DECOMPOSITION OF K_{n} INTO DRAGONS

BY
C. HUANG AND J. SCHONHEIM

Abstract

It is shown that if $1<n \equiv 0$ or $1(\bmod 2 m)$, then the edges of K_{n} may be partitioned into isomorphic copies of a graph $D_{3}(m)$ and also of a graph $D_{4}(m)$, graphs consisting respectively of a triangle with an attached path of $m-3$ edges or a quadrilateral with an attached path of $m-4$ edges. If m is a power of 2 then the above condition is shown to be necessary and sufficient for the existence of such a partition.

1. Introduction. The complete graph K_{n} is said to have a G-decomposition, if it is the union of edge disjoint subgraphs each isomorphic to G.

An immediate and well-known necessary condition for the existence of a G-decomposition of K_{n}, if G has m edges, is

$$
\begin{equation*}
n(n-1) \equiv 0(\bmod 2 m) . \tag{1}
\end{equation*}
$$

The problem of determining the set of integers $N(G)$ for which K_{n} has a G-decomposition has been solved completely or partially only for some particular graphs G namely for stars, paths, circles and also for all graphs having no more than four vertices. For more detailed references see [1].

Definition 1. A dragon $D_{3}(m)$ respectively $D_{4}(m)$ is a graph having m edges and consisting of a triangle or a quadrilateral respectively and an attached path, called tail.

In this paper G will always denote a dragon.
As a first result of this paper we will prove in Theorem 1 the sufficiency of each of the conditions

$$
\begin{align*}
& n \equiv 1(\bmod 2 m), \tag{2}\\
& n \equiv 0(\bmod 2 m), \tag{3}
\end{align*}
$$

if G is a dragon $D_{3}(m)$ or $D_{4}(m)$. Consequently as formulated in Theorem 2 condition (1) for dragons appears to be necessary and sufficient if m is a power of 2 . This establishes a complete solution of the G-decomposition problem for $D_{3}\left(2^{\alpha}\right)$ and $D_{4}\left(2^{\alpha}\right)$ namely: for

$$
i=3,4 \quad 2^{\alpha}>i
$$

$$
\begin{equation*}
N\left(D_{i}\left(2^{\alpha}\right)\right)=\left\{n \mid 1<n \equiv 0 \quad \text { or } \quad 1\left(\bmod 2^{\alpha+1}\right)\right\} . \tag{4}
\end{equation*}
$$

Received by the editors November 1, 1977 and, in revised form, January 12, 1979.

This generalizes

$$
N\left(D_{3}(4)\right)=\{n \mid 1<n \equiv 0 \quad \text { or } \quad 1(\bmod 8)\}
$$

a resuit in [1].
2. Notation and definitions. The vertex set of K_{n} will be either Z_{n} or $Z_{n-1} \cup \infty$ depending on whether $n \equiv 1$ or $n \equiv 0(\bmod 2 m)$.

A dragon $D_{3}(m)$ consisting of the triangle $\{a, b, c\}$ with tail attached to the vertex c will be denoted by $\left(a, b, c ; x_{1}, x_{2}, \ldots, x_{m-3}\right)$. Similarly $(a, b, c, d$; $x_{1}, x_{2}, \ldots, x_{m-4}$) is a dragon consisting of the quadrilateral with edges $\{a b, b c, c d, d a\}$ and with the tail attached to the vertex d.

It seems to be useful to denote by $\left(a, b, c ; x_{1}, x_{2}, \ldots, x_{m-3}\right)(\bmod n)$ the set of graphs

$$
\left(a+j, b+j, c+j ; x_{1}+j, x_{2}+j, \ldots, x_{m-3}+j\right) \quad j=0,1,2, \ldots, n-1
$$

where all the vertices are in Z_{n}.
When the vertex set is $Z_{n-1} \cup \infty$, denote by

$$
\left(a, b, c ; x_{1}, x_{2}, \ldots, x_{m-4}, \infty\right)(\bmod n-1)
$$

the set of graphs

$$
\left(a+j, b+j, c+j ; x_{1}+j, x_{2}+j, \ldots, x_{m-4}+j, \infty\right) \quad j=0,1,2, \ldots, n-2 .
$$

A similar notation will be used also for $D_{4}(m)$.
Two partitions of integers, which are known [2,3] to exist will be used in our construction and are as follows:

Definition 2

(i) Let $t \equiv 0,1(\bmod 4)$. A partition of the integers $\{1,2, \ldots, 2 t\}$ into t pairs $\left(p_{i}, q_{i}\right)$ such that $q_{i}-p_{i}=i$ for $i=1,2, \ldots, t$ will be called partition A.
(ii) Let $t \equiv 2,3(\bmod 4)$. A partition of the integers $\{1,2, \ldots, 2 t-1,2 t+1\}$ into t pairs $\left(p_{i}, q_{i}\right)$ such that $q_{i}-p_{i}=i$ for $i=1,2, \ldots, t$ will be called partition B.

The set of pairs $\left\{\left(p_{i}, q_{i}\right), i=1,2, \ldots, t\right\}$ will denote a partition A or a partition B, depending on whether $t \equiv 0,1(\bmod 4)$ or $t \equiv 2,3(\bmod 4)$.

