DECOMPOSITION OF K_n INTO DRAGONS

BY

C. HUANG AND J. SCHONHEIM

ABSTRACT. It is shown that if $1 \le n \equiv 0$ or $1 \pmod{2m}$, then the edges of K_n may be partitioned into isomorphic copies of a graph $D_3(m)$ and also of a graph $D_4(m)$, graphs consisting respectively of a triangle with an attached path of m-3 edges or a quadrilateral with an attached path of m-4 edges. If m is a power of 2 then the above condition is shown to be necessary and sufficient for the existence of such a partition.

1. Introduction. The complete graph K_n is said to have a G-decomposition, if it is the union of edge disjoint subgraphs each isomorphic to G.

An immediate and well-known necessary condition for the existence of a G-decomposition of K_n , if G has m edges, is

(1)
$$n(n-1) \equiv 0 \pmod{2m}.$$

The problem of determining the set of integers N(G) for which K_n has a G-decomposition has been solved completely or partially only for some particular graphs G namely for stars, paths, circles and also for all graphs having no more than four vertices. For more detailed references see [1].

DEFINITION 1. A dragon $D_3(m)$ respectively $D_4(m)$ is a graph having m edges and consisting of a triangle or a quadrilateral respectively and an attached path, called tail.

In this paper G will always denote a dragon.

As a first result of this paper we will prove in Theorem 1 the sufficiency of each of the conditions

(2)
$$n \equiv 1 \pmod{2m},$$

$$(3) n \equiv 0 \pmod{2m},$$

if G is a dragon $D_3(m)$ or $D_4(m)$. Consequently as formulated in Theorem 2 condition (1) for dragons appears to be necessary and sufficient if m is a power of 2. This establishes a complete solution of the G-decomposition problem for $D_3(2^{\alpha})$ and $D_4(2^{\alpha})$ namely: for

(4)
$$i = 3, 4 \qquad 2^{\alpha} > i$$
$$N(D_i(2^{\alpha})) = \{n \mid 1 < n \equiv 0 \quad \text{or} \quad 1 \pmod{2^{\alpha+1}}\}.$$

Received by the editors November 1, 1977 and, in revised form, January 12, 1979.

275

This generalizes

$$N(D_3(4)) = \{n \mid 1 < n \equiv 0 \text{ or } 1 \pmod{8}\},\$$

a result in [1].

2. Notation and definitions. The vertex set of K_n will be either Z_n or $Z_{n-1} \cup \infty$ depending on whether $n \equiv 1$ or $n \equiv 0 \pmod{2m}$.

A dragon $D_3(m)$ consisting of the triangle $\{a, b, c\}$ with tail attached to the vertex c will be denoted by $(a, b, c; x_1, x_2, \ldots, x_{m-3})$. Similarly (a, b, c, d; $x_1, x_2, \ldots, x_{m-4}$) is a dragon consisting of the quadrilateral with edges $\{ab, bc, cd, da\}$ and with the tail attached to the vertex d.

It seems to be useful to denote by $(a, b, c; x_1, x_2, \ldots, x_{m-3}) \pmod{n}$ the set of graphs

$$(a+j, b+j, c+j; x_1+j, x_2+j, \ldots, x_{m-3}+j)$$
 $j=0, 1, 2, \ldots, n-1,$

where all the vertices are in Z_n .

When the vertex set is $Z_{n-1} \cup \infty$, denote by

$$(a, b, c; x_1, x_2, \ldots, x_{m-4}, \infty) \pmod{n-1}$$

the set of graphs

 $(a+j, b+j, c+j; x_1+j, x_2+j, \ldots, x_{m-4}+j, \infty)$ $j=0, 1, 2, \ldots, n-2.$

A similar notation will be used also for $D_4(m)$.

Two partitions of integers, which are known [2, 3] to exist will be used in our construction and are as follows:

DEFINITION 2

(i) Let $t \equiv 0, 1 \pmod{4}$. A partition of the integers $\{1, 2, \dots, 2t\}$ into t pairs (p_i, q_i) such that $q_i - p_i = i$ for i = 1, 2, ..., t will be called partition A.

(ii) Let $t \equiv 2, 3 \pmod{4}$. A partition of the integers $\{1, 2, ..., 2t - 1, 2t + 1\}$ into t pairs (p_i, q_i) such that $q_i - p_i = i$ for i = 1, 2, ..., t will be called partition Β.

The set of pairs $\{(p_i, q_i), i = 1, 2, ..., t\}$ will denote a partition A or a partition B, depending on whether $t \equiv 0, 1 \pmod{4}$ or $t \equiv 2, 3 \pmod{4}$.

