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ON HILBERT FUNCTIONS OF GENERAL
INTERSECTIONS OF IDEALS

GIULIO CAVIGLIA and SATOSHI MURAI

Abstract. Let I and J be homogeneous ideals in a standard graded polyno-

mial ring. We study upper bounds of the Hilbert function of the intersection of

I and g(J), where g is a general change of coordinates. Our main result gives

a generalization of Green’s hyperplane section theorem.

§1. Introduction

Hilbert functions of graded K-algebras are important invariants studied
in several areas of mathematics. In the theory of Hilbert functions, one of
the most useful tools is Green’s hyperplane section theorem, which gives a
sharp upper bound for the Hilbert function of R/hR, where R is a standard
graded K-algebra and h is a general linear form, in terms of the Hilbert
function of R. This result of Green has been extended to the case of general
homogeneous polynomials by Herzog and Popescu [HP] and Gasharov [Ga].
In this paper, we study a further generalization of these theorems.

Let K be an infinite field and S =K[x1, . . . , xn] a standard graded
polynomial ring. Recall that the Hilbert function H(M) : Z→ Z of a finitely
generated graded S-module M is the numerical function defined by

H(M)(d) = dimK Md,

where Md is the graded component of M of degree d. A set W of monomials
of S is said to be a lex-segment if, for all monomials u, v ∈ S of the same
degree, u ∈W and v >lex u imply v ∈W , where >lex is the lexicographic
order induced by the ordering x1 > · · ·> xn. We say that a monomial ideal
I ⊂ S is a lex-segment ideal if the set of monomials in I is a lex-segment. The
classical Macaulay’s theorem [Mac] guarantees that, for any homogeneous
ideal I ⊂ S, there exists a unique lex-segment ideal, denoted by I lex, with the
same Hilbert function as I. Green’s hyperplane section theorem [Gr] states
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Theorem 1.1. (Green’s hyperplane section theorem) Let I ⊂ S be a
homogeneous ideal. For a general linear form h ∈ S1,

H(I ∩ (h))(d) 6H(I lex ∩ (xn))(d) for all d> 0.

Green’s hyperplane section theorem is known to be useful to prove several

important results on Hilbert functions such as Macaulay’s theorem [Mac]

and Gotzmann’s persistence theorem [Go] (see [Gr]). Herzog and Popescu

[HP] (in characteristic 0) and Gasharov [Ga] (in positive characteristic)

generalized Green’s hyperplane section theorem in the following form.

Theorem 1.2. (Herzog–Popescu, Gasharov) Let I ⊂ S be a homoge-

neous ideal. For a general homogeneous polynomial h ∈ S of degree a,

H(I ∩ (h))(d) 6H(I lex ∩ (xan))(d) for all d> 0.

We study a generalization of Theorems 1.1 and 1.2. Let >oplex be the

lexicographic order on S induced by the ordering xn > · · ·> x1. A set W of

monomials of S is said to be an opposite lex-segment if, for all monomials

u, v ∈ S of the same degree, u ∈W and v >oplex u imply v ∈W . Also, we

say that a monomial ideal I ⊂ S is an opposite lex-segment ideal if the set of

monomials in I is an opposite lex-segment. For a homogeneous ideal I ⊂ S,

let Ioplex be the opposite lex-segment ideal with the same Hilbert function

as I and let Ginσ(I) be the generic initial ideal [Ei, Section 15.9] of I with

respect to a term order >σ.

In Section 3 we prove the following

Theorem 1.3. Suppose char(K) = 0. Let I ⊂ S and J ⊂ S be homoge-

neous ideals such that Ginlex(J) is a lex-segment ideal. For a general change

of coordinates g of S,

H(I ∩ g(J))(d) 6H(I lex ∩ Joplex)(d) for all d> 0.

Theorems 1.1 and 1.2, assuming that the characteristic is zero, are special

cases of the above theorem when J is principal. Note that Theorem 1.3 is

sharp since the equality holds if I is a lex-segment ideal and J is an opposite

lex-segment ideal (Remark 3.5). Note also that if Ginσ(I) is a lex-segment

ideal for some term order >σ then Ginlex(J) must be a lex-segment ideal as

well [Co1, Corollary 1.6].