3. Four lemmas.

Lemma 1. Let

$$
\begin{align*}
& y_{i}= \begin{cases}\frac{m-3}{2} t & \text { if } m \text { is odd } \\
\frac{m+2}{2} t+i & \text { if } m \text { is even }\end{cases} \tag{5}\\
& i=2,3, \ldots, t
\end{align*}
$$

and let

$$
y_{1}=\left\{\begin{array}{l}
\text { as defined in }(5), \text { if } t \equiv 0,1(\bmod 4) \text { i.e. } \\
\frac{m-3}{2} t, \text { for } m \text { odd, } \frac{m+2}{2} t+1, \text { for } m \text { even, } \\
\frac{m-3}{2} t+1, \text { for } m \text { odd, } \frac{m+2}{2} t \text { for } m \text { even, if } \\
t \equiv 2,3(\bmod 4)
\end{array}\right.
$$

then the following $t(2 m t+1)$ graphs form a $D_{3}(m)$-decomposition of $K_{2 m t+1}$:

$$
\left(v-p_{i}-t, v-q_{i}-t, 0 ;(m-1) t+i, t,(m-2) t+i, 2 t, \ldots, y_{i}\right)(\bmod v)
$$

where $i=1,2, \ldots, t, v=2 m t+1$.
Lemma 2. Let

$$
\left.\begin{array}{l}
y_{i}= \begin{cases}\frac{m-3}{2} t & \text { for } m \text { odd } \\
\frac{m+2}{2} t+i-1 & \text { for } m \text { even }\end{cases} \tag{6}\\
i=3,4, \ldots, t
\end{array}\right] \begin{aligned}
& y_{1}=\left\{\begin{array}{c}
\text { as defined in }(6), \text { with } i=1, \text { if } \\
t \equiv 2,3(\bmod 4) \\
\infty
\end{array}\right. \\
& y_{2}=\left\{\begin{array}{c}
\text { af } t \equiv 0,1(\bmod 4) \\
t \equiv 0,1(\bmod 4) \\
\infty
\end{array} \quad \text { if } t \equiv 2,3(\bmod 4)\right.
\end{aligned}
$$

then the following $t(2 m t-1)$ graphs form a $D_{3}(m)$-decomposition of $K_{2 m t}$:

$$
\left(v-p_{i}-t, v-q_{i}-t, 0 ;(m-1) t+i-1, t,(m-2) t+i-1,2 t, \ldots, y_{i}\right)(\bmod v)
$$

where $i=1,2, \ldots, t, v=2 m t-1$.
Lemma 3. Let

$$
y_{i}= \begin{cases}\frac{m-4}{2} t & \text { if } m \text { is even } \\ \frac{m+3}{2} t+i & \text { if } m \text { is } o d d .\end{cases}
$$

then the following $t(2 m t+1)$ graphs form a $D_{4}(m)$-decomposition of $K_{2 m t+1}$:

$$
\left(v-2 i, 2 m t, v-(4 t-2 i+2), 0 ;(m-1) t+i, t,(m-2) t+i, 2 t, \ldots, y_{i}\right)(\bmod v)
$$

where $i=1,2, \ldots, t, v=2 m t+1$.

Lemma 4. Let

$$
y_{i}= \begin{cases}\frac{m-4}{2} t & \text { if } m \text { is even } \\ \frac{m+3}{2} t+i-1 & \text { if } m \text { is odd }\end{cases}
$$

for $i=1,2, \ldots, t-1$, while $y_{t}=\infty$, then the following $t(2 m t-1)$ graphs form a $D_{4}(m)$-decomposition of $K_{2 m t}$:

$$
\begin{aligned}
(v-2 i, 2 m t, v-(4 t-2 i+2), 0 ;(m-1) t+i-1, t,(m-2) t+i-1,2 t, \ldots, & \left.y_{i}\right) \\
& \times(\bmod v)
\end{aligned}
$$

where $i=1,2, \ldots, t, v=2 m t-1$.
Proof of Lemmas 1-4. The direct construction exhibited in Lemmas 1-4 may be checked as follows. Every edge (x, y) of K_{n} occurs in some graph of the claimed decomposition. Indeed, in the case of Lemma $1, t \equiv 0,1(\bmod 4)$ for instance, if $\min \{|x-y|, n-|x-y|\} \leq 3 t$ then (x, y) occurs in some triangle, otherwise in the tail. For $t \equiv 2,3(\bmod 4)$ the minimum $3 t$ does not occur in the triangle, but this is compensated by the change in y_{1}. The unicity follows from the fact that the total number of edges in the decomposition is precisely the number of edges of K_{n}.

The argument is similar in the other lemmas. Edges (∞, x) present no difficulty.

Notice that the labels used in any graph of the decomposition are different.

4. Results.

Theorem 1. Let $i=3$ and 4 if $1<n \equiv 0$ or $1(\bmod 2 m)$ then K_{n} has a $D_{i}(m)$-decomposition.

Theorem 2. Let $i=3$ or $4,2^{\alpha}>i$, then K_{n} has a $D_{i}\left(2^{\alpha}\right)$ decomposition if and only if

$$
1<n \equiv 0 \quad \text { or } \quad 1\left(\bmod 2^{\alpha+1}\right) .
$$

Proof. Lemmas 1-4 give direct constructions for all decompositions claimed in Theorem 1.

Theorem 2 follows from condition (1) and Theorem 1 since m is a power of 2.

References

1. J. C. Bermond and J. Schonheim, G-decomposition of K_{n}, where G has four vertices or less, Discrete Mathematics 19 (1977) 113-120.
2. A. Rosa and C. Huang, Another class of Balanced graph designs, Balanced Circuit Designs, Discrete Mathematics 12 (1975) 269-293.
3. Th. Skolem, On certain distribution of integers in pairs with given differences, Math. Scand. $\mathbf{5}$ (1957) 57-68.

Carleton University, Ottawa, K1S 5B6.
Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv.