3. Four lemmas.

LEMMA 1. Let

(5)
$$y_{i} = \begin{cases} \frac{m-3}{2}t & \text{if } m \text{ is odd} \\ \\ \frac{m+2}{2}t+i & \text{if } m \text{ is even} \end{cases}$$
$$i = 2, 3, \dots, t$$

276

September

1980]

and let

$$y_{1} = \begin{cases} as \ defined \ in \ (5), \ if \ t \equiv 0, \ 1 \ (\text{mod } 4) \ i.e. \\ \frac{m-3}{2} \ t, \ for \ m \ odd, \ \frac{m+2}{2} \ t+1, \ for \ m \ even, \\ \frac{m-3}{2} \ t+1, \ for \ m \ odd, \ \frac{m+2}{2} \ t \ for \ m \ even, \ if \\ t \equiv 2, \ 3 \ (\text{mod } 4) \end{cases}$$

then the following t(2mt+1) graphs form a $D_3(m)$ -decomposition of K_{2mt+1} :

$$(v-p_i-t, v-q_i-t, 0; (m-1)t+i, t, (m-2)t+i, 2t, ..., y_i) \pmod{v}$$

where i = 1, 2, ..., t, v = 2mt + 1.

LEMMA 2. Let
(6)
$$y_i = \begin{cases} \frac{m-3}{2}t & \text{for } m \text{ odd} \\ \frac{m+2}{2}t+i-1 & \text{for } m \text{ even} \\ i = 3, 4, \dots, t \end{cases}$$

 $y_1 = \begin{cases} as \ defined \ in \ (6), \ with \ i = 1, \ if \\ t \equiv 2, 3 \ (\text{mod } 4) \\ \infty & if \ t \equiv 0, 1 \ (\text{mod } 4) \\ w & if \ t \equiv 2, 3 \ (\text{mod } 4) \end{cases}$

then the following t(2mt-1) graphs form a $D_3(m)$ -decomposition of K_{2mt} :

 $(v - p_i - t, v - q_i - t, 0; (m - 1)t + i - 1, t, (m - 2)t + i - 1, 2t, ..., y_i) \pmod{v}$ where i = 1, 2, ..., t, v = 2mt - 1.

LEMMA 3. Let

$$y_i = \begin{cases} \frac{m-4}{2} t & \text{if } m \text{ is even} \\ \frac{m+3}{2} t + i & \text{if } m \text{ is odd.} \end{cases}$$

then the following t(2mt+1) graphs form a $D_4(m)$ -decomposition of K_{2mt+1} :

$$(v-2i, 2mt, v-(4t-2i+2), 0; (m-1)t+i, t, (m-2)t+i, 2t, ..., y_i) \pmod{v}$$

where $i = 1, 2, ..., t, v = 2mt+1$.

LEMMA 4. Let

$$y_i = \begin{cases} \frac{m-4}{2} t & \text{if } m \text{ is even} \\ \frac{m+3}{2} t + i - 1 & \text{if } m \text{ is odd} \end{cases}$$

for i = 1, 2, ..., t-1, while $y_t = \infty$, then the following t(2mt-1) graphs form a $D_4(m)$ -decomposition of K_{2mt} :

$$(v-2i, 2mt, v-(4t-2i+2), 0; (m-1)t+i-1, t, (m-2)t+i-1, 2t, ..., y_i) \times (mod v)$$

where i = 1, 2, ..., t, v = 2mt - 1.

Proof of Lemmas 1-4. The direct construction exhibited in Lemmas 1-4 may be checked as follows. Every edge (x, y) of K_n occurs in some graph of the claimed decomposition. Indeed, in the case of Lemma 1, $t \equiv 0, 1 \pmod{4}$ for instance, if $\min\{|x-y|, n-|x-y|\} \le 3t$ then (x, y) occurs in some triangle, otherwise in the tail. For $t \equiv 2, 3 \pmod{4}$ the minimum 3t does not occur in the triangle, but this is compensated by the change in y_1 . The unicity follows from the fact that the total number of edges in the decomposition is precisely the number of edges of K_n .

The argument is similar in the other lemmas. Edges (∞, x) present no difficulty.

Notice that the labels used in any graph of the decomposition are different.

4. Results.

THEOREM 1. Let i = 3 and 4 if $1 < n \equiv 0$ or $1 \pmod{2m}$ then K_n has a $D_i(m)$ -decomposition.

THEOREM 2. Let i = 3 or $4, 2^{\alpha} > i$, then K_n has a $D_i(2^{\alpha})$ decomposition if and only if

$$1 < n \equiv 0$$
 or $1 \pmod{2^{\alpha+1}}$.

Proof. Lemmas 1–4 give direct constructions for all decompositions claimed in Theorem 1.

Theorem 2 follows from condition (1) and Theorem 1 since m is a power of 2.

References

1. J. C. Bermond and J. Schonheim, G-decomposition of K_n , where G has four vertices or less, Discrete Mathematics **19** (1977) 113–120.

2. A. Rosa and C. Huang, Another class of Balanced graph designs, Balanced Circuit Designs, Discrete Mathematics 12 (1975) 269-293.

278

September

1980]

DRAGONS

3. Th. Skolem, On certain distribution of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.

CARLETON UNIVERSITY, OTTAWA, K1S 5B6. Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv.