem 2.2.

Corollary 3.3 Let h be a connected p-Hopf monoid. Then h× Lq is free as a monoid.

Proof This is a special case of Theorem 3.2, since as discussed in Section 2.4,
Lq
∼= Tq(X).

Example 3.4 The Hopf monoid ILq of pairs of linear orders is studied in [4, Sec-
tion 12.3]. There is an isomorphism of q-Hopf monoids, ILq

∼= L∗ × Lq. Corol-
lary 3.3 implies that ILq is free as a monoid. This result was obtained by different
means in [4, Section 12.3]. It implies the fact that the Hopf algebra of permutations
of Malvenuto and Reutenauer [12] is free as an algebra, a result known from [13].
See Section 3.3 for more comments regarding connections between Hopf monoids
and Hopf algebras.

Example 3.5 The Hopf monoid scf(U) of superclass functions on unitriangular ma-
trices with entries in F2 is studied in [1]. There is an isomorphism of Hopf monoids,
scf(U) ∼= ΠΠΠ × L, where ΠΠΠ is the Hopf monoid of set partitions of [4, Section 12.6].
It follows (using Corollary 3.3 with p = q = 1) that scf(U) is free as a monoid.
This result was obtained by different means in [1, Proposition 17]. It implies the fact
that the Hopf algebra of symmetric functions in noncommuting variables [15] is free
as an algebra, a result known from [18]. Other references where this Hopf algebra is
discussed include [3, 6, 7].

3.3 Livernet Freeness for Certain Hopf Algebras

It is possible to associate a number of graded Hopf algebras with a given Hopf monoid
h. This is the subject of [4, Chapter 15]. In particular, there are two graded Hopf
algebras K(h) and K(h) related by a canonical surjective morphism, K(h) � K(h).
Moreover, for any Hopf monoid h, there is a canonical isomorphism of graded Hopf
algebras [4, Theorem 15.13], K(L× h) ∼= K(h).

The functor K preserves a number of properties, including freeness: if h is free as
a monoid, then K(h) is free as an algebra [4, Proposition 18.7].

Combining these remarks with Corollary 3.3, we deduce that for any connected
Hopf monoid h, the algebra K(h) is free. This result is due to Livernet [10, Theo-
rem 4.2.2]. A proof similar to the one above is given in [4, Section 16.1.7].
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As an example, we obtain that the Hopf algebra K(IL) of pairs of permutations is
free as an algebra, a result known from [3, Theorem 7.5.4].

3.4 The Hadamard Product of Free Monoids

Given positive species p and q, define a new positive species p ? q by

(3.1) (p ? q)[I] :=
⊕

F,G�I
F∧G=(I)

p(F)⊗ q(G).

The sum is over all pairs (F,G) of compositions of I such that F ∧ G = (I). We are
employing notation (2.3).

Lemma 3.6 For any composition H � I, there is a canonical isomorphism of vector
spaces,

(3.2) (p ? q)(H) ∼=
⊕

F,G�I
F∧G=H

p(F)⊗ q(G),

given by rearrangement of the tensor factors.

Proof Let us say that a function f on set compositions with values on vector spaces
is multiplicative if f (H1 · H2) ∼= f (H1)⊗ f (H2) for all H1 � I1, H2 � I2, I = I1 t I2.
Such functions are uniquely determined by their values on the compositions of the
form (I). The isomorphism (3.2) holds when H = (I) by definition (3.1). It thus
suffices to check that both sides are multiplicative.

The left-hand side of (3.2) is multiplicative in view of (2.3).
If, for i = 1, 2, Fi ,Gi � Ii are such that Fi ∧ Gi = Hi , then

(F1 · F2) ∧ (G1 · G2) = H1 ·H2

by (2.2). Moreover, if F,G � I1 t I2 are such that F ∧ G = H1 · H2, then F = F1 · F2

and G = G1 · G2 for unique Fi ,Gi as above. This implies the multiplicativity of the
right-hand side.

We show that the operation (3.1) is associative.

Proposition 3.7 For any positive species p, q, and r, there is a canonical isomorphism,

(p ? q) ? r ∼= p ? (q ? r).