Unfortunately, the assumption on J , as well as the assumption on the

characteristic of K, in Theorem 1.3 are essential (see Remark 3.6). However,

we prove the following result for the product of ideals.
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Theorem 1.4. Suppose char(K) = 0. Let I ⊂ S and J ⊂ S be homoge-

neous ideals. For a general change of coordinates g of S,

H(Ig(J))(d) >H(I lexJoplex)(d) for all d> 0.

Inspired by Theorems 1.3 and 1.4, we suggest the following conjecture.

Conjecture 1.5. Suppose char(K) = 0. Let I ⊂ S and J ⊂ S be homo-

geneous ideals such that Ginlex(J) is a lex-segment ideal. For a general

change of coordinates g of S,

H(Tori(S/I, S/g(J)))(d) 6H(Tori(S/I
lex, S/Joplex))(d) for all d> 0.

Theorems 1.3 and 1.4 show that the conjecture is true if i= 0 or i= 1.

The conjecture is also known to be true when J is generated by linear forms

by a result of Conca [Co2, Theorem 4.2]. Theorem 2.7, which we prove later,

also provides some evidence supporting the above inequality.

§2. Dimension of Tor and general change of coordinates

Let GLn(K) be the general linear group of invertible n× n matrixes over

K. Throughout the paper, we identify each element g = (gij) ∈GLn(K) with

the change of coordinates defined by g(xj) =
∑n

i=1 gijxi for all j.

We say that a property (P) holds for a general g ∈GLn(K) if there is

a nonempty Zariski open subset U ⊂GLn(K) such that (P) holds for all

g ∈ U .

We first present two lemmas which will allow us to reduce the proofs of

the theorems in the introduction to combinatorial considerations regarding

Borel-fixed ideals. The first lemma (Lemma 2.1) is probably clearly true to

some experts, but we include its proof for the sake of the exposition. The

ideas used in the second lemma (Lemma 2.3) are similar to that of [Ca1,

Lemma 2.1] and they rely on the construction of a flat family and on the

use of the structure theorem for finitely generated modules over principal

ideal domains.

For two ideals I ⊂ S and J ⊂ S, we define the functions H(∩, I, J) : Z→
Z, H(·, I, J) : Z→ Z and H(+, I, J) : Z→ Z by

H(∩, I, J)(d) = min{H(I ∩ g(J))(d) : g ∈GLn(K)},

H(·, I, J)(d) = max{H(Ig(J))(d) : g ∈GLn(K)}

and

H(+, I, J)(d) = max{H(I + g(J))(d) : g ∈GLn(K)}
for all d ∈ Z.
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Lemma 2.1. Let I ⊂ S and J ⊂ S be homogeneous ideals. There is a

nonempty Zariski open subset U ⊂GLn(K) such that H(∩, I, J) =H(I ∩
g(J)), H(·, I, J) =H(Ig(J)) and H(+, I, J) =H(I + g(J)) for any g ∈ U .

Proof. We prove the statement for I + g(J), which implies the desired

statement for I ∩ g(J) (the proof for Ig(J) is similar).

Let tkl, where 1 6 k, l 6 n, be indeterminates, K̃ =K(tkl : 1 6 k, l 6 n)

the field of fractions of K[tkl : 1 6 k, l 6 n] and A= K̃[x1, . . . , xn]. Let ρ :

S→A be the ring map induced by ρ(xl) =
∑n

k=1 tklxk for l = 1, 2, . . . , n,

and L̃= IA+ ρ(J)A⊂A. Let L⊂ S be the monomial ideal with the same

monomial generators as inlex(L̃).

We claim that

dimK Ld = dimK̃ L̃d > dimK(I + g(J))d(1)

for any d ∈ Z and g ∈GLn(K). The first equality is clear. To see the

second inequality, let α1, . . . , α` be a K-basis of Id and let β1, . . . , βm be

that of Jd. Then dimK(I + g(J))d is the rank of the matrix representing

(α1, . . . , α`, g(β1), . . . , g(βm)) with respect to the monomial basis of Sd.