Proof Define

(p ? q ? r)[I] :=
⊕

F,G,H�I,
F∧G∧H=(I)

p(F)⊗ q(G)⊗ r(H).
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We make use of the isomorphism (3.2) to build the following:(
p ? (q ? r)

)
[I] =

⊕
F,K�I

F∧K=(I)

p(F)⊗ (q ? r)(K)

∼=
⊕

F,K�I,
F∧K=(I)

⊕
G,H�I,

G∧H=K

p(F)⊗ q(G)⊗ r(H)

=
⊕

F,G,H�I,
F∧G∧H=(I)

p(F)⊗ q(G)⊗ r(H) = (p ? q ? r)[I].

The space
(

(p?q)?r
)

[I] can be identified with (p?q?r)[I] in a similar manner.

There is also an evident natural isomorphism

p ? q ∼= q ? p.

Thus, ? defines a (nonunital) symmetric monoidal structure on the category of pos-
itive species.

Our present interest in the operation ? stems from the following result, which pro-
vides an explicit description for the basis of a Hadamard product of two free monoids
in terms of bases of the factors.

Theorem 3.8 For any positive species p and q, there is a natural isomorphism of mon-
oids,

(3.3) T(p ? q) ∼= T(p)× T(q).

Proof We calculate using (3.2):

T(p ? q)[I] =
⊕
H�I

(p ? q)(H) ∼=
⊕
H�I

⊕
F,G�I

F∧G=H

p(F)⊗ q(G)

=
⊕

F,G�I
p(F)⊗ q(G) = T(p)[I]⊗ T(q)[I] =

(
T(p)× T(q)

)
[I].

The fact that this isomorphism preserves products follows from (2.2).

Example 3.9 Since X is a basis for L, (3.3) implies that X ? X is a basis for L × L.
From (2.4) we obtain that {(C,D) | C∧D = (I)} is a linear basis for (X?X)[I]. (The
linear orders C and D are viewed as set compositions into singletons.) For related
results, see [4, Section 12.3.6].

Recall that, for each scalar q ∈ k, any free monoid T(p) is endowed with a canon-
ical comonoid structure and the resulting q-Hopf monoid is denoted Tq(p) (Sec-
tion 2.3). It turns out that when q = 0, (3.3) is in fact an isomorphism of 0-Hopf
monoids, as we now prove. The proof below also shows that (3.3) is not an isomor-
phism of comonoids for q 6= 0.
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Proposition 3.10 The map (3.3) is an isomorphism of 0-Hopf monoids,

T0(p ? q) ∼= T0(p)× T0(q).

Proof In order to prove that coproducts are preserved it suffices to check that they
agree on the basis p ? q of T(p ? q) and on its image in T(p) × T(q). The image of
(p ? q)[I] is the direct sum of the spaces p(F) ⊗ q(G) over those F,G � I such that
F ∧ G = (I). Choose S,T 6= ∅ such that I = S t T. In view of the definition of the
coproduct on a free monoid (Section 2.3), the coproduct ∆S,T of Tq(p ? q) is zero on
(p?q)[I]. (This holds for any q ∈ k.) On the other hand, from (2.5) we have that the
coproduct of T0(p)× T0(q) on p(F)⊗ q(G) is also zero, unless both (S,T) ≤ F and
(S,T) ≤ G. Since this is forbidden by the assumption F ∧ G = (I), the coproducts
agree.

4 The Dimension Sequence of a Connected Hopf Monoid

We now derive a somewhat surprising application of Theorem 3.2. It states that the
reciprocal of the ordinary generating function of a connected Hopf monoid has non-
positive (integer) coefficients (Theorem 4.4). We compare this result with other pre-
viously known conditions satisfied by the dimension sequence of a connected Hopf
monoid.

4.1 Coinvariants

Let G be a group and V a kG-module. The space of coinvariants VG is the quotient of
V by the k-subspace spanned by the elements of the form v − g · v for v ∈ V , g ∈ G.
If V is a free kG-module, then dimk VG = rankkG V.

Let V and W be kG-modules. Let U1 be the space V ⊗W with diagonal G-action

g · (v ⊗ w) := (g · v)⊗ (g · w).

Let U2 be the same space but with the following G-action:

g · (v ⊗ w) := v ⊗ (g · w).

The following is a well-known basic fact.

Lemma 4.1 If W is free as a kG-module, then U1
∼= U2. In particular,

dimk(U1)G = (dimk V )(dimk WG).

Proof We may assume that W = kG. In this case, the map

U1 → U2, v ⊗ g 7→ (g−1 · v)⊗ g

is an isomorphism of kG-modules. The second assertion follows because U2 is a free
module of rank equal to (dimk V )(rankkG W ).
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4.2 The Type Generating Function

Let p be a species. We write p[n] for the space p[{1, . . . , n}]. The symmetric group
Sn acts on p[n] by σ · x := p[σ](x) for σ ∈ Sn, x ∈ p[n]. For example, L[n] ∼= kSn as
kSn-modules.