This rank is maximized when g is sufficiently general. Also, this rank equals

to dimK̃ L̃d for a general g.

Let f1, . . . , fs be generators of I and g1, . . . , gt those of J . Then

the polynomials f1, . . . , fs, ρ(g1), . . . , ρ(gt) are generators of L̃. By

the Buchberger algorithm, one can compute a Gröbner basis of L̃

from f1, . . . , fs, ρ(g1), . . . , ρ(gt) by finite steps. Consider all elements

h1, . . . , hm ∈K(tkl : 1 6 k, l 6 n) which are the coefficients of polynomials

(including numerators and denominators of rational functions) that appear

in the process of computing a Gröbner basis of L̃ by the Buchberger algo-

rithm. Let U = {g ∈GLn(K) : hi(g) 6= 0 for i= 1, 2, . . . , m}, where hi(g) is

an element obtained from hi by substituting tkl with the entries of g. By

construction U is a nonempty Zariski open subset and inlex(I + g(J)) = L

for every g ∈ U . This fact and (1) prove the desired statement.

The method used to prove the above lemma can be easily generalized to

a number of situations. For a finitely generated graded S-module M and for

a homogeneous ideal J ⊂ S, define the function H(Tori, M, J) : Z→ Z by

H(Tori, M, J)(d) = min{H(Tori(M, S/g(J)))(d) : g ∈GLn(K)}

for all d ∈ Z.
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Proposition 2.2. With the same notation as above, there is a

nonempty Zariski open subset U ⊂GLn(K) such that H(Tori, M, J) =

H(Tori(M, S/g(J))) for any g ∈ U .

Proof. Let F : 0
ϕp+1−→ Fp

ϕp−→ · · · −→ F1
ϕ1−→ F0

ϕ0−→ 0 be a graded free

resolution of M. Given a change of coordinates g, one first notes that for

every i= 0, 1, . . . , p, the Hilbert function H(Tori(M, S/g(J))) is equal to

the difference between the Hilbert function of Ker(πi−1 ◦ ϕi) and that of

ϕi+1(Fi+1) + Fi ⊗S g(J) where πi−1 : Fi−1→ Fi−1 ⊗S S/g(J) is the canoni-

cal projection. Hence we have

H(Tori(M, S/g(J)))(d)

=H(Fi)(d)−H(ϕi(Fi) + g(J)Fi−1)(d) +H(g(J)Fi−1)(d)

−H(ϕi+1(Fi+1) + g(J)Fi)(d)

for all d ∈ Z. Clearly H(Fi) and H(g(J)Fi−1) do not depend on g. Then, in

the same way as in the proof of Lemma 2.1, one can prove that there is a

nonempty Zariski open subset U ⊂GLn(K) such that the Hilbert function

of ϕi(Fi) + g(J)Fi−1 is maximal for any g ∈ U .

Note that Lemma 2.1 can be considered as a special case of the above

proposition since Tor0(S/I, S/J)∼= S/(I + J) and Tor0(I, S/J)∼= I/IJ .

For a vector w = (w1, . . . , wn) ∈ Zn>0, let inw(I) be the initial ideal of a

homogeneous ideal I with respect to the weight order >w (see [Ei, p. 345]).

Let T be a new indeterminate and R= S[T ]. For a = (a1, . . . , an) ∈ Zn>0,

let xa = xa11 x
a2
2 · · · xann and (a,w) = a1w1 + · · ·+ anwn. For a polynomial

f =
∑

a∈Zn>0
cax

a, where ca ∈K, let b= max{(a,w) : ca 6= 0} and

f̃ = T b

 ∑
a∈Zn>0

T−(a,w)cax
a

 ∈R.
Note that f̃ can be written as f̃ = inw(f) + Tg where g ∈R. For an ideal

I ⊂ S, let Ĩ = (f̃ : f ∈ I)⊂R. For λ ∈K \ {0}, let Dλ,w be the diagonal

change of coordinates defined by Dλ,w(xi) = λ−wixi. From the definition,

we have

R/
(
Ĩ + (T )

)∼= S/inw(I)

and

R/
(
Ĩ + (T − λ)

)∼= S/Dλ,w(I)
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where λ ∈K \ {0}. Moreover, (T − λ) is a nonzero divisor of R/Ĩ for any

λ ∈K. See [Ei, Section 15.8].

Lemma 2.3. Fix an integer j. Let w ∈ Zn>0, M a finitely generated

graded S-module and J ⊂ S a homogeneous ideal. For a general λ ∈K, one

has

H
(
Tori

(
M, S/inw(J)

))
(j) >H

(
Tori

(
M, S/Dλ,w(J)

))
(j) for all i.

Proof. Consider the ideal J̃ ⊂R defined as above. Let M̃ =M ⊗S R and

Ti = TorRi (M̃, R/J̃). By the structure theorem for modules over a PID (see

[La, p. 149]), we have

(Ti)j ∼=K[T ]aij
⊕

Aij

as a finitely generated K[T ]-module, where aij ∈ Z>0 and where Aij is the

torsion submodule. Moreover, Aij is a module of the form

Aij ∼=
bij⊕
h=1

K[T ]/(P i,jh ),

where P i,jh is a nonzero polynomial in K[T ]. Set lλ = T − λ. Consider the

exact sequence

0 −−−−→ R/J̃
·lλ−−−−→ R/J̃ −−−−→ R/

(
(lλ) + J̃

)
−−−−→ 0.(2)

By considering the long exact sequence induced by TorRi (M̃,−), we have

the following exact sequence

(3) 0−→ Ti/lλTi −→ TorRi
(
M̃, R/

(
(lλ) + J̃

))
−→Ki−1 −→ 0,

where Ki−1 is the kernel of the map Ti−1
·lλ−→ Ti−1. Since lλ is a regular

element for R and M̃ , the middle term in (3) is isomorphic to

Tor
R/(lλ)
i

(
M̃/lλM̃, R/

(
(lλ) + J̃

))
=

{
TorSi

(
M, S/inw(J)

)
if λ= 0,

TorSi
(
M, S/Dλ,w(J)

)
if λ 6= 0,

(see [Mat, p. 140]). By taking the graded component of degree j in (3), we

obtain

dimK TorSi
(
M, S/inw(J)

)
j

= aij + #{P ijh : P i,jh (0) = 0}
+#{P i−1,jh : P i−1,jh (0) = 0},

(4)
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where #X denotes the cardinality of a finite set X, and

dimK TorSi
(
M, S/Dλ,w(J)

)
j

= aij(5)

for a general λ ∈K. This proves the desired inequality.

Corollary 2.4. With the same notation as in Lemma 2.3, for a general

λ ∈K,

H
(
Tori

(
M, inw(J)

))
(j) >H

(
Tori

(
M, Dλ,w(J)

))
(j) for all i.

Proof. For any homogeneous ideal I ⊂ S, by considering the long exact

sequence induced by Tori(M,−) from the short exact sequence 0−→ I −→
S −→ S/I −→ 0, we have

Tori(M, I)∼= Tori+1(M, S/I) for i> 1

and

dimKTor0(M, I)j = dimKTor1(M, S/I)j + dimKMj − dimKTor0(M, S/I)j .

Thus, by Lemma 2.3 it is enough to prove that

dimK Tor1
(
M, S/inw(J)

)
j
− dimK Tor1

(
M, S/Dλ,w(J)

)
j

> dimK Tor0
(
M, S/inw(J)

)
j
− dimK Tor0

(
M, S/Dλ,w(J)

)
j
.

This inequality follows from (4) and (5).

Proposition 2.5. Fix an integer j. Let I ⊂ S and J ⊂ S be homoge-

neous ideals. Let w,w′ ∈ Zn>0. Then

(i) H(Tori, S/I, J)(j) 6H(Tori(S/inw(I), S/inw′(J)))(j) for all i.

(ii) H(Tori, I, J)(j) 6H(Tori(inw(I), S/inw′(J)))(j) for all i.

Proof. We prove (ii) (the proof for (i) is similar). By Lemma 2.3 and

Corollary 2.4, we have

H
(
Tori

(
inw(I), S/inw′(J)

))
(j) > H

(
Tori

(
Dλ1,w(I), S/Dλ2,w′(J)

))
(j)

= H(Tori
(
I, S/D−1λ1,w

(
Dλ2,w′(J)

))
)(j)

> H(Tori, S/I, J)(j),

as desired, where λ1, λ2 are general elements in K.
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Remark 2.6. Let w′ = (1, 1, . . . , 1) and note that the composite of two

general changes of coordinates is still general. By replacing J by g(J) for a

general change of coordinates g, from Proposition 2.5(i) it follows that

H(Tori(S/I, S/g(J)))(j) 6H(Tori(S/in>σ(I), S/g(J)))(j)

for any term order >σ.

The above fact gives, as a special case, an affirmative answer to [Co2,

Question 6.1]. This was originally proved in the thesis of the first author

[Ca2]. We mention it here because there seem to be no published article

which includes the proof of this fact.

Theorem 2.7. Fix an integer j. Let I ⊂ S and J ⊂ S be homogeneous

ideals, and let >σ and >τ be term orders. Then

(i) H(Tori, S/I, J)(j) 6H(Tori(S/Ginσ(I), S/Ginτ (J)))(j) for all i.

(ii) H(Tori, I, J)(j) 6H(Tori(Ginσ(I), S/Ginτ (J)))(j) for all i.

Proof. Without loss of generality, we may assume inσ(I) = Ginσ(I) and

that inτ (J) = Ginτ (J). It follows from [Ei, Proposition 15.16] that there are

vectors w,w′ ∈ Zn>0 such that inw(I) = inσ(I) and inw′(J) = Ginτ (J). Then

the desired inequality follows from Proposition 2.5.

We later use the following special case of Theorem 2.7.

Corollary 2.8. Let I ⊂ S and J ⊂ S be homogeneous ideals. Then

(i) H(∩, I, J)(d) 6H(Ginlex(I) ∩Ginoplex(J))(d) for all d> 0.

(ii) H(·, I, J)(d) >H(Ginlex(I)Ginoplex(J))(d) for all d> 0.

We conclude this section with a result regarding the Krull dimension of

certain Tor modules. We show how Theorem 2.7 can be used to give a quick

proof of Proposition 2.9, which is a special case (for the variety X = Pn−1
and the algebraic group SLn) of the main Theorem of [MSp].

Let B+ ⊂GLn(K) (resp. B− ⊂GLn(K)) be the set of the nonsingu-

lar upper triangular (resp. lower triangular) matrixes. For a group G⊂
GLn(K), a homogeneous ideal I ⊂ S is said to be G-fixed if b(I) = I for any

b ∈G. Recall that, for an ideal I of S, Ginlex(I) is B+-fixed and Ginoplex(I)

is B−-fixed. See [Ei, Section 15.9] for more details on the combinatorial

properties of B+-fixed ideals.

Let I and J be ideals generated by linear forms. If we assume that I

is B+-fixed and that J is B−-fixed, then there exist 1 6 i, j 6 n such that
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I = (x1, . . . , xi) and J = (xj , . . . , xn). An easy computation shows that the

Krull dimension of Tori(S/I, S/J) is always zero when i > 0.

More generally one has

Proposition 2.9. (Miller–Speyer) Let M be a finitely generated graded

S-module, and let J be a homogeneous ideal of S. For a general change of

coordinates g, the Krull dimension of Tori(M, S/g(J)) is zero for all i > 0.

Proof. By considering a filtration M =Mk ⊃Mk−1 ⊃ · · · ⊃M1 ⊃ 0 such

that Mk/Mk−1 ∼= S/Pk for some prime ideal Pk (see [Ei, Proposition 3.7]),

it is enough to consider the case when M = S/I for some homogeneous

ideal I. By Theorem 2.7, we may assume that I is B+-fixed and J is B−-

fixed. Since an associated prime ideal of B+-fixed ideal is an ideal of the

form (x1, . . . , xa) [Ei, Corollary 15.25], by considering filtrations of S/I and

S/J , one may assume I = (x1, . . . , xa) and J = (xb, . . . , xn). This proves

the desired property.