From now on, we assume that all species p are finite-dimensional. This means that
for each n ≥ 0 the space p[n] is finite-dimensional. The type generating function of p
is the power series

Tp(x) :=
∑
n≥0

dimk p[n]Sn xn.

For example,

TL(x) =
∑
n≥0

xn =
1

1− x
.

More generally, for any positive species q,

(4.1) TT(q)(x) =
1

1− Tq(x)
.

This follows by a direct calculation or from [5, Theorem 1.4.2.b].
Let p be a free monoid. It follows from (4.1) that

(4.2) 1− 1

Tp(x)
∈ N[[x]].

In other words, the reciprocal of the type generating function of a free monoid has
nonpositive integer coefficients (except for the first, which is 1).

4.3 Generating Functions for Hadamard Products

The type generating function of a Hadamard product p × q is in general not de-
termined by those of the factors. (It is however determined by their cycle indices;
see [5, Proposition 2.1.7.b].)

The ordinary generating function of a species p is

Op(x) :=
∑
n≥0

dimk p[n] xn.

The Hadamard product of power series is defined by(∑
n≥0

anxn
)
×
(∑

n≥0

bnxn
)

:=
∑
n≥0

anbnxn.

Proposition 4.2 Let p be an arbitrary species and q a species for which q[n] is a free
kSn-module for every n ≥ 0. Then

(4.3) Tp×q(x) = Op(x)× Tq(x).
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Proof In view of Lemma 4.1, we have

dimk
(

(p× q)[n]
)

Sn
= (dimk p[n])(dimk q[n]Sn )

from which the result follows.

Since TL(x) is the unit for the Hadamard product of power series, we have
from (4.3) that

(4.4) Tp×L(x) = Op(x).

More generally, for any positive species q,

(4.5) Tp×T(q)(x) = Op(x)× 1

1− Tq(x)
.

This follows from (4.1) and (4.3); the kSn-module T(q)[n] is free by [4, Lemma B.18].

4.4 The Ordinary Generating Function of a Connected Hopf Monoid

Let h be a connected q-Hopf monoid. By Corollary 3.3, h× L is a free monoid. Let q
be a basis. Thus, q is a positive species such that h× L ∼= T(q), as monoids.

Proposition 4.3 In the above situation,

(4.6) Oh(x) =
1

1− Tq(x)
.

Proof We have, by (4.1) and (4.4),

Oh(x) = Th×L(x) = TT(q)(x) =
1

1− Tq(x)
.

Theorem 4.4 Let h be a connected q-Hopf monoid. Then

(4.7) 1− 1

Oh(x)
∈ N[[x]].

Proof From (4.6) we deduce

1− 1

Oh(x)
= Tq(x) ∈ N[[x]].

In the terminology of Section A, Theorem 4.4 states that the Boolean transform
of the dimension sequence of a connected q-Hopf monoid is nonnegative; see (A.1).
Proposition 4.3 states more precisely that the Boolean transform of the ordinary gen-
erating function of h is the type generating function of q.
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Example 4.5 We have

1− 1∑
n≥0 n!xn

= x + x2 + 3x3 + 13x4 + 71x5 + 461x6 + · · · .

The Boolean transform bn of the dimension sequence of L admits the following de-
scription. Say that a linear order on the set [n] is decomposable if it is the concate-
nation of a linear order on [i] and a linear order on [n] \ [i] for some i such that
1 ≤ i < n. Every linear order is the concatenation of a unique sequence of indecom-
posable ones. It then follows from (A.3) that bn is the number of indecomposable
linear orders on [n]. The sequence bn is [16, A003319].

Example 4.6 A partition X of the set [n] is atomic if [i] is not a union of blocks
of X for any i such that 1 ≤ i < n. The dimension sequence of the Hopf monoid
ΠΠΠ is the sequence of Bell numbers, and its Boolean transform counts the number of
atomic partitions of [n]. The latter is sequence [16, A074664].

Let an := dimk h[n]. The conditions imposed by (4.7) on the first terms of this
sequence are as follows:

a2
1 ≤ a2, 2a1a2 − a3

1 ≤ a3, 2a1a3 − 3a2
1a2 + a2

2 + a4
1 ≤ a4.

Example 4.7 Suppose that the sequence starts with

a1 = 1, a2 = 2, and a3 = 3.

The third inequality above then implies a4 ≥ 5. It follows that the species e of ele-
ments (for which dimk e[n] = n) does not carry a bimonoid structure. This result
was obtained by different means in [2, Example 3.5].

The calculation of Example 4.5 can be generalized to all free monoids in place of L.
To this end, let us say that a composition F of the set [n] is decomposable if F = F1 ·F2

for some F1 � [i], F2 � [n] \ [i], and some i such that 1 ≤ i < n.

Proposition 4.8 For any positive species p, the Boolean transform of the dimension
sequence of the Hopf monoid T(p) is given by

bn =
∑

F�[n]
F indecomposable

dimk p(F).

Proof We have from (3.3) that

T(p ? X) ∼= T(p)× T(X) ∼= T(p)× L.

Hence, by (4.6),

OT(p)(x) =
1

1− Tp?X(x)
.
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Thus, Tp?X(x) is the Boolean transform of OT(p)(x), and hence

bn = dimk
(

(p ? X)[n]
)

Sn
.

From (2.4) and (3.1) we have that

(p ? X)[I] =
⊕

(F,C): F∧C=(I)
p(F)

where F varies over set compositions and C varies over linear orders on I. It follows
that (p ? X)[n] is a free kSn-module with Sn-coinvariants equal to the space⊕

F�[n],
F∧Cn=([n])

p(F)

where Cn denotes the canonical linear order on [n]. The result follows since F∧Cn =
([n]) if and only if F is indecomposable. (Alternatively, we may prove this result by
appealing to (A.3) as in Example 4.5.)

Let h and k be connected Hopf monoids. The Boolean transform of the dimension
sequence of h × k can be explicitly described in terms of the Boolean transforms of
the dimension sequences of h and k; see Proposition A.3.

For example, let bn be the Boolean transform of the dimension sequence of IL
(Example 3.4). This is sequence [16, A113871], and its first few terms are 1, 3, 29, 499.
Recalling that IL ∼= L∗ × L and employing (A.5) we readily obtain that bn counts the
number of pairs (l,m) of linear orders on [n] such that α ∧ β = (n), where the
sequence of indecomposables of l has size α and that of m has size β.

Remark Theorem 4.4 states that if h is a connected q-Hopf monoid, then the
Boolean transform of Oh(x) is nonnegative. This was deduced by considering the
Hadamard product of h with L. One may also consider the Hadamard product of h
with an arbitrary free Hopf monoid. Then, using Theorem 3.2 together with (4.2)
and (4.5), one obtains that for any series A(x) ∈ N[[x]] with nonnegative Boolean
transform, the Hadamard product Oh(x)×A(x) also has nonnegative Boolean trans-
form. However, this does not impose any additional conditions on Oh(x), in view of
Corollary A.4.

4.5 Non-attainable Sequences

The question arises as to whether condition (4.7) characterizes the dimension se-
quence of a connected Hopf monoid. In other words, given a sequence of nonnega-
tive integers bn, n ≥ 1, is there a connected q-Hopf monoid h such that

(4.8) 1− 1

Oh(x)
=
∑
n≥1

bnxn

holds? In other words, the question is whether bn is the Boolean transform of the
dimension sequence of a connected q-Hopf monoid. The answer is negative, as the
following result shows.
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Proposition 4.9 Consider the sequence defined by

bn :=

{
1 if n = 2,

0 otherwise.

Then there is no connected q-bimonoid h for which (4.8) holds, regardless of q.

Proof Suppose such h exists; let an be its dimension sequence. Then bn is the Boolean
transform of an, and (A.3) implies that

an :=

{
1 if n is even,

0 if n is odd.

Recall from Section 1.3 that for any decomposition I = S t T, the composite
∆S,TµS,T is the identity. It follows in the present situation that µS,T and ∆S,T are
inverse whenever S and T are of even cardinality. Now let

I = {a, b, c, d}, S = {a, b}, T = {c, d}, S ′ = {a, c}, and T ′ = {b, d}

and consider the commutative diagram (1.2). The bottom horizontal composite in
this diagram is an isomorphism between one-dimensional vector spaces, while the
composite obtained by going up, across and down is the zero map. This is a contra-
diction.

Let k be a positive integer and define, for n ≥ 1,

b(k)
n :=

{
1 if n = k,

0 otherwise.

The inverse Boolean transform of b(k)
n is

a(k)
n :=

{
1 if n ≡ 0 mod k,

0 otherwise.

An argument similar to that in Proposition 4.9 shows that if k ≥ 2, there is no con-
nected q-Hopf monoid with dimension sequence a(k)

n . (The exponential Hopf mon-
oid [4, Example 8.15] has dimension sequence a(1)

n .)

4.6 Comparison with Previously Known Conditions

The paper [2] provides various sets of conditions that the dimension sequence an of
a connected Hopf monoid must satisfy. For instance, [2, Proposition 4.1] states that

(4.9) aia j ≤ an
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for n = i + j and every i, j ≥ 1. In addition, the coefficients of the power series

(4.10)
1 +
∑

n≥1 anxn

1 +
∑

n≥1
an
n! xn

are nonnegative [2, Corollary 3.3], and [2, Equation (3.2)] states that

(4.11) a3 ≥ 3a2a1 − 2a3
1.

We proceed to compare these conditions with those imposed by Theorem 4.4.

The inequalities (4.9) are implied by Theorem 4.4, in view of Lemma A.2. An
example of a sequence that satisfies (4.9) but whose Boolean transform fails to be
nonnegative is the following:

an :=

{
n if n ≤ 4,

2n if n ≥ 5.

(The first terms of the Boolean transform are b1 = 1, b2 = 1, b3 = 0, b4 = −1.)
Thus, the conditions imposed by Theorem 4.4 are strictly stronger than (4.9).

Condition (4.10) is also implied by Theorem 4.4, in view of Lemma A.1 (with
wn = 1

n! ).

On the other hand, condition (4.11) is not implied by Theorem 4.4. To see this,
let an be the sequence of Fibonacci numbers, defined by a0 = a1 = 1 and

an = an−1 + an−2

for n ≥ 2. The Boolean transform is nonnegative; indeed, it is simply given by

bn =

{
1 if n ≤ 2,

0 otherwise.

However, condition (4.11) is not satisfied.

The previous example shows that there is no connected Hopf monoid with dimen-
sions given by the Fibonacci sequence. It also provides another example for which the
answer to question (4.8) is negative.

A The Boolean Transform

We recall the Boolean transform of a sequence and discuss some consequences of
its nonnegativity. We provide an explicit formula for the Boolean transform of a
Hadamard product in terms of the transforms of the factors.
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A.1 Boolean Transform and Integer Compositions

Let an, n ≥ 1, be a sequence of scalars. Its Boolean transform is the sequence bn,
n ≥ 1, defined by

(A.1)
∑
n≥1

bnxn := 1− 1

1 +
∑

n≥1 anxn
.

Equivalently, the sequence bn can be determined recursively from

(A.2) an −
n−1∑
k=1

an−kbk − bn = 0.

We also refer to the power series
∑

n≥1 bnxn as the Boolean transform of the power
series

∑
n≥1 anxn.

Remark In the literature on noncommutative probability [17], if an is the sequence
of moments (of a noncommutative random variable), then bn is the sequence of
Boolean cumulants. The Boolean transform is also called the B-transform [14].

A composition of a nonnegative integer n is a sequence α = (n1, . . . , nk) of positive
integers such that n1 + · · · + nk = n. We write α � n.

Given a sequence an and a composition α � n as above, we let

aα := an1 · · · ank .

The sequence an can be recovered from its Boolean transform bn by

(A.3) an =
∑
α�n

bα.

Given compositions σ = (s1, . . . , s j) � s and τ = (t1, . . . , tk) � t , their concate-
nation

σ · τ := (s1, . . . , s j , t1, . . . , tk)

is a composition of s + t .
The set of compositions of n is a Boolean lattice under refinement. The minimum

element is the composition (n) and the maximum is (1, . . . , 1). The meet operation
and concatenation interact as follows:

(A.4) (α · α ′) ∧ (β · β ′) = (α ∧ β) · (α ′ ∧ β ′),

where α, β � n and α ′, β ′ � n ′.
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A.2 Consequences of Nonnegativity of the Boolean Transform

We say that a real sequence an has nonnegative Boolean transform when all the terms
bn of its Boolean transform are nonnegative.

Lemma A.1 Let an be a real sequence with nonnegative Boolean transform. Let wn be
a weakly decreasing sequence such that w1 ≤ 1. Then the coefficients of the power series

1−
1 +
∑

n≥1 wnanxn

1 +
∑

n≥1 anxn
and

1 +
∑

n≥1 anxn

1 +
∑

n≥1 wnanxn

are nonnegative.