§3. General intersections and general products

In this section, we prove Theorems 1.3 and 1.4. We assume throughout

the rest of the paper char(K) = 0.

A monomial ideal I ⊂ S is said to be 0-Borel (or strongly stable) if, for

every monomial uxj ∈ I and for every 1 6 i < j one has uxi ∈ I. Note that

0-Borel ideals are precisely all the possible B+-fixed ideals in characteristic

0. In general, the B+-fixed property depends on the characteristic of the field

and we refer the readers to [Ei, Section 15.9] for the details. A set W ⊂ S
of monomials in S is said to be 0-Borel if for every monomial uxj ∈W
and for every 1 6 i < j one has uxi ∈W . Similarly we say that a monomial

ideal J ⊂ S is opposite 0-Borel if for every monomial uxj ∈ J and for every

j < i6 n one has uxi ∈ J .

Let >rev be the reverse lexicographic order induced by the ordering x1 >

· · ·> xn. We recall the following result [Mu, Lemma 3.2].

Lemma 3.1. Let V = {v1, . . . , vs} ⊂ Sd be a 0-Borel set of monomi-

als and W = {w1, . . . , ws} ⊂ Sd the lex-segment set of monomials, where

v1 >rev · · ·>rev vs and w1 >rev · · ·>rev ws. Then vi >rev wi for all i=

1, 2, . . . , s.

Since generic initial ideals with respect to >lex are 0-Borel, the next

lemma and Corollary 2.8(i) prove Theorem 1.3.

https://doi.org/10.1017/nmj.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.10


70 G. CAVIGLIA AND S. MURAI

Lemma 3.2. Let I ⊂ S be a 0-Borel ideal and P ⊂ S an opposite lex-

segment ideal. Then H(I ∩ P )(d) 6H(I lex ∩ P )(d) for all d> 0.

Proof. Fix a degree d. Let V, W and Q be the sets of monomials of

degree d in I, I lex and P , respectively. It is enough to prove that #V ∩Q6
#W ∩Q.

Observe that Q is the set of the smallest #Q monomials in Sd with respect

to >rev. Let m= max>rev Q. Then by Lemma 3.1

#V ∩Q= #{v ∈ V : v 6rev m}6 #{w ∈W : w 6rev m}= #W ∩Q,

as desired.

Next, we consider products of ideals. For a monomial u ∈ S, let max u

(resp., min u) be the maximal (resp., minimal) integer i such that xi divides

u, where we set max 1 = 1 and min 1 = n. For a monomial ideal I ⊂ S, let

I(6k) be the K-vector space spanned by all monomials u ∈ I with max u6 k.

Lemma 3.3. Let I ⊂ S be a 0-Borel ideal and P ⊂ S an opposite 0-

Borel ideal. Let G(P ) = {u1, . . . , us} be the set of the minimal monomial

generators of P . As a K-vector space, IP is the direct sum

IP =
s⊕
i=1

(I(6min ui))ui.

Proof. It is enough to prove that, for any monomial w ∈ IP , there is the

unique expression w = f(w)g(w) with f(w) ∈ I and g(w) ∈ P satisfying

(a) max f(w) 6 min g(w).

(b) g(w) ∈G(P ).

Given any expression w = fg such that f ∈ I and g ∈ P , since I is 0-

Borel and P is opposite 0-Borel, if max f >min g then we may replace f by

f
xmin g

xmax f
∈ I and replace g by g

xmax f

xmin g
∈ P . This fact shows that there is an

expression satisfying (a) and (b).

Suppose that the expressions w = f(w)g(w) and w = f ′(w)g′(w) satisfy

conditions (a) and (b). Then, by (a), g(w) divides g′(w) or g′(w) divides

g(w). Since g(w) and g′(w) are generators of P , g(w) = g′(w). Hence the

expression is unique.

Lemma 3.4. Let I ⊂ S be a 0-Borel ideal and P ⊂ S an opposite 0-Borel

ideal. Then H(IP )(d) >H(I lexP )(d) for all d> 0.
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Proof. Lemma 3.1 shows that dimK I(6k)d > dimK I lex(6k)d
for all k and

d> 0. Then the statement follows from Lemma 3.3.