Proof Let C(x) :=
∑

n≥1 cnxn denote the first power series above. Let bn be the
Boolean transform of an. In view of (A.1),

C(x) = 1−
(

1 +
∑
n≥1

wnanxn
)(

1−
∑
n≥1

bnxn
)
.

Hence, for n ≥ 1,

cn = −wnan +
n−1∑
k=1

wn−kan−kbk + bn.

Combining with (A.2) we obtain

cn = −wn

( n−1∑
k=1

an−kbk + bn

)
+

n−1∑
k=1

wn−kan−kbk + bn

=

n−1∑
k=1

(wn−k − wn)an−kbk + (1− wn)bn.

The nonnegativity of bn implies that of an, by (A.3). Also, wn−k − wn ≥ 0 and
1− wn ≥ 0 by hypothesis. Hence cn ≥ 0.

The second power series in the statement is 1
1−C(x) , so its sequence of noncon-

stant coefficients is the inverse Boolean transform of cn. The nonnegativity of these
coefficients follows from that of the cn, by (A.3).

Lemma A.2 Let an be a real sequence with nonnegative Boolean transform. Then
asat ≤ an for n = s + t and every s, t ≥ 1.

Proof According to (A.3), we have

asat =
(∑
σ�s

bσ
)(∑

τ�t

bτ
)

=
∑
σ�s
τ�t

bσ·τ ≤
∑
α�n

bα = an.

The inequality holds in view of the nonnegativity of the bn and the fact that each σ ·τ
is a distinct composition of n.

https://doi.org/10.4153/CJM-2013-005-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-005-x


On the Hadamard Product of Hopf Monoids 503

A.3 The Boolean Transform and Hadamard Products

Let an and bn be two sequences, n ≥ 1, and let pn and qn denote their Boolean
transforms. Consider the Hadamard product anbn of the given sequences, and let rn

denote its Boolean transform. We provide an explicit formula for rn in terms of the
sequences pn and qn.

Proposition A.3 With the notation as above,

(A.5) rn =
∑
α,β�n
α∧β=(n)

pαqβ .

Proof Define, for each γ � n, a scalar

r̃γ :=
∑
α,β�n
α∧β=γ

pαqβ .

Fix two compositions γ � n and γ ′ � n ′. Let n ′ ′ := n + n ′ and γ ′ ′ := γ ·γ ′ � n ′ ′.
Let α, β � n and α ′, β ′ � n ′ be compositions such that

γ = α ∧ β and γ ′ = α ′ ∧ β ′.

Let α ′ ′ := α · α ′ and β ′ ′ := β · β ′. Then, by (A.4),

α ′ ′ ∧ β ′ ′ = (α · α ′) ∧ (β · β ′) = (α ∧ β) · (α ′ ∧ β ′) = γ · γ ′ = γ ′ ′.

Conversely, any pair of compositions α ′ ′, β ′ ′ � n ′ ′ such that α ′ ′ ∧ β ′ ′ = γ ′ ′ arises
as above from unique α, α ′, β and β ′. It follows that

r̃γ r̃γ ′ =
∑

α,β�n, α ′,β ′�n ′

α∧β=γ, α ′∧β ′=γ ′

pαqβ pα ′qβ ′ =
∑

α ′ ′,β ′ ′�n ′ ′

α ′ ′∧β ′ ′=γ ′ ′

pα ′ ′qβ ′ ′ = r̃γ ′ ′ .

This implies that for γ = (n1, . . . , nk), we have r̃γ = r̃(n1) · · · r̃(nk).
On the other hand, from the definition of r̃ and (A.3) we have that∑

γ�n

r̃γ =
∑
α,β�n

pαqβ = anbn.

The previous two equalities imply that the sequence anbn is the inverse Boolean
transform of the sequence r̃(n), in view of (A.3). Thus, r̃(n) is the Boolean transform
of anbn and the result follows.

The first values of rn are as follows:

r1 = p1q1, r2 = p2q2 + p2q2
1 + p2

1q2,

r3 = p3q3 + 2p3q2q1 + 2p2 p1q3 + 2p2 p1q2q1 + p3
1q3 + p3q3

1.

Corollary A.4 The set of real sequences with nonnegative Boolean transform is closed
under Hadamard products.

Proof This follows at once from (A.5).
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