Finally we prove Theorem 1.4.

Proof of Theorem 1.4. Let I ′ = Ginlex(I) and J ′ = Ginoplex(J). Since I ′

is 0-Borel and J ′ is opposite 0-Borel, by Corollary 2.8(ii) and Lemma 3.4

H(Ig(J))(d) >H(I ′J ′)(d) >H(I lexJ ′)(d) >H(I lexJoplex)(d)

for all d> 0.

Remark 3.5. Theorems 1.3 and 1.4 are sharp. Let I ⊂ S be a B+-fixed

ideal and J ⊂ S a B−-fixed ideal. For a general g ∈GLn(K), we have the

LU decomposition g = bb′ where b ∈B+ and b′ ∈B−. Then

H(∩, I, J) =H(I ∩ g(J)) =H(b−1(I) ∩ b′(J)) =H(I ∩ J)

and similarly

H(·, IJ) =H(b(I)b′(J)) =H(IJ).

Thus, if I is a lex-segment ideal and J is an opposite lex-segment ideal then

we have equalities in Theorems 1.3 and 1.4.

Remark 3.6. The assumption on Ginlex(J) in Theorem 1.3 is necessary.

Let I = (x31, x
2
1x2, x1x

2
2, x

3
2)⊂K[x1, x2, x3] and J = (x23, x

2
3x2, x3x

2
2, x

3
2)⊂

K[x1, x2, x3]. Then

I lex = (x31, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x

2
3, x1x

4
3, x

6
2)

and Joplex is obtained from I lex by exchanging x1 and x3. Then H(I lex ∩
Joplex)(3) = 0. On the other hand, as we see in Remark 3.5,H(I ∩ g(J))(3) =

H(I ∩ J)(3) = 1. Similarly, the assumption on the characteristic of K is

needed as one can easily see by considering char(K) = p > 0, I = (xp1, x
p
2)⊂

K[x1, x2] and J = (xp2). In this case we have H((I ′)lex ∩ (J ′)oplex)(p) = 0,

while H(I ′ ∩ g(J ′))(p) =H(g−1(I ′) ∩ J ′)(p) = 1 since I is fixed under any

change of coordinates.

Remark 3.7. Let h : Z→ Z and h′ : Z→ Z be Hilbert functions of

homogeneous ideals of S. One may ask if, there are ideals L and L′ such

that H(L) = h, H(L′) = h′ and

H(∩, L, L′)(d) = max{H(∩, I, J)(d) :H(I) = h, H(J) = h′}
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for all d. Corollary 2.8 and Remark 3.5 say that to study this question, one

may assume that L is B+-fixed,L′ is B−-fixed and H(∩, L, L′) =H(L ∩ L′).
Unfortunately, not all Hilbert functions h and h′ satisfy this property.

Let I and J be ideals given in Remark 3.6 and h=H(I) =H(J). Then

max{H(∩, I ′, J ′)(3) :H(I ′) =H(J ′) = h}= 1.

Also, if L is B+-fixed, L′ is B−-fixed and H(L ∩ L′)(3) = 1, then we have

L= I and L′ = J . However,

H(I ∩ J)(5) = 9< 10 =H(I lex ∩ J lex)(5).

Since Tor0(S/I, S/J)∼= S/(I + J) and Tor1(S/I, S/J)∼= (I ∩ J)/IJ for

all homogeneous ideals I ⊂ S and J ⊂ S, Theorems 1.3 and 1.4 show the

next statement.

Remark 3.8. Conjecture 1.5 is true if i= 0 or i= 1.

It would be of interest to study lower bounds of the Hilbert functions of

the modules Tori(S/I, S/J) and Exti(S/I, S/J). For example, it was asked

in [MSt, Problem 18.35] which monomial ideal I minimize the K-dimension

of Hom(I, S/I) among all monomial ideals I ⊂ S of co-length n. At the

moment, we are not sure if the techniques used in this paper is applicable

to this problem.
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